
1

5GHOUL: Unleashing Chaos on 5G Edge Devices
via Stateful Multi-layer Fuzzing

Matheus E. Garbelini, Zewen Shang, Shijie Luo, Sudipta Chattopadhyay, Sumei Sun, Ernest Kurniawan

Abstract—In this paper, we present 5GHOUL, a framework
to systematically discover and replicate security vulnerabilities
on arbitrary 5G edge devices (UE). At the core of 5GHOUL

is a stateful fuzzing strategy that provides full control to
arbitrarily manipulate any packet down to the data link layer.
Moreover, 5GHOUL automatically constructs the protocol state
machines to guide the fuzzing process and employs novel
strategies to reliably exploit vulnerabilities on commercial-
off-the-shelf (COTS) UEs over-the-air. The design choices in
5GHOUL were carefully taken to allow packet manipulation
in real-time, which, in turn allowed us to fuzz down to data
link layer. As of today, we have evaluated 5GHOUL with seven
COTS 5G UEs (smartphones and USB modems) and one open
source framework (OpenAirInterface). 5GHOUL has uncovered
12 unknown security vulnerabilities (14 in total) out of which
ten exist in COTS UEs (ten CVEs assigned) from major vendors
(e.g., Qualcomm and MediaTek). Moreover, six of these COTS
UE vulnerabilities have been confirmed to have high severity.
We also won a bug bounty of over 20K USD from Qualcomm
and MediaTek for discovering these vulnerabilities. We envision
5GHOUL to open the door for 5G security testing at scale.

Index Terms—Wireless Fuzzing, 5G NR, Mobile Security.

I. INTRODUCTION

Mobile communications are indispensable in our daily
lives, and the advent of 5G networks has brought many new
opportunities for low-latency communication in critical
domains like internet-of-things (IoT), virtual reality, and
medical and automation industries. However, the poten-
tial vulnerabilities in 5G networks [1] undermine trust in
their security, necessitating the validation of 5G protocol
stacks prior to deployment. As commercial 5G stacks are
typically closed source, verification and static analysis are
not feasible. Therefore, there is a need for technologies to
automatically interact with any off-the-shelf 5G device and
systematically identify implementation vulnerabilities.

To address these challenges, this paper introduces
5GHOUL, a framework designed to discover and replicate
vulnerabilities on arbitrary 5G devices over-the-air. 5GHOUL

enables full control of packets down to the data-link layer,
allowing manipulation before release to the target UE. The
framework employs efficient strategies for fuzzing at the
5G MAC Layer (i.e., OSI Layer 2 - Data link), leveraging an
abstract 5G protocol state machine constructed from com-
munication traces. An evolutionary algorithm maximizes
transition coverage during the fuzzing campaign. 5GHOUL

also provides interfaces for controlling and monitoring the
health of 5G smartphones and USB modems, making it flex-
ible and applicable to any off-the-shelf 5G UE. Furthermore,

M.E. Garbelini, Z. Shang, S. Luo and S. Chattopadhyay are with Singapore
University of Technology and Design. S. Sun and E. Kuniawan are with I2R,
A*Star, Singapore.

RRC Setup Complete

xPRACH
RAR

RRC Connection Request
RRC Connection Setup

UE TargetLegitimate gNB

RLC Status PDU
NAS Authentication Request

1

2

3

4 ...

SSB/PBCH
SIB

Syncronization

RACH Process

RRC Attach

Authentication

(a)

R
U

RRC

D
ow

nl
in

k

U
pl

in
k

PDCP

RLC
MAC

Low PHY
RF

5G NR
Core Network

SDAP

High PHY

5G UE

Intercpt.
Point (iii)

Intercpt.
Point (ii)

Intercpt.
Point (i)C

U
D

U

(b)
Fig. 1. (a) depicts the overall 5G NR communication procedures between
gNB and UE. (b) showcases the layering of protocols at the gNB side with
its interception points for downlink packet manipulation.

5GHOUL facilitates root cause identification of discovered
vulnerabilities by proposing a methodology for efficient and
reliable OTA exploitation. Such exploitation does not require
any details of UE’s SIM card and can target vulnerabilities
down to the data link, making it practical to launch attacks
in the wild. Notably, 5GHOUL is the first stateful fuzzing
approach to target all 5G NR protocols down to the data
link layer.

To control the real-time 5G communication for fuzzing,
5GHOUL gains access to contextual information, including
security configurations, only available during live com-
munication. The framework intercepts protocol packets at
different components of the 5G base-station (gNB) and
handles protocol-specific behaviors such as integrity, en-
cryption, and packet fragmentation at different interception
points. This allows full control over uplink and downlink
communication. Although the evaluation primarily focuses
on downlink fuzzing, 5GHOUL’s implementation supports
uplink monitoring and control. Figure 1b provides an
overview of the interception points installed by 5GHOUL.

Little works have been performed to comprehensively
fuzz 5G devices. Earlier works on 5G fuzzing or testing [1]–
[3] did not target COTS UEs and only validated some fuzzing
actions on software simulation [2], [3] or models [1]. Addi-
tionally, 5Greplay [2] was not designed for data link fuzzing.
Although several works exist in cellular LTE fuzzing [4]–[9],
they do not directly target 5G implementations. Moreover,
none of these works are capable to control and manip-
ulate data link packets. Finally, these approaches require
significant manual effort to write test cases [6], may rely on

2

...Time Adv.=31MAC

1

2

3

4

Syncronization

RACH Process

RRC Attach

Authentication

...

RRC Release

UE Target5Ghoul gNB

Syncronization

RACH Process

RRC Attach

Authentication

...

RRC Release

Syncronization

RACH Process

RRC Attach

Authentication

...

RRC Release

RRC Setup Complete (2 Fragments)

RRC Connection Request
Attack: Malformed RRC Conn. Setup

RLC Status PDU

Malformed: NAS Authentication Request

Attack: MAC Time Advanced Command

Fuzzing Session Iteration Attack Vector Analysis Attack Exploitation & Replication

...Time Adv.=61MAC

UE Target

...Seq Num Len. = 0RRCMAC

...Seq Num Len. = 1RRCMAC

5Ghoul gNBSession Iteration

UE Monitor

Attack
Vector Analysis

Exploitation & Replication

Methodology Overview
Fuzzing

Post Fuzzing Analysis

Attack Impact
Assessment

Fig. 2. The illustration of 5GHOUL approach. The left part shows the overall workflow of 5GHOUL. The right part illustrates an instance of the 5GHOUL

approach for one of the discovered vulnerability V4 (see Table III). For the Malformed RRC Conn. Setup and MAC Time Advanced Command
packets, the exact values of the mutated fields (highlighted in red) and their original values are shown in the attack exploitation and replication.

commercial logs [5] or involve significant reverse engineer-
ing or emulation [7]–[9]. In particular, emulation requires
additional effort to support new baseband architectures and
introduce imprecisions during modem hardware emulation.

After providing the necessary background and outlining
the threat model and overall workflow of 5GHOUL (Sec-
tion II), we make the following contributions in the paper:

1) We present 5GHOUL– a framework based on stateful
fuzzing to fully manipulate 5G protocols down to the
data link layer for arbitrary COTS 5G UEs (Section III).

2) We show that 5GHOUL provides a generic and flexible
approach for health monitoring of 5G UEs. This makes
5GHOUL usable out-of-the-box (Section III-B).

3) We present an efficient, yet reliable methodology to
replicate any vulnerability and generate over-the-air
exploits (Section III-C).

4) We discuss our implementation details (Section IV)
and evaluate 5GHOUL with seven COTS UEs employ-
ing modems from MediaTek and Qualcomm as well
as with open source OAI UE. We have found 12 new
vulnerabilities (14 total), out of which 10 affect 5G
modems from Qualcomm and MediaTek which are
employed in over 710 smartphone models 1 currently
in the market. Moreover, six of these ten vulnerabili-
ties are confirmed to have high severity. Finally, three
COTS UE vulnerabilities found by 5GHOUL are in the
5G data link layer and thus, such vulnerabilities can-
not be exposed by any existing approach (Section V).

5) We compare 5GHOUL with the state-of-the-art 5G UE
security test cases [10]. We show that none of the
vulnerabilities found by 5GHOUL can be discovered
using such test cases (Section V).

6) We show that 5GHOUL could be extended to au-
tomatically identify security issues beyond crashes
and hangs. In particular, we show the extensibility
of 5GHOUL to facilitate discovery and detection of
downgrade attacks (Section V).

7) We launch concrete attacks exploiting the vulnera-
bilities discovered in our study on smartphones and
Customer Premises Equipment (CPE). We discuss the
impact of these attacks on users (Section VI-VII).

II. BACKGROUND AND FRAMEWORK OVERVIEW

A. Background

5G cellular network architecture consists of three key
components: The gNodeB (gNB), User Equipment (UE),
and Core Network. The gNB is also known as the base
station in traditional cellular network. It serves as the access
point for wireless communication between the UE and
the 5G core network. The UE refers to end-user devices,
such as smartphones and tablets, that connect to the 5G
network through the gNB. Lastly, the Core Network acts as
the backbone of the 5G architecture by providing control
and management functions, including authentication, secu-
rity, mobility management, session establishment, and data
routing between network entities.

Figure 1a illustrates a clean connection process between
a 5G UE device (e.g., a smartphone or a 5G USB mo-
dem) and a legitimate gNB. Multiple protocols including
Radio Resource Control (RRC), Non-Access Stratum (NAS),
Medium Access Control (MAC), Packet Data Convergence
Protocol (PDCP) and Radio Link Control (RLC) from both
network layer (OSI layer 3) and data link layer (OSI layer
2) are involved to ensure that the connection is securely
established.

The synchronization procedure encompasses both cell
search and downlink synchronization, which are essential
procedures for a UE to acquire time and frequency syn-
chronization to correctly communicate with the gNB.

