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The Bluetooth Low Energy (BLE) is a wireless communi-
cation technology specially designed to prolong battery life of
devices with different power consumption and usage capabili-
ties. BLE consists of a set of many standardized protocols that
provide remote connectivity and security between a simple
device (peripheral) and the user’s device (central) which is
usually a smartphone or a notebook. The relevant interaction
between both devices is presented in Figure 1.

In this public disclosure, we release the technical details of
SWEYNTOOTH vulnerabilities. We note that SWEYNTOOTH
vulnerabilities are released in different batches to respect the
responsible disclosure timeline. As of today, we have released
12 new vulnerabilities in the first batch of SWEYNTOOTH (re-
leased 11th February, 2020) whereas five new vulnerabilities
are released in the second batch (released 14th July, 2020).
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Figure 1: BLE messages exchange diagram

1 Introducing SWEYNTOOTH

In the first batch, SWEYNTOOTH captures a family of 12
vulnerabilities across different BLE software development
kits (SDKs) of seven major system-on-a-chip (SoC) vendors.
The vulnerabilities expose flaws in specific BLE SoC imple-
mentations that allow an attacker in radio range to trigger
deadlocks, crashes and buffer overflows or completely by-
pass security depending on the circumstances.

SWEYNTOOTH potentially affects IoT products in appli-
ances such as smart-homes, wearables and environmental
tracking or sensing. We have also identified several medical
and logistics products that could be affected.

For Batch 1, SWEYNTOOTH vulnerabilities are found in
the BLE SDKs sold by major SoC vendors, such as Texas
Instruments, NXP, Cypress, Dialog Semiconductors, Mi-
crochip, STMicroelectronics and Telink Semiconductor.
By no means, this list of SoC vendors is exhaustive in terms of
being affected by SWEYNTOOTH. We have followed respon-
sive disclosure during our discovery, which allowed almost
all SoC vendors to publicly release their respective patches al-
ready. However, a substantial number of IoT products relying
on the affected SoCs for BLE connectivity will still need to
independently receive patches from their respective vendors,
as long as a firmware update mechanism is supported by the
vendor.

1.1 SWEYNTOOTH (Batch 2)

In the second batch, SWEYNTOOTH captures a family of five
vulnerabilities across different BLE software development
kits (SDKs). The vulnerabilities expose flaws that allow an
attacker in radio range to trigger deadlocks, crashes or par-
tially bypass security depending on the circumstances. For
the second batch, SWEYNTOOTH vulnerabilities are found in
the BLE SDKs sold by major SoC vendors and open-source
projects such as Texas Instruments, Espressif, Microchip,
ON Semiconductor and Zephyr Bluetooth Stack.

Unlike the first batch of SWEYNTOOTH vulnerabilities, we
did not perform a comprehensive survey of the IoT products
affected by the aforementioned affected BLE stacks. IoT prod-
uct manufacturers are therefore strongly advised to check if
their product is using any of the affected BLE stack.

SWEYNTOOTH highlights concrete flaws in the BLE stack
certification process. We envision substantial amendments
to the BLE stack certification to avoid SWEYNTOOTH style
security flaws. We also urge SoC vendors and IoT product
manufacturers to be aware of such security issues and to
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initiate focused effort in security testing.
A proper classification of the vulnerability set is presented

in the next section.

1.2 Types of vulnerabilities
We have classified the SWEYNTOOTH vulnerabilities accord-
ing to their types and their behaviours on the affected BLE
devices.

• Crash: Vulnerabilities in this category can remotely
crash a device by triggering hard faults. This happens
due to some incorrect code behaviour or memory cor-
ruption, e.g., when a buffer overflow on BLE reception
buffer occurs. When a device crash occurs, they usually
restart. However, such a restart capability depends on
whether a correct hard fault handling mechanism was
implemented in the product that uses the vulnerable BLE
SoC.

• Deadlock: Deadlocks are vulnerabilities that affect the
availability of the BLE connection without causing a
hard fault or memory corruption. Usually they occur due
to some improper synchronisation between user code
and the SDK firmware distributed by the SoC vendor,
leaving the user code being stuck at some point. Crashes
originated from hard faults, if not properly handled, can
become a deadlock if the device is not automatically
restarted. In most cases, when a deadlock occurs, the
user is required to manually power off and power on the
device to re-establish proper BLE communication.

• Security Bypass: This vulnerability is the most critical
one. This is because the vulnerability allows attackers
in radio range to bypass the latest secure pairing mode
of BLE, i.e., the Secure Connections pairing mode [18].
In summary, after the bypass is completed, an attacker
in the radio range has arbitrary read or write access to
device’s functions. These functions, in turn, are only
meant to be accessed by authorised users.

The summary of our findings and the affected vendors is
depicted in Table 1.

2 Vulnerable BLE chips

Table 2 lists the affected SoCs and the respective SDK ver-
sions where the vulnerabilities were found. The qualification
ID of each SoC, attributed to vendors after their SDK is certi-
fied, allows to search for products using the SoC connected
to such ID on the Bluetooth Listing Search site [20]. A basic
search on this site yields about 480 products listings using
the affected SoCs from Table 2. Each listing may contain
multiple products from the same vendor, which further in-
creases the total number of different products affected. This

Table 1: Vulnerabilities type and affected vendors.* indicates
the vulnerability which exhibited a different behaviour on
other vendor.

Type Vulnerability Name Affected Vendors CVE

Crash

Link Layer Length Overflow
Cypress CVE-2019-16336 (6.1)
NXP CVE-2019-17519 (6.1)

Truncated L2CAP Dialog Semiconductors CVE-2019-17517 (6.3)

Silent Length Overflow Dialog Semiconductors CVE-2019-17518 (6.4)

Public Key Crash Texas Instruments CVE-2019-17520 (6.6)

Invalid L2CAP Fragment Microchip CVE-2019-19195 (6.8)

Key Size Overflow Telink Semiconductor CVE-2019-19196 (6.9)

Invalid Sequence Memory Corruption Zephyr Project CVE-2020-10061 (6.13)

Invalid Channel Map
Zephyr Project CVE-2020-10069 (6.14)
Espressif Systems CVE-2020-13594 (6.14)

Deadlock
LLID Deadlock

Cypress CVE-2019-17061 (6.2)
NXP CVE-2019-17060 (6.2)

Sequential ATT Deadlock STMicroelectronics CVE-2019-19192 (6.7)

Invalid Connection Request Texas Instruments CVE-2019-19193 (6.5)

HCI Desync Espressif Systems CVE-2020-13595 (6.12)

Invalid Channel Map*
Microchip CVE-2020-13594 (6.14)
ON Semiconductor CVE-2020-13594 (6.14)

Security Bypass Zero LTK Installation
Telink Semiconductor CVE-2019-19194 (6.10)
ON Semiconductor CVE-2019-19194 (6.10)

DHCheck Skip
Texas Instruments CVE-2020-13593 (6.11)
ON Semiconductor CVE-2020-13593 (6.11)

does not mean, however, that all products are guaranteed to
be affected. This is because the impact of SWEYNTOOTH
vulnerabilities depends on how the product software handles
BLE communication and how much it relies on affected SoCs
to operate.