Following the Synchronization stage, RACH Process only
requires MAC layer communication to establish uplink
synchronization. To initiate the RACH procedure, the UE
transmits a RACH preamble to the gNB. Upon receiving
the RACH preamble, the gNB responds by sending a RACH
Response (RAR) message to the UE. RAR includes crucial
information e.g., the timing advance command and the
Cell Radio Network Temporary Identifier (C-RNTI). RRC
Attach process then establishes a connection between the
UE and gNB by initiating a connection request from the
UE (RRC Connection Request). gNB responds to the
request via RRC Connection Setup message and upon
completion of the setup, the UE responds back via RRC
Setup Complete message. This process involves com-
plex interaction between layer 3 protocol like RRC and data

1This is accomplished by scraping https://www.kimovil.com/en/.

https://www.kimovil.com/en/

3

link layer protocols e.g., MAC, PDCP and RLC. The PDCP
protocol handles the compression and decompression of IP
(Internet Protocol) packets, as well as provides encryption.
Concurrently, the RLC protocol is responsible for the seg-
mentation, reassembly, and error control of data packets
transmitted over the radio link.

Finally, the Authentication stage establishes authentica-
tion between UE and the core network by exchanging NAS
challenge-responses messages. Such negotiations have the
objective to ensure secure communication for subsequent
data exchanges between the gNB and the UE. The authenti-
cation stage involves interaction among all protocol layers.

B. Challenges of Fuzzing 5G and Technical Contribution

In this section, we first discuss the challenges with the
design of fuzzing for COTS UEs that employ 5G software.
Subsequently, we outline our strategies to address these
challenges within 5GHOUL.

Challenges in Fuzzing COTS 5G UEs: In conventional grey-
box fuzzing approaches [24], feedback from the software
under test (SUT) is leveraged to guide the fuzzing towards
deeper parts of the SUT. This feedback is usually a coverage
metric that indicates how much of the SUT implementation
or SUT state space has been covered. While this type of
feedback can be collected from open-source software or
common OS programs, COTS UEs employ 5G software,
which is strictly closed-source and does not expose any
sort of code tracing (for coverage collection) to the user
without making use of hardware-intrusive approaches (i.e.,
JTAG debugging). This makes conventional greybox fuzzing
approaches inapplicable for fuzzing COTS UEs. Moreover,
the protocol behavior of 5G (and 4G) is too complex to rely
on traditional stateful fuzzers, which often rely on partially
implementing their test generation [4], [5], [8]: For instance,
generating tests by ignoring encryption, integrity or data-
link protocols that require low-latency communication such
as MAC and RLC. Handling such low-latency communica-
tion is crucial for end-to-end fuzzing of COTS UEs, as delays
in the data-link (e.g., > 1ms) can break the communication
during fuzzing, making the test generation futile in practice.

5GHOUL Technical Contribution: To tackle the aforemen-
tioned issues, we adopt a stateful, yet end-to-end approach
when fuzzing COTS UEs. This enables the following con-
tributions over state-of-the-art, which includes 4G (See
Section VIII for details): (i) As opposed to 4G/5G fuzzing
tools that only support certain protocols, the end-to-end
nature of 5GHOUL, enables discovery of bugs from the
earliest to the latest interaction between COTS UEs and the
network by targeting data-link and low-latency protocols
such as MAC, RLC and PDCP as well as network protocols
such as RRC and NAS. This enables a much wider spectrum
of vulnerability discovery as compared to the state-of-the-
art techniques. (ii) 5GHOUL state machine (i.e., automaton)
is generic, easy to extend via a few rules and is only
used to guide the fuzzing (i.e., lightweight) as opposed
to directly using it for generating test inputs [15]. In this
fashion, 5GHOUL employs stateful fuzzing of 5G UEs, yet

avoids complex (and manual) implementation of 5G state
machine to generate and communicate 5G packets. In
contrast, prior techniques [1], [6], [14] rely on bespoke
wireless state models that do not cover data-link states
and are difficult to extend or adapt to other protocols.
(iii) As opposed to software-only fuzzing techniques, over-
the-air fuzzing embodied in 5GHOUL yields more realistic
attack due to the practicality of triggering bugs once their
attack vector is discovered. While software-only fuzzing is
generally faster than over-the-air fuzzing, we argue that the
design of 5GHOUL is well justified. This is because 5GHOUL

applies to fuzzing arbitrary COTS UEs. Moreover, 5GHOUL

improves reproducibility of bugs and triaging by employing
a systematic process to discover the minimal set of modified
packets (i.e., the attack vector) and generate an exploit
code. To the best of our knowledge, we are not aware of
any (stateful) 4G/5G fuzzing techniques that solve the dual
problem of bug discovery and minimal exploit generation.
(iv) Finally, since 5G communication often exhibits bursts
of messages containing the same data-link protocol (MAC,
RLC) alongside network messages with hundreds of fields,
we employ an optimization and balancing strategy that
helps to select which message and payload to mutate during
the communication with COTS UEs, hence increasing the
bug-finding effectiveness of 5GHOUL.

C. Threat Model

FSM InjectLegitimate gNB

Adversarial or Malicious gNB
(Higher RSSI)

Downlink

Uplink

Modify

(Lower RSSI)

Attacker Actions

5G UEs

Loop

Fig. 3. Adversarial-Controlled gNB Attacker Model.

Attacker Model: As illustrated in Figure 3, 5GHOUL makes
use of an attacker model which mimics a limited Dolev-Yao
adversary. This is accomplished by exposing an Adversary-
Controlled Downlink channel that can arbitrarily inject
and/or modify 5G NR Downlink Packets generated from a
finite-state-machine (FSM) of a real gNB implementation.
Such an attacker model is used in previous works [1], [3], [8]
and can freely manipulate downlink messages at the data-
link layer (i.e., MAC, RLC, PDCP, RRC). This is because such
messages are encoded in plain-text or partially encrypted
(i.e., only part of the message is encrypted).
Practicality of the Attacker: In the aforementioned at-
tacker model, no knowledge of the target UE is known to
complete the NAS network registration (which requires full
details of UE’s SIM card). To overcome this limitation, the
attacker can still easily exploit procedures before network
registration by cloning the legitimate gNB and hijacking the
UE connection via well known methods [11]. For instance,
once the attacker is sufficiently close to the target UE

4

such that the Received Signal Strength Indicator (RSSI) of
the adversarial gNB is higher than the legitimate gNB, the
target UE will connect to the adversarial gNB. Then, the
UE starts exchanging messages up to step 4 of Figure 1a.
Procedures that appear later are subjected to failure since
key information from UE’s SIM card is unknown. However,
throughout the message exchanges, the adversarial gNB
can freely manipulate downlink messages to the target UE,
opening a window to launch attacks at any step of the 5G
NR procedures shown in Figure 1a.

It is worthwhile to mention that to deploy such adversar-
ial model, an attacker only needs a mini-PC/Laptop (≈ 1000
USD) to run the rogue base station software, and an SDR
such as the USRP B210 (≈ 1600 USD) or XTRX (≈ 800 USD),
the latter which can fit inside a laptop and hence appears
visually stealthy to targets.

D. Challenges of Distributing 5G Patches Downstream

It is critical to make sure that the modem software
development kit (SDK) is well tested and devoid of serious
vulnerabilities before being released downstream. Other-
wise, attackers may exploit a modem failure for a prolonged
period and before the end user can actually pull the relevant
security updates.

Figure 4 depicts the complexity of the software supply
chain of a 5G modem. In summary, finding issues in the
implementation of the 5G modem vendor heavily impacts
product vendors downstream. This is because the software
dependency of product vendors on the Modem / Chipset
Vendor adds complexity and hence delays to the process
of producing and distributing patches to the end-user.
For example, each iteration that the upstream 5G modem
software goes through, carrier recertification must be per-
formed by the chipset vendor so that the updated modem
firmware can be integrated into OS security patches by the
smartphone OS vendor on a fixed release schedule (i.e.,
Google for Android and Apple for IOS). Next, such security
patches ought to be manually built into the smartphone
OS image by the product vendor. Therefore, it can often
take six or more months (considering our own experience
in this research) for 5G security patches to finally reach
the end-user via an OTA update (final downstream node in
Figure 4).

The chain of software dependencies are similarly applied
to CPE routers or USB Modems. However, such type of
products have a shorter time to distribute patches to the
end-user since adhering to the release schedule of OS
vendors is not required. Instead, the module vendor (i.e.,
OEM of Figure 4) directly builds modem patches into the
module firmware and distribute it downstream via private
channels. Therefore, the CPE product vendor can directly
apply the patches from upstream to its platform software,
which usually includes a customized Linux OS.

E. 5GHOUL workflow

Figure 2 outlines the 5GHOUL workflow. Broadly, 5GHOUL

comprises of two steps: 1⃝ Fuzzing and 2⃝ Post Fuzzing

Chipset
Vendor

OEM

Vendor OS
Build

OS Security
Patches

5G Modem SDK

Platform
Software

Modem / Chipset Patches

Smartphone CPE Router USB Modem

Module
Firmware

OS Type Linux /
Standalone

Android /
IOS /

Windows

Product
Vendor

OS
Vendor

Time to
Patch

Upstream

Downstream

Fig. 4. 5G UE Software Supply Ecosystem

Analysis. 5GHOUL automatically constructs the 5G protocol
state machine from a few benign communication traces.
Then, this constructed state machine is leveraged during
fuzzing sessions via an evolutionary search process, with
the objective to maximize the transitions being covered
(see Section III for details). To reliably detect crashes and
monitor the health of the target device, 5GHOUL employs
a generic approach that avoids reconfiguration depending
on the target device. In particular, 5GHOUL fuzzer commu-
nicates via the Android Debug Bridge (ADB) for 5G enabled
smartphones and via Qualcomm MSM Interface (QMI) for
5G USB modems, using generic commands to keep the
design of the fuzzer easily applicable for the majority of 5G
edge devices (see Section III-B for details). The outcome
of 5GHOUL fuzzing is a set of communication traces with
clearly identified security issues (e.g., crashes or hangs).
These communication traces are subject to post-fuzzing
analysis (see Figure 2).

Given a vulnerable communication trace, the objective
of post-fuzzing analysis is to systematically identify the
minimal set of modifications (e.g., minimal set of mutated
or duplicated packets) by the fuzzer that results in the crash
(see “Attack Vector Analysis" in Figure 2). After analyzing the
attack vector, 5GHOUL creates a C++ script to exploit the
vulnerability on an arbitrary 5G edge device (see “Exploita-
tion and Replication" in Figure 2). We discuss the details of
our post fuzzing analysis methodologies in Section III-C.