Table 2: Vulnerabilities and SDK versions of the affected
SoCs.* indicates extra affected SoCs reported by the vendor
not tracked by our team.

Vuln. SoC Vendor SoC Model SDK Ver. Qualification ID(s)
BLE Version 5.0/5.1

6.13,6.14 Nordic Semiconductor (Zephyr Project Stack) nRF51/52 2.2.0 135679, 101395
6.12,6.14 Espressif Systems ESP32 4.2 103833, 147845, 116661, 144495, many

6.10,6.11,6.14 ON Semiconductor RSL10* 3.2 92528
6.1,6.2 Cypress (PSoC 6) CYBLE-416045 2.10 99158

6.5,6.6,6.11 Texas Instruments CC2640R2 3.30.00.20 94079
6.9,6.10 Telink TLSR8258 3.4.0 92269, 136037

6.7 STMicroelectronics WB55 1.3.0 111668
6.7 STMicroelectroncis BlueNRG-2 3.1.0 87428, 106700, 94075
6.4 Dialog DA1469X* 10.0.6 100899
6.3 Dialog DA14585/6* 6.0.12.1020 91436

BLE Version 4.2
6.1,6.2 Cypress (PSoC 4) CYBL11573 3.60 62243, 136808, 79697, 82951, 79480
6.1,6.2 NXP KW41Z 2.2.1 84040

6.4 Dialog DA14680 1.0.14.X 87407, 84084, 71309, 75255
BLE Version 4.1

6.5 Texas Instruments CC2540 1.5.0 23454, 127418
6.3 Dialog DA14580 5.0.4 83573

6.8,6.14 Microchip ATSAMB11 6.2 73346

2.1 Attacks on IoT
The exploitation of the vulnerabilities translates to dangerous
attack vectors against many IoT products released in 2018-
2019. At first glance, most of the vulnerabilities affect prod-
uct’s availability by allowing them to be remotely restarted,
deadlocked or having their security bypassed. In order to raise
awareness of the threats and risks of potentially vulnerable
products already on the market, we have performed attacks
on five representative IoT products which use the affected
SoCs (cf. Table 2) as their main processor. These products
are shown in Figure 2.

• Wearables: Fitbit Inspire - Latest 2018 smartwatches
line-up from FitBit uses the Cypress PSoC 6 as the main
processor. Hence they are vulnerable to Link Layer Over-
flow and LLID Deadlock. To verify what happens to
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Table 3: Products verified to be vulnerable
Product Category BLE SoC Vulnerability Impact

Eve Energy Smart Home DA14680 (6.4) Silent Length Overflow CrashAugust Smart Lock Smart Home DA14680 (6.4) Silent Length Overflow Crash

Fitbit Inspire Wearables CY8C68237 (6.1) LL Length Overflow Crash(6.2) LLID Deadlock Crash

CubiTag Gadget Tracking CC2640R2 (6.6) Public Key Crash Deadlock
eGeeTouch TSA Lock Security CC2540 (6.5) Invalid Connection Request Deadlock

Figure 2: An illustration of some vulnerable products.

the wearable when both issues are exploited, we have
sent malicious packets to the Fitbit Inspire smartwatch
(Figure 2a) through the BLE communication channel.

Once the malicious packets are sent to the device, it is
possible to trigger either a buffer overflow in device’s
memory or deadlock its bluetooth stack temporarily. The
former attack (exploiting Link Layer Overflow) imme-
diately restarts the device whereas the latter (exploiting
LLID Deadlock) disables its bluetooth advertisement for
about 27 seconds before the smartwatch is automatically
restarted by the firmware.

In summary, the vulnerabilities only seem to temporarily
block the availability of Fitbit. However, the Link Layer
Length Overflow is a serious threat by itself. Specifically,
such an overflow is a potential front door to remote ex-
ecution once an attacker knows the memory layout of
the firmware by means of reverse engineering it. Similar
behaviour is expected in Fitbit Charge 3 and Ace 2. This
is because they embed Cypress PSoC 6 as their main
processor.

• Smart Home: Eve Systems - Many smart home prod-
ucts from Eve Systems are vulnerable due to their re-
liance on Dialog DA14680 as the main processor. For
instance, Eve Light Switch, Eve Motion MKII, Eve Aqua,
Eve Thermo MKII, Eve Room, Eve Lock, etc, are all
prone to Silent Length Overflow. Specifically, it is pos-
sible to crash such devices by sending a specific packet

which overflows device’s reception buffer. When an at-
tack occurs, the user can immediately experience her
smart products restarting or getting unstable. As an exam-
ple, when performing the Silent Length Overflow against
the Eve Energy (Figure 2b), the power on the smart
plug is cut off when its processor crashes and restarts.
As a consequence, we can momentarily cut the power
to anything connected in the socket by just sending a
malicious packet within radio range of the smart socket.
Furthermore, an attacker can use this simple attack to
cause real damage to some equipment connected to the
plug by intermittently cutting its power.

August Smart Lock - We have verified that the Silent
Length Overflow also affects the popular August Smart
Lock (Figure 2c). Such a smart lock remotely controls
access to house doors. Hence, it is advisable that users
update their affected devices as soon as possible. This is
to avoid a worst-case exploit, which could grant access
control to a thief by means of remote execution.

• Tracking Gadget: CubiTag - The CubiTag Bluetooth
tracker is a popular product that tracks the belongings
of a user (Figure 2d). When the tracker is near an ob-
ject of interest, it can be found by using a mobile app,
which searches for the tracker and starts an alarm on
the tracker. As a result, the user can hear the alarm and
find the object. However, CubiTag relies on a vulnerable
TI CC2640R2 SDK. Out of two vulnerabilities on this
SDK, only the Public Key Crash affects availability of
CubiTag. The CubiTag immediately stops advertising it-
self and is never found by the mobile app again; hence it
is deadlocked. The CubiTag device only works again by
manually opening it with a screwdriver and re-inserting
its battery. This is for the tracker SoC to reboot properly
and to establish normal BLE connection.

• Smart Locks: eGee Touch - The eGee Touch, shown in
Figure 2e, is a smart luggage lock that can be remotely
locked or unlocked through a smartphone app. During
our tests, as the device uses the TI CC2540 SoC, we
could lead the smart lock in a deadlock state by exploit-
ing the Invalid Connection Request vulnerability. When
an attack is carried out, the device hangs and the user
needs to manually press the power on button on the smart
lock to re-interact with it. This is not a critical problem
by itself. However, the worst-case scenario occurs when
the user enables continuous advertisement on the smart
lock. This prevents the device to automatically restart
after the attack, hence its batteries must be re-inserted to
reboot its processor and restore functionalities back to
normal.
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2.2 Other potentially vulnerable products
As mentioned in Section 2, the vulnerabilities discovered by
our team are likely to affect a substantial number of products
that rely on the affected SoCs. While it is difficult to con-
firm the reach of such vulnerabilities for every product out
in the wild, we provide an overview of the types of products
potentially affected by SWEYNTOOTH using the Bluetooth
Listing Search site [20]. Figure 3 captures the total number of
products listings using the affected SoCs as of 8th February,
2020.
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Figure 3: Number of product listings for each SoC affected
as of February 8, 2020.

While the majority of products are listed under CC2540,
we note several critical BLE products using the other affected
SoC vendors. These products are applied to logistics, med-
ical, consumer electronics, smart home, wearables and
other fields. Although it is impractical for our team to verify
such a large number of products using the affected SoCs, we
outline some of the most notorious or popular products found
on Bluetooth Listing website [20]. These critical products are
shown in Table 4.

The most critical devices that could be severely impacted
by SWEYNTOOTH are the medical products. VivaCheck Labo-
ratories, which manufacture Blood Glucose Meters, has many
products listed to use DA14580. Hence all these products are
potentially vulnerable to the Truncated L2CAP attack. Even
worse, the latest pacemaker related products from Medtronic
Inc. are potentially affected. While our team did not verify the
extent to which SWEYNTOOTH affects such devices (e.g. the
impact of remotely restarting such devices or remote code ex-
ecution in the worst case), it is highly recommended that such
companies update their firmware. This is to avoid any situa-
tion that could pose life threatening risks to the patients using
the respective medical products. Unfortunately, the security
issue found in Dialog DA14580 is still unpatched (cf. Table 5).
Nonetheless, Dialog is working on an internal security patch
for DA14580 and will release it for general public in the next
SDK release. More details about patches are mentioned in
Section 3.

Another complication arises for the IN180-13 from Swip-

box International. This product uses the vulnerable KW41Z
SoC from the vendor NXP semiconductor. According to the
company page [23], the battery operated product is an au-
tomatic parcel locker and has no display. Instead, it relies
entirely on a smartphone application communicating via BLE
to unlock the parcel sent to the recipient. Similarly to what
happens to CubiTag, the KW41Z is vulnerable to a deadlock
(LLID Deadlock). The KW41Z LLID deadlock vulnerabil-
ity is particularly easy to trigger and allows an attacker in
radio range to simply block anyone to connect to the parcel
locker (unless the the parcel locker is automatically restarted).
Fortunately, NXP has already released patches for the two
vulnerabilities affecting KW41Z. Other potentially vulnerable
popular products include vendors such as August Home, Eve
Systems, Samsung and Anhui Huami Information Technol-
ogy, among others.

It is worthwhile to note that the list in Table 4 is not exhaus-
tive. Thus, we recommend each product vendor to update the
SDK firmware of their products to the latest if available or
contact their SoC vendor to enquire on the status of the patch.

3 Security Patches

Update 17/07/2020: Added ON Semiconductor patch
communication on Zero LTK Installation, DHCheck
Skip and Channel Map Deadlock [15].
Update 14/07/2020: Zephyr Project, Espressif Systems
and Texas Instruments have updated their BLE stack
with security fixes [7, 13, 24].
Update 24/04/2020: STMicroelectronics has updated
their latest WB55 and BlueNRG-1/2 SDKs [21, 22].
Update 17/03/2020: Table 5 has been updated. Dialog
Semiconductors has released hotfixes for DA14680/1/2/3
and DA14585/6 SoCs. Patches for DA14580/1/3 are
planned for the end of March. You can read more
information in their advisory page [14]. Furthermore,
Microchip has kindly self disclosed more devices to be
affected by multiple SweynTooth vulnerabilities [25].

Most of the affected vendors have released patches for their
respective SoCs. One can get the latest patches by download-
ing the newest SDK of each vendor referenced in Table 5.
Product vendors (who use the affected SoCs), on the other
hand, are being independently contacted by each SoC vendor
to inform about the security patches. However, we note that
some SoCs did not receive a patch from their vendor yet. This
is the case for Dialog, Microchip and STMicroelectroncs. We
will be updating this section once vendors release the security
patches for the affected SoCs.

We urge action from vendors due to the reliance of the BLE
IoT market on such unpatched SoCs. For example, August
Home Inc and Eve Systems products rely almost entirely on
DA14680, which is still unpatched even after a responsive
disclosure period of more than 90 days.
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Table 4: Some notorious products using SoCs affected by SWEYNTOOTH. The declaration ID references each product on the
Bluetooth Listing Search [20]. *Syqe Medical Ltd. has clarified that they did buy a BLE license for their product Syqe Inhaler
v01, but they are not using the BLE technology.

During our contact with Dialog, they have confirmed that
a patch is planned in the next SDK release for the affected
SoCs. We were also informed that the reason of such delay is
due to the affected code being stored in the read-only-memory
(ROM) of such SoCs. Thus, the respective vulnerable BLE
stack cannot be modified and it requires complex workarounds
for publicly releasing a patch.