Running Example: Figure 2 illustrates an example of dis-
covering and replicating vulnerability V4 – Invalid RRC
Reconfiguration (see Table III) using our 5GHOUL ap-
proach. After the UE target synchronizes with the malicious
5GHOUL gNB, all subsequent processes relevant to protocol
layers MAC, RRC, NAS, RLC and PDCP can be fuzzed. Fig-
ure 2 highlights the MAC and RRC procedures that are sub-
ject to fuzzing. The 5GHOUL fuzzing session reveals a vul-
nerable communication trace containing several mutated
packets as shown in Figure 2: (i) Malformed RRC Conn.
Setup, (ii) MAC Time Advanced Command and (iii)
NAS Authentication Request. After analyzing the
attack vector, 5GHOUL determines that the same vulnerabil-
ity can be reproduced even if the NAS Authentication

5

Request is not malformed. Indeed, during our evaluation,
the attack vector of V4 was computed to be the combination
of just two messages, as highlighted by Malformed RRC
Conn. Setup and MAC Time Advanced Command.
Consequently, 5GHOUL facilitates development of an exploit
script that intercept these messages and modifies the packet
fields Time Adv. and Seq. Num. Len. in line with the
vulnerable trace found during fuzzing, as shown in Figure 2.
These modified packets are then released to the target UE
to reliably reproduce the vulnerability V4.

III. DESIGN OF 5GHOUL

Figure 5 illustrates the overall design of 5GHOUL.

5G UE

D
ow

nl
in

k

U
pl

in
k

gNB

5G Core

5Ghoul Fuzzer Framework Design

State
Machine

Replay

Mutation

Mapping Rules Capture File
(.pcapng)

Intercept. Points
Current
State

Fuzzing
Actions

P Optimization

UE
Manager

UE Control
ADB/QMI

Logs
Sink

Connect

OTA
Capture

Modem
Traces

Decoder

5G
Exploits

Post-Fuzzing
Analysis

Alerts

Hold
Release

Mutation
or Replay

Downlink

Packet
HandlerUplink

Fig. 5. 5GHOUL Fuzzing Framework for data link packet interception.

A. 5GHOUL Fuzzer Design

Latency Requirements: The interception points shown in
Figure 5 yield control over all packets down to the data link
layer that are produced at the gNB software stack. With
such an approach, it is crucial to not block MAC frames
for more than the time of the Downlink transmission slot.
Otherwise, live packets cannot be delivered over-the-air.
The slot transmission time (i.e., numerology) is configured at
the gNB, and it can vary between 6.25us and 1ms [12]. Our
interception strategy leverages shared memory to minimize
the processing time between gNB and 5GHOUL.

Nevertheless, it is worth mentioning high data through-
put is not relevant to the fuzzer. This is because our frame-
work focuses in finding OTA bugs. Therefore, our 5GHOUL

fuzzing architecture only considers gNB transmission slot
configuration that are above 500us to ensure real-time
communication. This is sufficient for fuzzing MAC or upper
layer frames.

Interception Points: As previously shown in Figure 1, three
interception points have been implemented in 5GHOUL: (i)
After MAC, (ii) before RLC and (iii) at the PDCP layer. These
are not only used to control MAC packets, but also packets
that are yet-to-be fragmented by the RLC layer. More
specifically, 5GHOUL intercepts before and after packets are
encrypted. The rationale of these interception points is two-
fold. Firstly, we ensure that any field manipulation will be
received at the base station without being dropped due to
encryption problems. Secondly, we aim to have complete
control of fragmented packets.

1) 5GHOUL Fuzzer State Mapper: The 5GHOUL state
mapper provides real-time information about the protocol
state of the gNB/UE, which is crucial for stateful fuzzing and
monitoring protocol states during a fuzzing campaign. This
information is used to dynamically update state transition
coverage and guide the 5GHOUL fuzzer towards maximizing
transition coverage.

Given the complexity of 3GPP protocols, manual compu-
tation of 5G protocol state machines is impractical. Instead,
5GHOUL utilizes a lightweight method for learning the 5G
protocol state machine. This process involves (i:) a set of
Mapping Rules, (ii:) the capture traces (i.e., pcap file) as
inputs. The Mapping Rules define how to identify a state
for a specific protocol, while the capture traces serve as a
reference for correct packet sequences during the learning
phase. The resulting State Mapper outputs the reference
sequence of states (i.e., the state machine Mr e f) between
the gNB and the UE. Once constructed offline in a one-
time effort, Mr e f is used to track the explored state during
the fuzzing campaign and optimize the fuzzing process to
increase protocol state coverage (using the “Optimization"
component in Figure 5).

During packet interception at interception point (iii) (ex-
emplified in Figure 6), each packet is parsed and assigned
a unique state label (S). The state label is derived from
packet information such as direction (TX for Downlink or
RX for Uplink), packet type, and the protocol layer name.
The Mapping Rules Mu guide the State Mapper in obtaining
the necessary information during packet decoding.

For example, consider the received RLC packet P , as
illustrated in Figure 6. The mapping rule indicates that the
packet type is contained within the packet field named
rlc.type. Thus, once the packet P is received and de-
coded, the raw content of the rlc.type (i.e., 0x00) is
searched within a look up table and matches with a type
string Status PDU. The state label for P can now be
generated with the information about packet P ’s direction
(TX), network layer (RLC) and the packet type (Status
PDU). Thus, state label S ≡ TX ⊕ RLC ⊕ Status PDU. In
a similar fashion, the RRC packet P ′ was labeled. Figure 6
also illustrates the positioning of the generated state labels
S and S′ within the reference state machine Mr e f .

The general steps to compute a state label S are described
in procedure state_mapping of Algorithm 1. Specifically,
after a packet P is intercepted and decoded, the process
in Algorithm 1 searches through the mapping rules and
first identifies the rule that matches the network layer
L of packet P . Subsequently, the state mapping process
locates the field f that contains the raw value of packet
type. Finally, in Line 13, a lookup table converts the raw
value of the identified packet field f , matched with rule
R.type_fields, to a type string. Then state label S is
generated by a string concatenation in Line 22.

2) Mapping Rules Mu : It consist of a set of rules for each
relevant 3GPP protocol layer (see Figure 7). As previously
discussed, this set of rules are fed to the State Mapper to
identify and label a state for an intercepted packet (see Fig-
ure 6). As illustrated in Figure 7, the property "Filter" filters

6

P
0x00 - Status PDU.
0x88 - Data PDU.

0x01 - Conn. Request
0x02 - R. Complete

...

RLC Packet
....0x00MAC

Type

rlc.type

rrc.message

...

rlc.type

...

Lookup Dictionaries

Packet Decoding

....0x12
Message

rrc.message

RRC Packet

Mapping
Rules File
+ Fuzzing Config.

Decoding Tree

RX ⊕ RRC ⊕ Reconf. Complete S'

TX ⊕ RLC ⊕ Status PDU S

dir⊕layer⊕type

State Mapping
State Label (S)

P'

To / From
Other States

...

......

Sample Mapped States Mref

....RLCMAC

TX / RRC / rrcSetup

RX / RRC / rrcSetupRequest

TX / RLC / Status PDU

TX / RRC / securityModeCommand

RX / RRC / securityModeComplete

S

S'
Interception
Point (iii)

5G Stack

P' P Mapped States Mref

RX / MAC / Short BSR

RX / RRC / Reconf. Complete

5Ghoul Fuzzer Framework Design

State
Machine

Replay

Mutation

Mapping Rules Capture File
(.pcapng)

Current
State

Fuzzing
Actions

P Optimization

5G
Exploits

Post-Fuzzing
Analysis

...

...

...

Fig. 6. An illustration of 5GHOUL state mapper. Packets P and P ′ are received via the interception point (iii). Subsequently, P and P ′ are decoded and
labeled with states S and S′, respectively, using the mapping rules. Locations of S and S′ within the reference state machine Mr e f are also highlighted.

Algorithm 1 state_mapping Procedure
1: Input: Packet P , Mapping Rules Mu
2: Output: State label S generated for packet P
3:
4: Decode packet P to get P.l ayer s and P. f i eld s
5: for each L ∈ P.l ayer s do
6: ▷ Check if the packet layer L match a rule in Mu
7: for each R ∈ Mu do
8: if L satisfies R. f i l ter then
9: ▷ Check if any field f is found within R.t y pe_ f i eld s

10: for each f ∈ P. f i eld s do
11: if f ∈ R.t y pe_ f i eld s then
12: v := value of field f in packet P
13: P.t y pe := lookup[v]
14: goto Line 20
15: end if
16: end for
17: end if
18: end for
19: ▷ Label the state when matched with the rules
20: if (L ̸= empt y ∧ P.t y pe ̸= empt y) then
21: ▷ Create the state label S
22: S := P.di r ⊕ L.name ⊕ P.t y pe
23: return S
24: end if
25: end for

a protocol by its layer name (see R.filter of Algorithm 1)
and the property StateNameField identifies each type-
field of the protocol layer that can be used to map a packet
to a protocol state (see R.type_fields of Algorithm 1).
Such rules follow the PCAP filtering syntax, which is used
in the Wireshark packet analyzer program.

We note that while PDCP is a separate data-link layer,
5GHOUL does not add an explicit rule for this layer. This is
because there are no 5G NR downlink packets associated
with PDCP-only state. By design, PDCP protocol is always
followed by RRC, or is partially present inside fragmented

Fig. 7. Mapping Rules for MAC, RLC, RRC and NAS. PDCP is not needed.

TABLE I
COMPLETENESS OF THE PROTOCOL STATE MACHINE OR SUPPORTED MOBILE

PROCEDURES IN PRE-/POST-AUTHENTICATION COMMUNICATION WITH UE.
*L2 Control MEANS DATA LINK PROTOCOLS SUCH AS MAC, RLC AND PDCP.