4 Non-compliance in the wild!

In recent years, Bluetooth design has been under scrutiny due
to several security flaws such as KNOB [1], BlueBorne [16]
and Invalid ECC Attack [2]. In contrast, little to no research
has been carried out on the security of the diverse Bluetooth
implementations out in the wild. The current practice is to
leave the implementation tests to the Bluetooth certification
process. This is with the mindset that once the design is
sound, hardly anything can break in the implementation of
the Bluetooth stack.

Our findings expose some fundamental attack vectors
against certified and recertified BLE Stacks which are sup-
posed to be “safe" against such flaws. We carefully investi-
gated the reasons that might explain the presence of SWEYN-
TOOTH vulnerabilities on the affected SoCs. We believe this is
due to the imposed isolation between the link layer and other

Table 5: Patches available by SoC vendors (17/07/2020).
SoC Vendor SoC Model Vendor Patches

Zephyr Project nRF51/52 [13] Zephyr v2.3.0 and backports
Espressif Systems ESP32 [24] Latest ESP32 BT/BLE Stack Libraries
ON Semiconductor RSL10 [15] RSL10 SDK 3.3
Cypress (PSoC 6) CYBLE-416045 [5] BLE_PDL 2.2
Cypress (PSoC 4) CYBL11573 [4] BLE Component 3.63
NXP KW41Z/31Z [10] 2.2.1 (2019-11-28)
NXP KW37/8/9 [11] 2.6.2 (2019-12-20)
NXP KW34/5/6 [11] 2.2.2 (2019-12-06)
Texas Instruments CC2640R2 [9] v3.40.00.10; [7] BLE5-Stack 2.01.02.00
Texas Instruments CC2640/50 [9] v2.2.4
Texas Instruments CC13X2/26X2 [9] v3.40.00.02; [7] BLE5-Stack 2.01.02.00
Texas Instruments CC13x0 [9] v4.10.xx
Texas Instruments CC2540/1 [8] v1.5.1
Telink TLSR8258 [26] v3.4.0 (SMP fix)
Telink TLSR8232 [28] v1.3.0 (SMP fix)
Telink TLSR826x [27] v3.3 (SMP fix)
Dialog DA1469X [14] 10.0.6
Dialog DA14585/6 [14] Hotfix available
Dialog DA14680/1/2/3 [14] Hotfix available
Dialog DA14580/1/3 [14] Hotfix available
Microchip ATSAMB11 [25] Pending
Microchip WINC3400 [25] Pending
Microchip IS1870/1 [25] Pending
Microchip BM70/1 [25] Pending
Microchip RN4870/1 [25] Pending
Microchip BTLC1000 [25] Pending
Microchip IS1677/8 [25] Pending
Microchip BM77/8 [25] Pending
Microchip RN4677/8 [25] Pending
Microchip IS2062/3/4/6 [25] Pending
Microchip BM62/3/4 [25] Pending
Microchip IS2083 [25] Pending
Microchip BM83 [25] Pending
STMicroelectronics WB55 [21] v1.6.0
STMicroelectroncis BlueNRG-1/2 [22] v3.2.0
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Bluetooth protocols, via the Host Controller Interface (HCI)
protocol [18]. While such a strategy is reasonable for hard-
ware compatibility, this adds complexity to the implementa-
tion. Moreover, it overly complicates the strategies to system-
atically and comprehensively test Bluetooth protocols. Specif-
ically, during testing, it is complex to send arbitrary Link
Layer messages during other protocol message exchanges.
Such added complexity is likely the reason for inadequate
security testing of BLE stack implementation.

We carefully read and investigated relevant parts of the
Controller and Host volume of the Core Specification, which
allow us to understand the main interaction of two devices
(c.f., Figure 1). A natural question that arises for anyone look-
ing a sequence diagram of the overall pairing procedure is
“what happens if the LL encryption starts in the middle of
the pairing procedure?". It can be argued that the Zero LTK
installation, Key size overflow and Public Key Crash flaws
were facilitated due to this question not being answered on
the Core Specification itself, leaving it for vendors to decide
how to handle such situation. When attempting to answer
this question, we have received highly different behaviours
across most SoCs we have tested. In addition, several other
implementation details, which are explicitly imposed by the
Core Specification [19], are also not followed by SoC vendors
in reality.

It is worthwhile to mention that every SoC BLE SDK goes
through the certification process before going into market.
Thus, our findings expose that improvements should be made
on the certification process to avoid at least simple devia-
tions such as the LLID deadlock: It takes exactly one field
to be zero to lead the device into a deadlock. Furthermore,
devices from Telink responds to version requests multiple
times, going against [Vol 6] Part B, Section 5.1.5 of Core
Specification [19], which defines that the peripheral should
only respond a version request a single time during the same
central-peripheral connection. Similarly, all devices we have
tested accept a connection request with the“hopIncrement"
field value of less than five. This behaviour goes against [Vol
6] Part B, Section 2.3.3.1, which dictates the valid range of
such field to be within 5-16. Moreover, all the vulnerabili-
ties we have discovered go against [Vol 1] Part E, Section
2.7 (Responding to malformed behaviour). This part of the
specification provides directives and few examples to handle
invalid or malformed packets.

In conclusion, we strongly believe that the Bluetooth SIG
should improve and significantly expand Section 2.7 (the
section is less than one page!!!) and add more basic tests to
the Bluetooth certification to avoid zero-day vulnerabilities
such as the ones captured by SWEYNTOOTH.

5 Why SWEYNTOOTH?

The insight behind the name SweynTooth arrives from Sweyn
Forkbeard, the son of King Harald Bluetooth (after whom the

Bluetooth Technology was originally named). Sweyn revolted
against Harald Bluetooth and this forced King Harald to his
exile. The exile lead to the death of King Harald shortly.
We envision that if SweynTooth style vulnerabilities are not
appropriately handled by BLE vendors, then the technology
can become a breeding ground for attackers. This may, in turn,
lead the Bluetooth technology to be obsolete.

The SweynTooth logo is designed based on the combina-
tion of letter "S" (abbreviating Sweyn) and letter "T" (abbre-
viating Tooth) from the Elder Futhark alphabet – one of the
oldest Runic alphabets.