Related Work Pre-Authentication Post-Authentication

L2 Control* RRC Setup Security Context Paging Calling Handover PDU Session

[4] Berseker ❍ ◗ ● ❍ ❍ ❍ ◗

[6] DoLTEst ❍ ◗ ● ❍ ❍ ❍ ❍

[13] LTEFuzz ❍ ◗ ◗ ❍ ❍ ❍ ❍

[2] 5Greplay* ❍ ❍ ◗ ◗ ◗ ◗ ◗

[1] 5GReasoner ❍ ◗ ● ● ❍ ● ❍

[7] FIRMWIRE ❍ ◗ ● ❍ ● ❍ ●

[8] BASESPEC ❍ ❍ ❍ ❍ ❍ ❍ ❍

[9] BaseSAFE ❍ ❍ ● ◗ ● ◗ ●

[14] Usenix’ 23 ❍ ● ● ● ❍ ◗ ❍

[10] Wisec’ 23 ❍ ● ● ❍ ❍ ◗ ●

5Ghoul ● ● ● ◗ ❍ ❍ ●

RLC payloads. As a result, the rules shown in Figure 7 are
sufficient to label the state for any packet intercepted by
5GHOUL. From Figure 7, we also note that MAC, RLC and
NAS can be identified by multiple fields depending on the
communication context. In our evaluation of 5GHOUL, by
using just four rules (see Figure 7), 5GHOUL state mapper
had generated a state machine with 38 states and 308
transitions for fuzzing 5G UE.

3) Completeness of State Machine: Table I highlights the
5G procedures covered during the state mapping process
and contrasts 5GHOUL state machine with prior works

7

that only focus on testing layer 3 procedures (e.g., RRC
and NAS protocol procedures). In general, the protocol
procedures are classified as Pre-Authentication or Post-
Authentication. In this context, the state mapping process
within 5GHOUL mainly focuses on pre-authentication (de-
noted by full moon circle in the first three columns of
Table I). This is because such procedures can be exploited
by an attacker without having any knowledge of UE SIM
card authentication details. Consequently, 5GHOUL exhibits
an edge over prior work, none of which considers layer 2
communication and such a consideration is crucial for
testing early communication between UE and gNB (see
steps 1-4 of Figure 1a).

4) Optimization: In this section, we discuss optimization
of 5GHOUL in two ways: (i) maximize the coverage of
protocol state machine Mr e f transitions via an evolutionary
process, and (ii) dynamically balance the chance to mutate
protocol layers for fairly mutating all protocol layers.

Maximizing Mr e f coverage: 5GHOUL evolves the fuzzing
process with the objective to increase the transition cover-
age of the Mr e f . To this end, any standard evolutionary
algorithm can be used with a cost function tailored to
the number of covered state transitions. We apply particle
swarm optimization (PSO) due to its superior performance
in stochastic optimization scenarios. This fits well within
the context of 5G UE fuzzing due to occasional packet
drops, network interference and unpredictable network
delays. Moreover, PSO has been successfully applied in prior
wireless fuzzing work [15].

To employ PSO within 5GHOUL, we dynamically adjust
the probability of mutating different layers and fields of
the packet. Concretely, once a packet P is intercepted and
mapped to a state S ∈ Mr e f , the 5GHOUL fuzzer decides
to mutate P in line with the following probabilities: (a)
prg : the probability attributed to mutate P or release P
without any mutation, (b) prl : the probability to mutate
the layer l within packet P , and (c) pr f : the probability to
mutate any packet field f within P . To keep the fuzzing
process simple and efficient, we do not distinguish be-
tween mutation probabilities of different packet fields in
P . Therefore, during a fuzzing campaign, since a packet
can be mapped to an arbitrary state of Mr e f , the set of
mutation probabilities guiding the fuzzing process is M
where |M | = ∑

s∈Mr e f

(∣∣layers(s)
∣∣+2

)
and layers(s) is the set

of protocol layers found in any packet mapped to state
s. The 5GHOUL fuzzing campaign starts with a random
population of M and after each fuzzing session, updates
the cost function (i.e., number of covered state transitions)
for the entire population. The best individual within the
population is computed after each fuzzing iteration in line
with the standard PSO process.

We evaluate the impact of our evolutionary process on
5GHOUL effectiveness in RQ3.

Balancing mutations across layers: While the evolutionary
process within 5GHOUL aims to maximize the coverage of
transitions in Mr e f , we also employ simple heuristics to
balance the mutations across different network layers. The

balancing strategy is employed after the PSO recomputes
the mutation probabilities as described in the preceding
section. We illustrate the impact of such a balancing strat-
egy via Figure 8. It captures the frequency distribution of
fuzzed downlink packets with respect to different network
layers. As observed, it exhibits a significantly high degree
of fuzzing for MAC layer in contrast to RLC and RRC
layers. Moreover, the number of packets mutating the NAS
and PDCP layers is negligible. Thus, the mutation behavior
exhibited in Figure 8 (No Protocol Balancing) limits the pos-
sibility of finding implementation vulnerabilities in network
layers beyond MAC.

MAC RLC PDCP RRC NAS
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

 #
Pa

ck
et

s
M

ut
at

ed

Fuzzing Type
No Protocol Balancing
With Protocol Balancing

Fig. 8. Normalized Number of Packets Mutated w.r.t. 5G Protocol Layer.

To address the aforementioned situation, we reduce the
mutation probability of a network layer l (i.e., prl) if it
had been fuzzed frequently and compensate the mutation
probabilities for network layers that were not fuzzed of-
ten. Concretely, in any fuzzing iteration, we compute the
number of times a layer was fuzzed with respect to the
total number of fuzzed packets. For example, if the fuzzing
iteration had a total of N fuzzed packets and a layer l was

fuzzed Nl times, then we refine prl as prl ×
(
1− Nl

N

)
which

will be applied to the next fuzzing iteration. As a result,
the mutation probabilities of a layer l is revised inversely
proportional to the frequency of the layer was fuzzed in the
current fuzzing iteration.

Figure 8 captures the result of refining the mutation
probabilities With Protocol Balancing. As shown, the muta-
tion rate of MAC, RLC and RRC layers are fairly balanced,
whereas the mutation rate for NAS and PDCP improved.

B. UE Monitoring and Control

We have designed a UE Manager component (see Fig-
ure 9) that automatically configures, controls and moni-
tors 5G UEs. This is accomplished by employing (i) ADB
to manage 5G Android smartphones or (ii) Freedesktop
ModemManager (MM) to similarly manage 5G USB modems
during a fuzzing session. 5GHOUL leverages (i) or (ii) during
fuzzing to collect logs and monitors the health of the
targeted UE. Additionally, it recovers the UE from crashes
or firmware hangs by reconfiguring or rebooting the UE.

Further, UE Manager detects firmware crashes in Android
upon receiving log messages such as “ModemRestartStats"
for Qualcomm-based smartphones or “ModemEvent: mo-
dem_failure" for MediaTek-based smartphones. We note
that such crash detection can easily be modified.

8

(b) Disable Airplane Mode
(c) Connect Airplane Mode

(a) Configure

5G Smartphone

5G USB Modem

UE Manager

Crash Events

ADB
MM

Logs Collection

Commands (i)
(ii)

(b) Connect

(c) Disconnect
Fuzzer

+
5G Stack

(b) QMI Set Power On
(c) QMI Set Low-Power

Alert

ADB Commands & Logs

QMI Commands & Logs

Fig. 9. An illustration of the UE Monitoring and Control workflow.

Android smartphones can be kept in a 5G connection
cycle (fuzzing iteration) by simply disabling and enabling
Airplane mode. However, doing the same with 5G USB
modems is challenging. This is because 5G USB modems
contain a combination of proprietary and common AT
commands for its configuration, which respond differently
depending on the vendor [16]. Furthermore, the AT in-
terface can have random delays or unexpectedly close
during the fuzzing process without a clear indication of
a firmware issue. Therefore, to make our design modem
agnostic, 5GHOUL hands over control of the UE modem to
Freedesktop ModemManager process (MM).

MM process communicates with the UE mostly via the
standard QMI interface and falls back to AT when necessary.
In particular, whenever the modem is configured and ready
to be used, MM informs 5GHOUL (see “Alert" in Figure 9).
Moreover, MM alerts modem crashes by informing QMI
interface hangs or USB detachment caused by modem
software reset.

C. Post Fuzzing Analysis

Yes

Monitor
Replay

Mutation

Launch Attacks

5G
Exploits

Fuzzing
Actions

Logs
SinkC++

Scripts
Crash?No

5G UElog

Fig. 10. The workflow of attack vector analysis for a crash or hang.

Figure 10 captures the workflow to systematically repli-
cate and analyze crashes in our study. Upon completion
of the fuzzing session, a pcap file is generated, containing
all the communicated packets. In the event that downlink
packets are mutated by 5GHOUL, they are color-coded in
purple, while the original version of the malformed packet
is captured (only for debugging) and color-coded in blue
(see Figure 10). We note that if the packet was mutated
by 5GHOUL, then only the mutated packet was sent to the

target UE. Finally, upon crash detection, a customized crash
packet in red is indicated in the pcap file (see Figure 10).

To facilitate the replication of vulnerabilities, we devel-
oped a systematic process to generate exploit code (C++
script). Such an exploit code leverages the network capture
file (pcap) produced by the fuzzing session (see Figure 10)
to launch an over-the-air attack exploiting the respective
vulnerability. While generating the code for the exploit,
5GHOUL employs a simple heuristic to replicate the crash
with minimal modifications to the communicated packets.
This is desirable, as typically the crash log captured during
the fuzzing session involves thousands of mutated or re-
played packets. Let us assume 〈µ1,µ2, . . . ,µn〉 captures the
sequence of mutated packets (the same logic also applies
for replayed packets) in a trace δ that results the crash. To
replicate the crash systematically, we consider each mutated
packet µi in isolation. To this end, 5GHOUL replays the
trace δ where the only mutated packet is µi and each µ j

(j ∈ [1,n]∧ j ̸= i) is replaced with the original (non-mutated)
counter part of µ j . Intuitively, we aim to observe whether
only the mutated packet µi is the root cause of the crash.

5GHOUL starts the replication process from the last
mutated packet µn (i.e., the last purple packet in sequence
as shown in Figure 10). This is because we posit that closer
the mutated packet with respect to the crash location,
higher the likelihood of the packet being the root cause
of the crash. If the crash is not manifested only with
µn , then 5GHOUL gradually traverses up the trace δ and
repeats the process for the previously mutated packet in
sequence i.e., µn−1. The replication process succeeds when
the crash is reproduced in the process. Although it is
theoretically possible for the crash to appear for an arbitrary
combination of mutated packets, in our evaluation, all but
one crash was reproduced by considering only one mutated
packet in isolation. The exception was V4 from Table III,
which necessitated a sequence of two packets to be mutated
to replicate the crash. In general, based on the results of our
experiments, we can confidently conclude that our heuristic
on replication method works well in practice.

Figure 11 captures the exploit code generation process for
V10 (see Invalid RLC Data Sequence in Table III).
For the sake of brevity, we illustrate the “Original Trace“
and “Fuzzed Trace“ side-by-side in Figure 11. Moreover, we
show the code generation for an arbitrary mutated packet
µi . The process is simply repeated if multiple mutations
are required for replicating the crash. The key idea is to
1⃝ first identify the state of the mutated packet in line

with the process discussed in Section III-A2. To this end,
we identify that the mutated packet matches the mapping
rule corresponding to Layer rlc-nr and StateNameField
rlc-nr.am.dc. Our replication process then generates
the code to intercept packets that correspond to these layers
and types. This is captured via the wd_filter function
call. We note that the raw value of the rlc-nr.am.dc
field was extracted from the mutated packet and the type
value CTRL was obtained from Wireshark lookup dictionary
(similar to the process illustrated in Figure 6). Finally, the
wd_filter function call code is generated via a simple file

9

....0x840x00

Original BytesMutated Bytes

15 Bytes 15 Bytes

Fuzzed Trace Original TraceMapping Rules

Exploit Script

Fig. 11. The workflow of exploit C++ code generation. 1⃝ Mutated packet is matched with the state mapping rules to precisely generate a condition that
intercepts packets at runtime. Such interception is for the purpose of replicating the respective vulnerability. Subsequently, the original and mutated
communication traces are matched to compute 2⃝ the mutated value and 3⃝ the location (i.e., byte offset) for the mutation.

template. Intuitively, this code intercepts the packets that
need to be mutated at runtime for replicating the respective
vulnerability.

Once the condition for packet interception is generated,
we find 2⃝ the mutated field value and 3⃝ the location of
the mutation (i.e., the byte offset). This is accomplished by
comparing the original and mutated version of the com-
munication trace (see Figure 11). By locating the difference
between the original and corresponding mutated packet,
the code for the mutation is generated via another file
template as illustrated in Figure 11 (lines 7-11). Intuitively,
the exploit code automates the process of selecting only
those packets that need to be mutated, applying the specific
mutation to such packets and releases them to the target.

IV. IMPLEMENTATION AND EVALUATION SETUP

Hardware Setup: Concurrently, Figure 13 illustrates the
physical setup of our 5GHOUL. The hardware components
include a Beelink SER5 Mini PC powered by an AMD Ryzen
7 5800H processor, Software Defined Radio (SDR) such as
the USRP B210, and targets UE such as Quectel RM500Q-
GL 5G USB modem and an off-the-shelf 5G smartphone
(OnePlus Nord CE 2). Finally, the USB Per-Port Power
Control Hub is used to provide automatic power-cycling
of USB power in case the UE target hangs and requires
a manual reboot. This setup allows for efficient analysis
and evaluation of the 5G network e.g., identification of 5G
UE vulnerabilities. All UE targets used in our evaluation
and their corresponding firmware version are outlined in
Table II.

Running 5GHOUL: To launch our experiment, we first
connect the SDR to the PC via a USB. Next, the gNB
operates in the N78 frequency band, which is widely-used
in Europe and Asia. Furthermore, we enable a testing 5G
network using Mobile Country Code (MCC) as 001 and the
Mobile Network Code (MNC) as 01. This step is required
for 5G Smartphones, which commonly reject gNBs with

D
ow

nl
in

k
M

N
C

: 0
1

M
C

C
: 0

01

U
pl

in
k

ADB

USRP B210

5G Edge
Devices

USB 3.0

5G USB Modem

UE Monitoring and Control
AT Commands,QMI

Malicious gNB Setup

5G Smartphone

5G Modem SIM Card

Mini PC

OpenAirInterface 5G

Open5GS
gNB

Core Network

Malicious Packets

Software Setup (Mini PC)

USB Per-Port Power Control

SIM Card

Fig. 12. Hardware Setup for 5GHOUL testing and evaluation.

5G UE
Smartphone

5G UE
USB Modem

SDR
USRP B210

5Ghoul
Mini PC

USB Per-Port
Power Control

Fig. 13. Physical Setup for 5GHOUL. The 5G USB modem is connected
to the Mini PC through the USB Per-Port-Power Control Hub. The 5G
Smartphone is directly connected to the Mini PC.

arbitrary MCC/MNC. Finally, we run a 5GHOUL container,
which starts a malicious gNB ready for fuzzing the UE.

Fuzzer Implementation: 5GHOUL is implemented in C++
(7879 LoC). This includes patches to Wireshark that improve
decoding speed for 5G protocols, while exposing more fields
information. Moreover, we develop patches to add the inter-
ception points to OpenAirInterface5G (see Section III-A). To
generate reference traces of valid 5G communication for the
State Mapper (Section III-A1), we connect each UE modem
and allow normal communication and re-connection for
approximately 12 hours for each modem. The communi-
cation logs from these normal communication are then

10

TABLE II
DEVICES USED FOR EVALUATION. THE SAMPLE CODE IS PROVIDED BY VENDOR TO TEST THE DEVELOPMENT BOARD. THIS IS NOT APPLICABLE (N.A) ON

PRODUCTS RUNNING A FIXED APPLICATION.

Vendor / Product 5G Modem Type Monitor Firmware/Software Version
OpenAirInterface UE N.A Software ProcessMonitor 2023.w03
Quectel RM500Q-GL Qualcomm X55 USB Modem ModemManager Aug 03 2021
Simcom SIM8202G Qualcomm X55 USB Modem ModemManager SIM8202G-M2_V1.2
Fibocom FM150-AE Qualcomm X55 USB Modem ModemManager 89602.1000.00.04.07.20
Telit FT980m Qualcomm X55 USB Modem ModemManager 38.23.001-B001-P0H.000640
Oneplus Nord CE 2 5G Dimensity 900 5G Smartphone ADB M_V3_P10
Samsung S22 (5G) Qualcomm X65 Smartphone ADB S901EXXU4CWCE
Asus ROG Phone 5s Qualcomm X60 Smartphone ADB M3.13.24.73-Anakin2

TABLE III
SUMMARY OF 5G IMPLEMENTATION VULNERABILITIES AND AFFECTED UE DEVICES. VULNERABILITIES IN bold ARE ASSIGNED HIGH-SEVERITY BY THE VENDOR.

Implementation Vulnerability Affected 5G Modems/Smartphones Layer(s) Impact CVE Status

OAI UE Telit
FT980m

Fibocom
FM150-AE

SIMCOM
SIM8202G

Quectel
RM500Q-GL

Asus ROG
Phone 5S

OnePlus
Nord CE 2

Samsung
Galaxy S22

V1 - Invalid PUSCH Resource Allocation X RRC Crash Pending

V2 - Empty RRC dedicatedNAS-Message X RRC, NAS Crash Pending

V3 - Invalid RRC Setup X X RRC Crash Patched

V4 - Invalid RRC Reconfiguration X MAC, RRC Crash Patched

V5 - Invalid MAC/RLC PDU X X X MAC, RLC Crash CVE-2023-33043

V6 - NAS Unknown PDU X X X NAS Crash CVE-2023-33044

V7 - Disabling 5G / Downgrade via RRC X X X X X RRC Hang / Downgrade CVE-2023-33042

V8 - Invalid RRC Setup spCellConfig X RRC Crash CVE-2023-32842

V9 - Invalid RRC pucch CSIReportConfig X RRC Crash CVE-2023-32844

V10 - Invalid RLC Data Sequence X RLC Crash CVE-2023-20702

V11 - Truncated RRC physicalCellGroupConfig X RRC Crash CVE-2023-32846

V12 - Invalid RRC searchSpacesToAddModList X RRC Crash CVE-2023-32841

V13 - Invalid RRC Uplink Config Element X RRC Crash CVE-2023-32843

V14 - Null RRC Uplink Config Element X RRC Crash CVE-2023-32845

leveraged to create the reference state machine. We note
that the collection of reference traces is a one-time effort
and is not required during fuzzing campaign.

5GHOUL supports running OAI stack with real hardware
using USRP B210 for over-the-air communication.

V. EVALUATION RESULTS

To evaluate 5GHOUL and showcase its capability, we
answer the following research questions:

A. RQ1: How effective is 5GHOUL fuzzer in terms of
generating error-prone inputs?

Table III outlines the effectiveness of 5GHOUL in finding
vulnerabilities on COTS edge devices. In the first column,
each vulnerability name is identified with prefix V. While
the first two vulnerabilities (V1 and V2) affect an open-
source UE implementation from OpenAirInterface project,
the rest of the vulnerabilities affect many popular 5G USB
Modems (V3-V7) or representative Smartphones employing
Qualcomm or MediaTek Modems (V5-V14).

In our findings, Qualcomm 5G USB Modems and 5G-
enabled Smartphones such as Asus ROG Phone 5S were
impacted by a range of previously unknown vulnerabilities
in the handling of MAC/RLC, RRC and NAS messages (high
severity V5-V7). On the contrary, modems running an older
5G firmware e.g., SIMCOM SIM8202G and Fibocom FM150-
AE (see Table II) were additionally affected from MAC/RLC

and RRC vulnerabilities already patched (V3 and V4). Such
issues did not affect the other 5G USB Modems that had
firmware with build date in 2023.

In summary, the RRC Attach and Authentication proce-
dures (see Figure 1a) exhibited all vulnerabilities discovered
by 5GHOUL. In particular, RRC Attach procedure, which
contains the RRC Connection Setup message, was focus of
most vulnerabilities. Such findings were aggravated during
the fuzzing sessions for OnePlus Nord CE 2. With such
UE employing MediaTek Dimensity 900 5G modem, many
asserts and memory-related crashes (see Table III) were
triggered during the exchange of RRC Setup Connection.

Lastly, we note that all vulnerabilities were found during
the pre-authentication stage of the communication between
UE and gNB. This means that attacks exploiting V1-V14
do not require any secret information from the UE’s SIM
card to be successful. Such attacks can be launched by
starting a malicious gNB with the same setup as shown in
Section IV (see Section II-C). Overall, our results highlight
5GHOUL not only as the first OTA fuzzer to find 5G data
link implementation vulnerabilities (V4, V5, V10), but also
demonstrates its effectiveness in finding vulnerabilities at
layer 3 and above (e.g., RRC, NAS) for commercial 5G UEs.