6 Detailed Description

In this section, we provide a detailed description of each
vulnerability, the affected system-on-chip (SoC) models and
the SDKs.

6.1 Link Layer Length Overflow
(CVE-2019-16336, CVE-2019-17519)

The Link Layer Length Overflow vulnerability was identified
in Cypress PSoC4/6 BLE Component 3.41/2.60 (CVE-2019-
16336) and NXP KW41Z 3.40 SDK (CVE-2019-17519). Both
implementations are susceptible to the same vulnerability.
Such a vulnerability allows attackers in radio range to trigger
a buffer overflow by manipulating the LL Length Field. The
overflow occurs when the attacker, acting as the central device,
sends a packet to the peripheral, which is padded to include
much more bytes than expected from its type (opcode). An
example is shown in Figure 4. In this case, a version request
is just five bytes of length, but can be falsely extended to
247 bytes when LL Length field value is increased. When the
underlying BLE stack processed such a packet, more bytes
then the expected are allocated in memory, which caused
instabilities and ultimately crashing the peripheral.

Impact: This vulnerability initially causes denial of service
(DoS). However, due to its characteristic, attackers could re-
verse engineer products firmware to possibly leverage remote
execution. A concrete evidence of this risk is exemplified
by the BleedingBit vulnerability [6], which allowed remote
execution on certain Texas Instruments devices by means
of manipulating the same LL length field, albeit in a more
constrained context. Specifically, BleedingBit exploited the
central implementation of the SoC during the advertisement
phase.

6.2 Link Layer LLID deadlock
(CVE-2019-17061, CVE-2019-17060)

This critical, yet simple vulnerability can render Cypress
(CVE-2019-17061) and NXP devices in a deadlock state
(CVE-2019-17060). We have discovered that if a Cypress
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Figure 4: Link Layer Length Overflow vulnerability
PSoC4/6 or NXP KW41Z device receives a packet with the
LLID field cleared, then both devices simply enter in a faulty
state. Specifically, this state prevents the BLE stack from
working correctly in posterior connections. The details of
the vulnerability are shown in Figure 5. It turns out that this
attack confuses the SDK implementation in a manner that any
received packet from the central is handled improperly or sim-
ply ignored. For example, NXP KW41Z peripheral may send
responses completely out of order to the central. In addition,
no hard faults are triggered in the firmware of the device. This,
in turn, prevents auto recovery by means of simply employing
watchdog timer on the product’s firmware.
Impact: The availability of BLE products is critically im-
paired, requiring the user to manually perform a power cycle
on the product to re-establish BLE communication. Further
complication arises, as the peripheral continues to advertise
itself after the attack. This makes it difficult for the user to
even notice the existence of the problem. The availability is-
sue is only exposed when the user connects to the peripheral,
revealing a never ending connection or pairing process.
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Figure 5: Link Layer LLID deadlock vulnerability

6.3 Truncated L2CAP
(CVE-2019-17517)

The Truncated L2CAP vulnerability is present on Dialog
DA14580 devices running SDK 5.0.4 or earlier. The flaw re-
sults due to a lack of checks during processing an L2CAP
packet. If the total length of the packet (i.e. LL Length) has
a value lower than L2CAP Length+ 4 for a valid payload,
then the truncated bytes are copied beyond the underlying
reception buffer. Figure 6 shows an example of a maxi-
mum transmission unit (MTU). The MTU captures a length
request, which has LL Length of seven bytes and L2CAP
Length of three bytes. If the peripheral receives a malicious
MTU length request with LL Length of five bytes instead,
the L2CAP reception buffer is overflown by two bytes (i.e.
L2CAP Length+4−LL Length). Therefore, the attacker can
selectively choose the number of bytes to overflow by sending
the correct L2CAP payload and the malformed LL Length
combination to the peripheral.

Impact: An attacker in radio range can use this attack to
perform denial of service and crash the device. However, a
careful sequence of packets could be sent by the attacker to
force the peripheral into writing certain contents to peripheral
memory adjacent to the L2CAP reception buffer. In the worst-
case scenario, this attack could be a front door to perform
remote execution on products using Dialog DA14580 SoC.

Truncated MTU length request

Data channel connection
version request / response

feature request / response

length request / response

5

Peripheral/Slave Central/Master

6

7

4

4 Bytes 1 Byte 0x05 0x03
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3 BytesL2CAP

0x0003 ATT (0x0004) 0x02 2 Bytes

L2CAP Header (4 Bytes) L2CAP payload (3 Bytes)

Limited to 5 bytes

.

.

.

Data Ch. Payload zoom

Figure 6: Truncated L2CAP vulnerability

6.4 Silent Length Overflow
(CVE-2019-17518)

This attack is similar to Link Layer Length Overflow (cf. Sec-
tion 6.1). In Dialog DA14680 devices, it was identified that
the peripheral responded to packets from the central with
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unexpectedly large LL Length. While this behaviour is not
compliant to BLE Core specifications [18], it does not appear
to affect the peripheral at first. Nonetheless, when a certain
packet payload with higher than expected LL Length is sent,
the peripheral crashes. This indicates that an overflow on the
reception buffer had occurred for certain packet types such as
pairing request.

Impact: An attacker in radio range can mostly use this attack
to perform denial of service and crash the device. Given that
a buffer overflow is being triggered depending on the packet,
a remote execution scenario is a possibility. Furthermore,
the SoCs affected by this vulnerability are known to be used
in a large number of smart home products, which increases
the reachability and risk of a more serious exploit of this
vulnerability.

6.5 Invalid Connection Request
(CVE-2019-19193)

We identified that sample applications provided in Texas In-
struments CC2640R2 BLE-STACK SDK (v3.30.00.20 and
prior) and CC2540 SDK (v1.5.0 and prior) do not properly
handle some connection parameters when the central attempts
a connection to the peripheral. Instead, the peripheral creates
a connection with the central, but fails at a later stage and
moves the peripheral state to idle (i.e., stops advertisement).
If the idle state is not handled correctly in the product’s code,
the device does not go back to the advertisement stage again.