B. RQ2: How effective is 5GHOUL fuzzer w.r.t fuzzing time?

Table IV outlines the time taken to complete one fuzzing
session (104 fuzzing iterations) for each target UE. 5GHOUL

11

TABLE IV
TIMING AND MODEL COVERAGE OF 104 FUZZING ITERATIONS PER UE.

Vendor / Device Total Time 1st Crash/Hang Model Coverage (States)
OpenAirInterface UE 21 min. 1 min. 9.7% (30)
Quectel RM500Q-GL 12 h. 54 min. >12h. 75.0% (231)
Simcom SIM8202G 6 h. 31 min 5h. 17 min. 83.4% (257)
Fibocom FM150-AE 12 h. 45 min. 1h. 37 min. 86.4% (266)
Telit FT980m 12 h. 26 min. >12h. 50.6% (158)
Asus ROG Phone 5s 12 h. 47 min. >12h. 74.4% (229)
OnePlus Nord CE 2 5G 13 h. 17 min. 19 min. 70.8% (218)
Samsung S22 5G 12 h. 25 min. N.A 67.9% (209)

finishes each fuzzing iteration by triggering reconnections
via ADB or QMI whenever the UE completes the 5G
procedures shown in Figure 1a. However, fuzzing the data
link can normally lead to UE unresponsiveness for several
seconds (i.e., 2−4 seconds) without necessarily indicating
a firmware issue. This is because 5G modems implement
their own waiting states after receiving decoding errors or
handling expected failure states. Such inherent delays are
evident with OnePlus Nord CE 2, which results in a total
time of 13h. to complete a fuzzing session (see Table IV).
Nonetheless, across all COTS UEs, OnePlus Nord CE 2
exhibited the fastest crash (19 min.) due to 5GHOUL fuzzing.

On the other hand, the aforementioned inherent delays
are not present in OpenAirInterface UE, as the only waiting
time is the UE process restart/startup delay before every
fuzzing iteration starts. Consequently, such UE was the
fastest to evaluate, thus completing the fuzzing session in
21 minutes. However, such UE had the least Model Coverage
(last column of Table IV). This is because such UE does not
complete the Authentication procedure of Figure 1a due to
interoperability issues with 5G NR Core Network (Open5GS).

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
Interception RTT (us)

MAC

PDCP

NAS

Fuzzing Overhead
Interception Only

Fig. 14. Downlink Interception time. Worst-Case Outlier RTT=971us.

We also measure the performance of 5GHOUL from the
time a downlink packet is intercepted and processed until
the packet is released back to the gNB. The Round Trip
Time (RTT) for intercepting MAC, PDCP and NAS protocols
with and without the fuzzing overhead is shown as a box
plot in Figure 14. In summary, the interception time of
5GHOUL makes it suitable for real-time data link fuzzing
in 5G networks. The maximum RTT of 110us for the MAC
protocol is well below the latency requirements specified
by the numerology parameter at the gNB [12]. Moreover,
the decoding speed for network layer payloads such as
RRC (carried over PDCP) and NAS significantly outperforms
recent work [4] that exhibits decoding timings 1−3ms.

1 2 3 4 5 6 7 8 9
Fuzzing Iterations ×103

0
1
2
3
4
5
6
7
8
9

10
11

#
Cr

as
h

+
 #

H
an

gs

Duplication
Mutation

Evolution + Duplication
Evolution

Fig. 15. Fuzzing Iterations vs Unique Crashes + Hangs for all target UEs.

C. RQ3: How do the different design choices contribute to
the effectiveness of 5GHOUL fuzzer?

To evaluate the effectiveness 5GHOUL design, we generate
four variants of 5GHOUL, each testing a specific fuzzing
component discussed in Section III and evaluate each
component across all target UEs.

To this end, we show in Figure 15 the number of firmware
Crashes for 104 fuzzing iterations for each 5GHOUL varia-
tion: Duplication refers to 5GHOUL with only packet injec-
tion enabled, whereas Mutation has only random packet
mutation enabled without any optimization to mutation
probabilities pr . Evolution variant enables packet mutation
and Optimization. Lastly, Evolution + Duplication enables
both Optimization and packet injection.

Our evaluation of 5GHOUL across all devices revealed
that Evolution variant indeed discovered many new vul-
nerabilities and at a higher rate than the other variants.
As shown in Figure 15, such variant yielded ten unique
#Crash + #Hangs at the end of the 104 fuzzing iterations.
This exemplifies the need for our evolutionary optimization
(Section III-A4) during fuzzing campaign. On the contrary,
the variant Duplication adds more time-outs during the
fuzzing session due to sporadic UE unresponsiveness. Such
a behavior was observed to conflict with our optimization
process. As a result, when Duplication is combined with
Evolution, it reduced the effectiveness of 5GHOUL, as shown
in the results of Evolution + Duplication in Figure 15.

Additionally, we evaluate the impact of the Mutation
Balancing component during fuzzing. While Section III
discusses the distribution of mutated packets across dif-
ferent protocols (see Figure 8), we aim to evaluate how the
correction for such distribution affects 5GHOUL capability
to find bugs. To this end, we evaluate two variants of
5GHOUL (with and without mutation balancing) against
the UE target Oneplus Nord CE 2 5G, which exhibits the
most vulnerabilities. The results are shown in Figure 16
and represent the total number of crashes (i.e., containing
repeated vulnerabilities) across 7000 iterations. Notably, the
5GHOUL variant without balancing takes more time to
trigger vulnerabilities since the higher occurrence of MAC
packets skews the fuzzing towards often mutating the MAC
layer. In contrast, the 5GHOUL variant with mutation bal-
ancing can consistently trigger more vulnerabilities within
a shorter number of iterations due to the MAC layer being
less prioritized as opposed to other less frequent protocol

12

TABLE V
POST FUZZING ANALYSIS FOR REPRODUCTION OF VULNERABILITIES V1-V14.

Messages # Mutated Fields #Replication Steps
1 2 1 2 1 ≥2

All Except V4 V4

V1-4
V6-7
V9-10
V12-14

V5
V8
V11

V1-3,
V5-6
V8-11
V13,V14

V4: 6
V7: 3
V12: 2

layers such as RLC, PDCP, RRC and NAS. In a broader view,
the result also highlights the suitability of employing such
balancing component when fuzzing other wireless protocols
that might repeatedly transmit data-link packets during
communication.

1000 2000 3000 4000 5000 6000 7000
Fuzzing Iterations

0
1
2
3
4
5
6
7
8
9

10

#
To

ta
l C

ra
sh

es

No Mutation Balancing With Mutation Balancing

Fig. 16. Fuzzing Iterations vs Total Crashes with and without mutation
balancing for target Oneplus Nord CE 2 5G.

D. RQ4 - How efficient is the Post Fuzzing Analysis in
replicating crash/hang?

The outcome of 5GHOUL post-fuzzing analysis is outlined
in Table V. We show the number of messages transmitted
for over-the-air exploitation together with the number of
fields subjected to mutation and the number of iterations
involved during replication (see Figure 10). With the ex-
ception of V4, which necessitates the transmission of two
messages, and V5, V8, V11, which require the mutation of
two fields, all vulnerabilities can be exploited by mutating
just one message and a solitary field.

It is worthwhile to highlight that the replication steps
hold paramount significance in the post-fuzzing analysis.
This is because an exhaustive enumeration of all possible
combinations of mutated packets, as found in the vulnera-
ble communication trace, is infeasible to identify the root
cause of the vulnerability. Thanks to the systematic process
described in Section III-C, replication of all vulnerabilities
are completed within a maximum of six iterations. In fact,
except for V4, V7, V12, all vulnerabilities were replicated in
just one iteration. This results show that our heuristic of
replicating vulnerabilities is effective in practice.

E. RQ5 - How does 5GHOUL compare to existing 5G
security testing frameworks?

Although 5GHOUL is a 5G fuzzing framework, it can also
be used to perform standard 5G protocol testing towards
the UE. Therefore, we evaluate and compare 5GHOUL to

TABLE VI
CAPABILITIES OF 5GHOUL WHEN COMPARED TO OTHER SECURITY TESTING

FRAMEWORKS.

Frameworks Communication Testing Capabilities

Injection Replay Flooding Validation Protocols UE Monitoring

[2] 5Greplay ◗ ● ● ● ◗ ❍

[10] Wisec’ 23 ◗ ◗ ◗ ◗ ◗ ◗

5Ghoul ● ● ● ● ● ●

state-of-the-art 5G security testing frameworks which allow
users to design communication scenarios (test cases) ac-
cording to user-provided configuration files. However, there
exists several limitations of such frameworks with respect
to 5GHOUL capabilities and we outline such limitations in
Table VI. Firstly, existent frameworks have limited protocol
support (column Protocols) and hence do not support
manipulation of data link messages such as MAC, RLC and
PDCP. Therefore, discovering any data link vulnerabilities
such as V4 and V5 (see Table III) is infeasible in 5Greplay [2].
Secondly, current frameworks only allow injection or replay
of either (i) known RRC or NAS messages [10] or (ii) NAS
messages from a PCAP file [2]. As a result, our evaluation
with existing 5G UE testing framework [10] reveals that it
fails to discover any vulnerabilities found by 5GHOUL. This
is because the vulnerabilities found by 5GHOUL involves
injection of invalid or malformed RRC and NAS messages.
Similarly, 5Greplay [2] only replicates V6 as it modifies
communication between core network and gNB. Thus, only
NAS packets can be injected towards the UE.

Finally, while both 5GHOUL and 5Greplay [2] support a
Deep Packet Inspection (DPI) library to validate responses
(Validation column in Table VI) in real-time, only 5GHOUL

supports automated monitoring and control of UE targets
such as smartphones, modems and software processes. This
enables 5GHOUL to be used as a single solution to automate
replication and validation of 5G security-related test cases
once a C++ script is provided by the user (or created as
a byproduct of the post-fuzzing analysis as described in
Section III-C). In summary, our evaluation highlights the
feasibility and practicality of 5GHOUL to be used as a
standard 5G security testing framework as opposed to just
an over-the-air 5G fuzzing tool.

F. RQ6 - Can 5GHOUL be extended to find vulnerabilities
beyond crash or hangs?

As discussed in RQ1, 5GHOUL discovered security issues
related to hang or crashes (see Table III). Nonetheless,
5GHOUL can be extended to discover security issues beyond
crashes due to the comprehensive injection and mutation
capabilities embodied within the 5GHOUL fuzzing. To illus-
trate this, we evaluate the capability of 5GHOUL to replicate
and automatically discover downgrade attacks. To this end,
we configured a legitimate 4G and a malicious 5G network,
and the logs of the base stations are monitored in real-time.
By default, UEs prefer connecting to 5G due to its latest-
generation status. However, following a specific attack,
when a UE shifts from the 5G network to the 4G network,

13

Registration Request
Registration Reject Cause 27

(N1 Mode not allowed)

UE TargetMalicious 5G gNB 4G eNB

4G Connection Setup
[INFO] UE connection type: LTE
[!!!] Downgrade to 4G network detected!!!

Fig. 17. 5G UE downgrade attack by sending downlink Registration Reject

UE TargetMalicious 5G gNB 4G eNB

UE Downgrades to
4G base station

[INFO] UE connection type: LTE
[!!!] Downgrade to 4G network detected!!!

Registration Request

ACK_SN=1
Deregistration Accept

Authentication Request

Authentication Request

ACK_SN=n

Repeat above for n
times to exhaust retry

Deregistration Accept
Authentication Request

Fig. 18. 5G UE downgrade attack by flooding downlink Deregistration
Accept message.

the log will indicate a connection to the eNB instead of
the gNB, 5GHOUL automatically flags this behavior as a
downgrade attack.

As Illustrated in Figure 17, 5GHOUL automatically detects
a downgrade attack proposed by earlier works [10]. During
such an attack, our rogue base station swiftly responds
to the UE’s Registration Request by a Registration Reject
with a specific Reject Cause (Cause 27 - N1 Mode Not
Allowed). This prompts the UE to disconnect from the 5G
and reconnect to the 4G network. After the attack, user has
to force the UE to re-connect to 5G network by toggling the
airplane mode.

It is worthwhile to mention that 5GHOUL injects messages
to launch the attacks instead of directly altering the internal
states of the core network stack. Therefore, 5GHOUL is able
to find new downgrade attacks which exploit message flows
that contains authentication retry procedures. As shown in
Figure 18, we discovered that flooding a Deregistration
Accept message before the 5G base station sends the
Authentication Request message results in the base station
keep re-sending Authentication Request with a duplicated
sequence number. Subsequently, after consecutive failures
of delivering Authentication Request, the UE disconnects
from the 5G network and shifts to the 4G network, indica-
tive of a downgrade attack. Furthermore, our findings reveal
that the rogue base station may also employ other type
of messages (including message_type = 0x00) instead of
Deregistration Accept to force the UE to downgrade
to 4G network. Notably, unlike the downgrade attack shown
in Figure 17, the UE cannot re-establish the 5G connec-
tion by merely toggling the airplane mode; it necessitates

RRC Setup Complete (2 Fragments)

xPRACH
RAR
RRC Connection Request
RRC Connection Setup

UE TargetMalicious gNB

Attack: Malformed RLC Status PDU
NAS Authentication Request

Modem Reboots

1

2

3

4

(a)

RRC Setup Complete (2 Fragments)

xPRACH
RAR
RRC Connection Request
Attack: Malformed RRC Conn. Setup

UE TargetMalicious gNB

RLC Status PDU
NAS Authentication Request

5G Disabled

1

2

3

4

(b)
Fig. 19. Figure 19a illustrates "Invalid MAC/RLC PDU" (V5) and Figure
19b depicts "Invalid RRC Setup pdcch-Config". While V5 triggers a modem
reboot on the target device, V7 brings the target to a 5G disabled state.

initiating a new connection process with the base station.
This attack is not possible with prior framework since the
handling of injected messages is hard-coded and hence,
retries are not considered. We successfully launched the
new downgrade attack (Figure 18) on four different smart-
phones: Xiaomi Redmi K40 (MediaTek Dimensity 1200),
Oneplus Nord CE 2 (MediaTek Dimensity 900), Samsung
Galaxy S22 (Qualcomm X65) and Asus ROG Phone 5s
(Qualcomm X60).

In summary, 5GHOUL not only demonstrates its effec-
tiveness by replicating the downgrade attack which initially
proposed by an earlier work [10], but also shows its higher
potential for targeting different attack scenarios including
new downgrade attacks (Figure 18).

VI. 5G IMPLEMENTATION VULNERABILITIES

In this section, we discuss the pre-conditions to launch
5G attacks through 5GHOUL and provide a general sum-
mary of the discovered vulnerabilities.

TABLE VII
PRE-CONDITIONS FOR MALICIOUS GNB TO TRIGGER VULNERABILITIES.

5G NR Procedure Message Name Vulnerabilities Required Information
RRC Connection Setup V1, V3, V7-V9, V11-V14 MCC, MNC

RRC Attach (Initial Setup)
MAC Time Adv. Command V4 MCC, MNC

Authentication
RLC Status PDU V5, V10 MCC, MNC
NAS Authentication Req. V2, V6 MCC, MNC

The attacks that trigger the vulnerabilities described in
Table III are tested against each UE target by leveraging
the attack model discussed in Section 3. At minimum,
knowledge about the legitimate gNB MCC/MNC is required
to start the cloned gNB and launch the attacks. The exact
5G NR Procedure and Message Name (see Figure 1a) that
correspond to each vulnerability is detailed in Table VII.
All vulnerabilities are triggered before NAS authentication
finishes (after step 4 of Figure 1a). For example, to trigger
vulnerabilities V2 and V6, which rely on mutating the NAS
Authentication Req., the attacker may simply modify the
5G Core Network (Open5GS) stack to accept arbitrary UE’s
Subscription Permanent Identifier (SUPI) so that NAS Au-
thentication Req. message is forcibly generated containing
arbitrary and incorrect authentication values and nonces.

In practicality, such vulnerabilities can be easily exploited
over-the-air by starting a malicious gNB within radio range
of the target 5G UE device (see Figure 13). This is a practical

14

V13
0x5B

V12
0xD0

V7
0x9C

V8
0x98
V3
0x98

Malicious gNB Vulnerable UE
RRC Attach

...

Exploits Payload

RRC Connection Request
RRC Connection Setup

(a)

V5
0xB5
0x02

V10
0x84

Exploits Payload

RLC Status PDU

Malicious gNB Vulnerable UE
Authentication

...

(b)
Fig. 20. Illustration of the adversarial-controlled gNB attack vectors via mutation of the RRC message payload (a) and RLC message payload (b).

setup which relies on using Software Defined Radio (SDR)
to behave as a cloned gNB. While USRP B210 used in our
setup could be recognized from afar, thus making the attack
visually noticeable, such type of equipment has already
been miniaturized to the size of a raspberry-pi [17]. This,
in turn, enables the use of SDR for visibly stealthy attacks.

A. Summary of Vulnerabilities

While 5GHOUL found 5G modem Vulnerabilities in al-
most all downlink messages up to NAS Authentication Req.,
representative vulnerabilities V5 and V7 are illustrated in
Figure 19a and Figure 19b, respectively. The key difference
between these vulnerabilities, aside from being triggered
from different messages, is their impact on the target UE:

V7 - Invalid RRC Setup pdcch-Config: Improper optional
bits toggled in the RRC pdcch-Config element puts the
modem in an unstable state which does not initiate con-
nection to any 5G network. Instead, only connection to 4G
or 3G works, hence such attack is classified as downgrade.
This invalid state cannot be recovered by itself without a
power cycle and hence it requires a manual reboot from the
user. This takes about a minute in modern smartphones.
Moreover, the attack vector to trigger this vulnerability is
simply writing 0x9C to the 38th byte of the RRC Connection
Setup Message (see Figure 20a).

V5 - Invalid MAC/RLC PDU: Writing invalid bytes to the 5G
NR MAC Header causes a modem assert. In such a scenario,
the modem automatically restarts via some software reset
or watchdog mechanism, thus ensuring normal operation
without intervention of the user. A sample Wireshark cap-
ture of the exploitation payload that immediately triggers V5
over-the-air is shown in Figure 20b. In such attack vector,
the malicious gNB mutates the first 2 bytes of the MAC
header to bytes 0xB5 and 0x02 respectively.

Overall, the vulnerabilities summarized in Tables III
and VII are triggered by either sending a malformed RRC
Connection Setup (albeit writing to different RRC fields
as depicted in Figure 20a) or sending a malformed NAS

Authentication Request. In the particular case of V2, the NAS
Authentication Request is malformed such that the actual
NAS message payload is empty. In contrast, V4 is the only
vulnerability which requires sending both an invalid MAC
Time Advance Command and a malformed RRC Connection
Setup.

Finally, while most vulnerabilities result a Modem Reboot
behavior due to firmware reachable asserts, MediaTek Di-
mensity 900 5G Modem yields a memory access violation
upon receiving an unexpected RLC data fragment due to
a mutated RLC Sequence Counter field (V10). Further, the
Modem triggers another memory access violation upon
receiving a truncated physicalCellGroupConfig element in
the RRC Connection Setup message (V11).

VII. VULNERABILITIES IMPACT

A. Impact on Mobile Devices

To test the impact of 5G vulnerabilities on mobile devices
and hence user experience, we exploit vulnerabilities V5
to V10 against Asus ROG Phone 5S (ARP5s) (Qualcomm
Modem) and OnePlus Nord CE 2 (OnePlus) (MediaTek Mo-
dem). First, when vulnerability V5 (see Figure 19a) or V6 is
triggered on ARP5s, its 5G modem immediately reboots and
automatically recovers connection to gNB in few seconds
(temporary DoS). Hence, an attacker exploiting V5 and V6
must continuously launch the attacks if the intention is to
completely disrupt mobile network connectivity of the user.
Additionally, 3G and 4G communication are also disrupted
upon modem reboot since the modem handles all 3GPP
related communication.