During the initial phase of a BLE connection, the central
device scans for advertisements packets from the peripheral
and sends a connection request packet, which contains rel-
evant parameters such as connection interval and timeout.
These two parameters control the cadence of packet exchange
and timeout between peripheral and the central device, respec-
tively. Their values must represent a non-zero time period in
milliseconds when multiplied by a factor of 1.25. However,
if the central device sends an invalid connection request with
the fields interval or timeout as zero, then the peripheral stops
advertisement. During reception of an invalid connection re-
quest, the BLE stack sends a connection request fail event to
the application code (bleGAPConnNotAcceptable) and upon
receiving this fail status, the sample application enters in idle
state by default, thus stopping advertisements. This behaviour
is not the flaw alone, as idle state is a common state in BLE
and should be handled by the application, due to other state
transitions that can occur during application operation.

Nevertheless, we have discovered that this state change
under reception of invalid parameters is not sufficiently doc-
umented in TI SDK, which may lead product developers to
not handle idle state. The mishandling of this state can lead
products such as eGeeLock to stop advertisement and hence
requiring user intervention. An illustration of this attack is
given in Figure 7.

Interestingly, CC2540 also accepts connection requests
with packet length lower than expected (truncated), which
triggers the same behaviour (i.e., Figure 7) due to its imple-
mentation assuming zero bytes for truncated fields.

Impact: An attacker in radio range can exploit the phe-
nomenon observed in Figure 7 to easily perform DoS in
products using the vulnerable SoCs. Furthermore, if the prod-
uct vendor does not implement mechanisms to detect such
a faulty behaviour, the device can be driven into a deadlock
state. This, in turn, requires the user to manually restart the
device. In general, the impact on such affected products is
similar to the LLID Deadlock (cf. Section 6.2).
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Figure 7: Invalid Connection Deadlock

6.6 Unexpected Public Key Crash
(CVE-2019-17520)

This vulnerability was found on Texas Instruments CC2640R2
BLE-STACK-SDK (v3.30.00.20 and prior versions). Specif-
ically, the vulnerability is present in the implementation of
the legacy pairing procedure which is handled by the Secure
Manager Protocol (SMP) implementation. When the periph-
eral performs the legacy pairing procedure, it is possible to
cause a hard fault in device’s memory by sending an SMP
public key packet before the SMP pairing procedure starts
(Step 9 in Figure 1). Normally, the peripheral should ignore
the reception of a public key if secure connection is not en-
abled in the pairing request/response exchange. During our
coordination with the vendor, Texas Instruments informed us
that the hard fault is triggered because the peripheral accepts
the public key and tries to copy it to a null target address.
Normally, this address corresponds to a valid allocated buffer
if secure connection is properly indicated during the pairing
request/response process. We illustrate the vulnerability in
Figure 8 (SC means secure connection).

Impact: An attacker in radio range can exploit the aforemen-
tioned behaviour to perform DoS and possibly restart products
using the CC2640R2 SoC for the main application. On the
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bright side, it is not possible to perform a buffer overflow
in the peripheral’s memory. This is because the unexpected
public key is always copied to a null address, which is beyond
the control of the attacker. It is worthwhile to mention that
this vulnerability can also lead to a deadlock. This is exem-
plified by our evaluation on the CubiTag bluetooth tracker.
The product CubiTag does not properly handle hard faults
and hence enters a deadlock state. This requires the user of
the tracker to manually restart it.

Peripheral/Slave Central/Master
.
.
.

Paring Procedure
pairing request, no SC

9SMP Legacy Pairing
Public Key

Central forces Secure
Connections pairing

Peripheral accepts public key
and triggers a hard fault

8pairing response, no SC

Figure 8: Unexpected Public Key Crash

6.7 Sequential ATT Deadlock
(CVE-2019-19192)

In STMicroelectronics WB55 SDK V1.3.0 and earlier, it is
possible to deadlock the peripheral by sending just two con-
secutive ATT request packets in each connection event. Nor-
mally, each ATT request sent from a central device is followed
by an ATT response from the peripheral. This happens in a
time period multiple of the connection interval ∆t. However,
it is possible that a rogue central device sends multiple and
consecutive ATT requests separated by the connection inter-
val ∆t (Figure 9). In such a case, the peripheral does not get
sufficient time to respond to the first ATT request. The re-
sulting behaviour is a fault in the coprocessor that runs the
BLE SDK inside WB55, preventing certain BLE event flags
to be cleared. This leads to a deadlock of the WB55 user code.
Specifically, the faulty code potentially gets stuck in a while
loop, which waits for a never finishing BLE event.

Impact: Similar to several other vulnerabilities discussed in
this work, the exploitation of this vulnerability can leave the
product in a deadlock state if a stability mechanism, such
as the watchdog timer, is not employed by the vendor in
product’s firmware. If such a mechanism is present, the attack
is still guaranteed to remotely restart the device.

ATT request

Peripheral/Slave Central/Master
.
.
.

Repeated ATT requests

Link Layer encrypted

While(!ble_event)
{

…

}

Keys exchange procedure 11

12

Peripheral routine

𝚫𝐭

𝚫𝐭 = 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧_𝐢𝐧𝐭𝐞𝐫𝐯𝐚𝐥

Sequential ATT fault

Figure 9: Sequential ATT Deadlock

6.8 Invalid L2CAP fragment
(CVE-2019-19195)

During the communication between the central device and pe-
ripheral, the Bluetooth 4.0-4.1 Core specification dictates that
the minimum and maximum link layer PDU size of L2CAP
packets should be in the range 4-31 [17], considering that the
L2CAP header is four bytes. Packets outside this boundary
should be discarded as they are invalid. However, we discov-
ered that such is not the case for devices running Microchip
ATMSAMB11 BluSDK Smart v6.2 and earlier. Following Fig-
ure 10, it was discovered that if an link layer PDU of length
one is sent to the peripheral, then the device crashes due to
the L2CAP header being truncated to just one byte. It also
happens that this byte corresponds to the L2CAP length field.
Thus, sending a higher value for this byte may lead to a buffer
overflow and subsequently, crash the device.

Impact: The watchdog mechanism is enabled by default in
the SDK, which reduces the risk for products relying on AT-
SAMB11 BLE solution to exhibit deadlock behaviour. There-
fore, this vulnerability mostly affects the availability of the
device by remotely restarting them.

Invalid L2CAP fragment

Data channel connection
version request / response

feature request / response

length request / response

5

Peripheral/Slave Central/Master

6

7

4

4 Bytes 1 Byte 0x01 0x03 3 BytesL2CAP

.
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.

Figure 10: Invalid L2CAP fragment
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6.9 Key Size Overflow
(CVE-2019-19196)

The Key Size Overflow vulnerability was found in all Telink
Semiconductor BLE SDKs. This causes an overflow in the
device memory, resulting in a crash. However, the problem
that allows this vulnerability is a combination of multiple
issue found during the pairing procedure of devices using
Telink SMP implementation.

During the start of the pairing procedure, the central de-
vice sends a Pairing request packet containing the maximum
allowed key size to be negotiated at the end of the pairing pro-
cedure. The maximum key size is standardised to be within
7 to 16 bytes and any deviation from that should be rejected
with a pairing failure response. However, Telink peripheral
actually accepts a maximum encryption key size up to 255 by
answering the central device with a paring response instead.
Despite this first problem, the peripheral rejects the pairing
during at later exchanges of the pairing procedure without ab-
normal behaviour. The second and final problem that finally
triggers the vulnerability, arises because the peripheral ac-
cepts the LL Encryption procedure to occur before the pairing
procedure even starts, albeit failing at later stage.

By combining the two mentioned problems it is possible to
force the peripheral into allocating the over sized key buffer
length which was negotiated during the pairing request. De-
picted in Figure 11, the central device sends the invalid pairing
request, waits for pairing response and sends an encryption
request. The request is accepted and a buffer overflow occurs
in peripheral’s memory as its firmware tries to allocate the
oversized key.
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.
.
.

Paring Procedure
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10

LL Encryption procedure
encryption request
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SMP Pairing request zoom

Central skips pairing
and starts encryption

Peripheral accepts out 
of order encryption 

request and crashes

2 Bytes

Peripheral accepts
Key size of 253

Figure 11: Key Size Overflow

Impact: This vulnerability allows an attacker in radio to per-
form buffer overflow and crash Telink SoCs products with

pairing support enabled, which is a common practice in sev-
eral BLE products. While this vulnerability doesn’t expose
easy control over the overflown buffer, an exploit could be
carefully constructed to overwrite memory contents adjacent
to the key buffer if the the memory layout of the product’s
firmware is known. In the worst case, it could be possible to
overwrite buffers that store encryption nonce would allow the
attacker to bypass encryption and leak user information.

6.10 Zero LTK Installation
(CVE-2019-19194)

This critical vulnerability is a variation of one of the Key
Size Overflow. It affects all products using Telink SMP imple-
mentation with support for secure connection enabled. It was
verified that when the Telink peripheral accepts an out of order
encryption request from the central, the encryption procedure
is successful with a LTK which is zero. The LTK size, usually
of 16 bytes, is agreed during the pairing request/response
exchange.
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.
.

Paring Procedure
pairing request, SC supported

encryption response

10LL Encryption procedure
encryption request

Central skips pairing
and starts encryption

Client accepts encryption 
request and installs zero LTK

encryption start

8pairing response, SC supported

Link Layer encrypted (zero LTK)

[encrypted] encryption response

[encrypted] encryption response

Central sends encrypted 
response with LTK=0

12
ATT request / response
(GATT services discovery)

Keys distribution procedure
is completely bypassed

Figure 12: Zero LTK Installation

Following Figure 10, the rogue central sends a pairing re-
quest with secure connections pairing indicated and waits for
a pairing response. Next, the central skips the secure connec-
tions pairing procedure and starts the encryption procedure by
sending a encryption request. Due to the lack of validation in
peripheral’s implementation, the central receives a encryption
start from the peripheral and sends an encrypted encryption
response back. This response is relevant because the periph-
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Figure 13: Diffie–Hellman Check Skip

eral validates it against the session key SK, which is derived
from a valid LTK. Interestingly, the peripheral’s LTK is initial-
ized as zero. This allows the central to easily derive the SK to
send the correct encrypted encryption response to the periph-
eral, hence successfully completing the encryption procedure.
The SK (hiddenly mentioned in Bluetooth Core Specification
as sessionKey [18]) is generated by the cryptographic function
of Equation 1.

SK = AESECB(Key = LTK,Plaintext = SKD) (1)

The Session Key Diversifier (SKD) is a random 16 byte
number obtained via the encryption request/response ex-
change, therefore, guessing the correct LTK allows the central
device to send a encrypted encryption response with a valid
SK. As an aggravating factor, the Keys distribution procedure
is completely bypassed after the attack is performed.

Impact: An attacker in Radio range can abuse this vulnera-
bility to completely bypass security in a BLE products which
rely in secure connections pairing to protect user privacy. Fur-
thermore, device’s functionalities which were only allowed to
be accessed by an authorized user, can be trivially bypassed.
In short, this vulnerability allows an attacker full communica-
tion control over a protected BLE application.

As a side note, this vulnerability only affects Telink devices

that allows secure connection pairing. In reality, affected prod-
ucts that disable secure connections pairing (the currently se-
cure BLE pairing mode) and enable only the insecure legacy
pairing mode, are in fact more secure due to this vulnerability.

6.11 DHCheck Skip
(CVE-2020-13593)

This particular finding allows a partial security bypass. Dur-
ing the BLE secure connection pairing (stage 2), it is possi-
ble to bypass the DHCheck of a particular SoC vendor by
starting the encryption setup early. The flaw was found in
Texas Instrument CC2640R2 SMP implementation and allows
the DHCheck to be skipped by starting the LL Encryption
Procedure earlier (c.f. step 10 of Figure 1).

It is worthwhile to mention that, in Secure Connection Pair-
ing, the LTK is actually generated before the DHCheck is
complete. However, such a key (i.e. LTK) is normally dis-
carded if something goes wrong during the DHCheck for
security reasons. A normal DHCheck exchange (Figure 13.a)
and the DHCheck skip (Figure 13.b) are shown in the figures
below.

Following Figure 13.b, the peripheral installs the LTK be-
ing generated in the current unfinished pairing process and
allows the central to perform encryption of the link with such
LTK while also skipping the Key distribution procedure (c.f.
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step 11 in Figure 1). The additional security checks per-
formed by f6 function is not verified and hence the legitimacy
of the IO Capabilities (IOCap) is not verified.

Impact: Due to the requirements of the initial pairing pro-
cedure to be completed, this vulnerability can be reduced to
a non-compliance as it cannot be exploited over-the-air (as
it would require a compromised central BLE implementa-
tion to start the attack). Specifically, the attacker needs the
private key associated with the public key exchanged in the
beginning of the pairing procedure. This was to generate the
LTK of the current pairing session to go through the numeric
comparison/just work/pass key pairing models.

DHCheck Skip is triggered due to mishandling of the pe-
ripheral while starting the Encryption Setup during the SMP
Pairing. Such a phenomenon is not currently clarified in the
Core Specification [19]. This may explain why the vendor
mishandled the scenario depicted in Figure 13. We note that
the requirements to trigger DHCheck skipping is similar to
Zero LTK installation, as it involves starting encryption setup
earlier during the pairing stage, albeit without simply using a
zeroed LTK.

6.12 HCI Desync Deadlock
(CVE-2020-13595)

This denial of service (DoS) vulnerability explores a de-
synchronization between the Espressif Systems ESP32 BLE
controller and the host running other Bluetooth related pro-
tocols. It was found that in a particular case, the HCI event,
which indicates completed packets, returns the number of
scheduled packet fragments by the controller instead of the
number of packets solicited by the host. This is not a big issue
by itself (albeit non-compliant to Bluetooth Core Specifica-
tion 5.2 Vol 4, Part E, Section 7.3.40 [19]). However, when

the host runs the Apache mynewt-nimble stack, the default be-
haviour is to try to recover the host by restarting the stack due
to a possible de-synchronisation with the controller. When
nimble tries to re-enable advertisements due to the faulty
behaviour, the controller fails to do so as it was not really
de-synchronized to start with.

The source of this vulnerability is not on the Mynewt-
nimble central implementation itself, but on the ESP32 con-
troller implementation which returns the wrong packet num-
ber in a corner-case scenario as shown below. The figure
to the left shows a normal encrypted connection when the
peripheral fragments packets from the peripheral host. The
attacker needs to send a precise invalid packet. This causes an
MIC error on the same connection event that the first fragment
is supposed to be delivered by the peripheral. Normally, the
HCI packet completion event returns 1 to indicate that one
packet has been acknowledged. When the attack is performed,
such HCI event returns 2 and enters a faulty detection code
on nimble stack. This disables advertisements at a later stage
on the peripheral’s default sample code.

Impact: The Impact is denial of service by means of disabling
the bluetooth advertisement of ESP32 peripherals which are
using Nimble as the BLE host layer implementation. The
attack requires encryption and pairing support enabled on
the peripheral to be successful. ESP32 peripherals that are
not using the default just-works pairing have reduced risk in
terms of an attacker in radio range to directly start the attack.
However, triggering an MIC failure can be accomplished
while using an active BLE sniffing tool that offers hijacking,
such as btle-jack [3].
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6.13 Invalid Sequence Memory Corruption
(CVE-2020-10061)

This vulnerability was found in version 2.2.0 of Zephyr RTOS
Bluetooth stack implementation. It allows an attacker within
radio range to cause a memory corruption by incorrectly
starting a BLE connection with the target SoC employing
Zephyr stack (step 4 on Figure 15). During a connection,
the central and the peripheral read and write to the flow con-
trol/acknowledgement bits (NESN and SN) on the Link Layer
header to acknowledge each other. However, if the central
starts a connection by sending an Anchor Point packet with
NESN and SN bits set to 1, the Zephyr peripheral does not
accept such bits as valid and performs invalid operation on
its internal packet buffer. If the central proceeds with the
connection by sending further packets, the peripheral retry-
buffer gets full, which leads to a memory corruption (dangling
pointer) and eventual crash of the Zephyr peripheral.
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Figure 15: Invalid Sequence Memory Corruption

Impact: The impact is denial of service by means of crashing
the peripheral or leaving it in an unstable state. Performing
the attack and disconnecting quickly from the peripheral does
not always trigger a crash, but makes the peripheral unstable.
This makes it possible to lead the peripheral into crashing
only when a legitimate central attempts the connection with
the affected peripheral.

Furthermore, the attack is simple to trigger since starting a
connection to a peripheral does not require any authentication.

6.14 Invalid Channel Map Crash/Deadlock
(CVE-2020-10069, CVE-2020-13594)

The Invalid Channel Map Crash/Deadlock was found to affect
Microchip ATSAMB11 BluSDK Smart v6.2, ESP32 esp-
idf v4.2 (CVE-2020-13594) and nRF51/52 Zephyr Blue-
tooth Stack v2.2.0 (CVE-2020-10069). An attacker can trig-
ger the vulnerability by simply sending a connection request

with the channel map field cleared (e.g., 0x000000...). The
channel map field indicates to the peripheral which physi-
cal BLE channels are allowed when performing frequency-
hopping with the central.

After the aforementioned invalid connection request to AT-
SAMB11, the controller informs the peripheral host of the
failed connection with an HCI status code 0x3E. However, the
host does not correctly enable advertisements again, requiring
user intervention.

As for ESP32 and nRF51/52, a hard fault occurs on the
former and a reachable assert is triggered on the latter,
leading both peripherals to restart immediately. It is worth-
while to mention that differently from Section 6.12, the hard
fault/assert is triggered regardless of which BLE host stack is
employed by the SoC (e.g., Espressif offers a port of nimble
or bluedroid for ESP32). This is because the vulnerability
exists in the ESP32 static Bluetooth Library [24] and Zephyr
nRF51/52 Link Layer controller implementation [12].
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Figure 16: Channel Map Crash/Deadlock

Impact: The impact is denial of service by means of dis-
abling Bluetooth advertisements on Microchip ATSAMB11
or restarting ESP32 or nRF51/52 Zephyr peripherals. Further-
more, triggering the attack is as simple as described in Sec-
tion 6.13, as starting a connection to a peripheral does not re-
quire any authentication. It is important to mention that some
Bluetooth Intellectual Property designs are shared and inte-
grated amongst several silicon vendors. As a result, the Chan-
nel Map Crash/Deadlock can affect many other SoCs that
we have not tested. This is the case for the self-disclosed ON
Semiconductor RSL10 SoC which our team did not track [15].

Contact

Feel free to reach us by email: sweyntooth@gmail.com
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