More surprisingly, vulnerability V7 (see Figure 19b) can
prevent ARP5s to connect to any 5G network, while keep-
ing 4G/3G connectivity intact (downgrade denial-of-service
attack). Nevertheless, such behavior of V7 highlights that
the mobile device modem enters an erratic state such that
the user needs to manually reboot the phone, thus power
cycling the modem to fully restore 5G connectivity.

Attack V7 is illustrated in Figure 21. Initially, the ARP5s
is connected to a legitimate gNB (shown as SUTD 00101

15

xPRACH

RAR

RRC Connection Request

Attack: Malformed RRC Conn. Setup

UE TargetMalicious gNB

5G Disabled

...

UE TargetMalicious gNB

Before Attack

After Attack

exploit = mac_sch_rrc_setup_crash_var

Before Attack (Test Outdoor)
Phone connected to
University 5G Network
001/01

After Attack (Test Indoor)
Phone does not list any
001/01 nor connected to
any 5G Network 001/01 Attack: Malformed RRC Conn. Setup

Attack: Malformed RRC Conn. Setup

Fig. 21. The impact of exploiting V5 on ARP5s. The upper half of the figure
illustrates the availability of SUTD 00101 5G network before the attack. In
contrast, the lower half illustrates the unavailability of any 5G network
connectivity after the attack is launched.

before the attack). After the malicious gNB starts and V7
is exploited by the 5GHOUL framework, the mobile device
depicts the following behavior:

1) Neither legitimate or malicious gNB are listed when
re-scanning for mobile networks (see Figure 21).

2) No connection to any 5G network even when man-
ually attempted by the user via the Android mobile
network selection menu.

Lastly, vulnerabilities V8-V14 trigger crashes on OnePlus
which employs MediaTek Dimensity 900 5G Modem. More
specifically, V8, V9 and V12-V14 trigger reachable asserts
in the internal microcontroller and DSP of the 5G modem.
Likewise, V10 produces an invalid memory access excep-
tion. For all cases, the modem immediately reboots and
takes a few minutes to recover 5G connectivity. Similar
to vulnerabilities V5 and V6, an attacker would need to
continuously launch the attacks to keep disrupting all
3G/4G/5G communications on OnePlus. However, V10 and
V11 are more concerning due to the resulting memory ac-
cess violations. Hence, they expose potential risk to enable
arbitrary code execution or other memory related attacks
directly in the 5G modem.

B. Impact on specialized 5G use cases

As highlighted in Table III, vulnerabilities V5 to V10
affect 5G devices that employ modems from Qualcomm and
MediaTek. Therefore, these vulnerabilities affect not only
smartphones and USB modems, but also appliances that
rely on low-latency communication.

To assess the practical impact of 5GHOUL vulnerabilities,
we conducted exploit tests on specific 5G UE Modems listed
in Table II and analyzed their behavior. Two Qualcomm-
based Modems were configured as Customer Premises
Equipment (CPE) to evaluate the impact of V5 to V7. In
Setup A, the FT980m modem within the FT980WW platform
was tested, which provides 5G internet connectivity through

Raspberry Pi 3B+

Attack
Loop Internet Access

Conf. Webpage

LAN

CPE Router

Modify

Malicious gNB

V5, V6

UL

DL

Conf. Webpage

LAN

Internet Access
Conf. Webpage5G USB Modem

USB 3.0

UL DL

(Higher RSSI) Attacker

BSetup

ASetup

User

User

Fig. 22. Impact of V5, V6 on Telit FT980m operating as CPE Router.

its LAN port and hosts a Configuration Webpage. Continu-
ous attacks V5 and V6 from a malicious gNB resulted in a
complete loss of internet connectivity for devices connected
to the FT980WW LAN port, and the Configuration Webpage
became inaccessible due to modem reboots caused by the
attacks.

In Setup B (shown in Figure 22), a Raspberry Pi 3B+ with
OpenWRT 22.03.4 and RM500Q-GL 5G USB Modem were
used. This setup offered better isolation against attacks V5
and V6 since the Configuration Webpage was hosted by the
Raspberry Pi 3B+ processor instead of the modem itself.
This allowed the user to remotely attempt to steer the CPE
device by selecting a different mobile network to connect.

The effects of the launched attacks on CPE devices are
summarized in Table VIII. The table describes the impacted
behaviors within the CPE caused by attacks exploiting V5-
V7 and indicates whether manual intervention was required
for recovery (the last column). During our tests, the FT980-
WW CPE exhibited more proactive attempts to recover
5G connectivity after attacks exploiting V5 and V6, while
the Raspberry Pi 3B+ with OpenWRT was less proactive,
often requiring manual reconnection of the 5G Modem via
OpenWrt’s Webpage. Such a reconnection instability (shown
in column 3 of Table VIII as ") involves manually rebooting
via OpenWrt’s Webpage and restore proper 5G connectivity
when V5-V7 stopped. On the other hand, since FT980-WW
runs the web application within its 5G Modem, the user was
unable to access the Webpage. As a result, the user cannot
steer the CPE from the malicious gNB while the attack was
still under-going. Which means the user intervention does
not apply when trying to recover from the attack.

For attack V7, its effects were immediate, causing the
targeted modem to disconnect from any 5G mobile network
and fallback to 4G networks(indicated as "in column 1),
exposing potential vulnerabilities in the 4G domain [11].

VIII. RELATED WORK

Attacks on Cellular Protocol: 3GPP specification related
flaws have resulted in several vulnerabilities such as
LTRACK [18], SigUnder [19] and others [20]–[23]. These

16

TABLE VIII
IMPACT OF 5G VULNERABILITIES V5-V7 ON CPE ROUTER TARGETS.

✓- CPE PERFORMS ACTION; ✗- CPE DOES NOT PERFORM ACTION; "- CPE POORLY PERFORMS ACTION.

CPE Target Vulnerabilities Impact (V5-V7)
Internet Connection? Access to Conf. Webpage? Recovers Connection? Requires User Intervention?

FT980-WW V5,V6: ✗ | V7: " V5,V6: ✗ | V7: ✓ V5,V6: ✓ | V7: ✗ V5,V6: N.A | V7: Reboot
Raspbery Pi 3B+
& OpenWrt 22.03.4

V5,V6: ✗ | V7: " V5,V6: ✓| V7: ✓ V5,V6: " | V7: ✗ V5-V7: Reboot

TABLE IX
COMPARISON BETWEEN 5GHOUL AND OTHER RELATED APPROACHES.

●: FULLY CONSIDERED, ❍: NOT CONSIDERED, ◗: PARTIALLY CONSIDERED.
FOR THE LAST COLUMN, ❍ CAPTURES THE ABSENCE OF COTS TARGETS.

5G-NR Support Data Link Support Stateful Basestation / UE OTA Exploitation Target Support

Berserker [4] ◗ ❍ ❍ ● / ● ◗ ❍

DoLTEst [6] ◗ ❍ ● ❍ / ● ● ●

LTEFuzz [5] ◗ ❍ ◗ ● / ● ● ●

5Greplay [2] ● ❍ ● ● / ● ◗ ❍

FIRMWIRE [7] ◗ ❍ ❍ ❍ / ● ● ◗

BASESPEC [8] ◗ ❍ ❍ ❍ / ● ❍ ◗

BaseSAFE [9] ❍ ❍ ❍ ❍ / ● ❍ ◗

[3] ● ● ● ● / ❍ ● ❍

5Ghoul ● ● ● ❍ / ● ● ●

attacks may allow unauthorized remote access or launch
remote code execution. 5GHOUL approach is orthogonal
to these efforts. Specifically, these prior works involve ex-
tensive manual effort (e.g., reverse engineering and code
inspection) to uncover specific, yet critical attack vector. In
contrast, 5GHOUL finds security issues directly in the 5G
edge devices by learning the protocol states automatically.
Additionally, the attack discovery within 5GHOUL is sup-
ported by our novel over-the-air fuzzing strategy and the
subsequent generation of exploits.

Cellular Baseband Fuzzing: Despite advancements in cel-
lullar baseband fuzzing in the last few years [2], [4], [6]–[9],
several challenges persist in terms of making such fuzzing
general, comprehensive (in terms of supporting all network
layers) and realistic to target arbitrary commercial hard-
ware. Table IX compares 5GHOUL approach with respect
to some recent approaches. Majority of the works target
LTE protocol implementation, but mentions the potential
applicability of these works for 5G implementation (ex-
emplified by the ◗ in Table IX). Specifically, LTEFuzz [5]
demands commercial logs for the creation of fuzzing test
cases and requires additional effort for test case creation on
5G use cases. Commercial logs are unlikely to be available
for data link layer frames. In contrast, 5GHOUL approach is
much simpler and works completely at the user end without
requiring access to commercial logs. Moreover, 5GHOUL

is the first fuzzing approach to fully control all packets
down to the data link layer for commercial UE targets.
Even though our prior work [3] achieved the capability
of controlling data link frames, it was only achieved for
software emulation. Indeed, in our evaluation, we show
that controlling data link frames are crucial for finding the
vulnerabilities V4, V5 (high severity) and V10. Thus, all
other approaches except 5GHOUL, as shown in Table IX,
will fail to discover these vulnerabilities.

Emulation-based Analysis: Approaches based on reverse

engineering [8] and/or emulation [7], [9] are promising
direction for efficient static and dynamic analysis of base-
band implementations. However, such approaches involve
manual effort to extend support for new or additional
baseband architecture exemplified by the ◗ in Table IX.
Not only such effort demands reverse engineering (if at all
possible), but also requires effort in replicating the crash
over-the-air [7]. In contrast, 5GHOUL does not require any
additional manual effort to support arbitrary baseband ar-
chitectures for 5G. Moreover, the 5GHOUL fuzzing discovers
crashes directly on the device implementation. As a result,
the crash reproduction is also automated and generic as
discussed in Section III-C. Moreover, emulation may not
exhibit the exact timing behavior found on the edge devices,
as emulation typically involves approximation of modem
hardware. In contrast, 5GHOUL does not suffer from such
approximation as it runs all tests and exploits in situ.

Over-the-air Exploitation and Stateful Fuzzing: In contrast
to 5GHOUL, several prior works [8], [9] do not support
exploitation over-the-air, whereas such support is unclear
for 5Greplay [2] and Berserker [4] from the description.
Moreover, even though some prior works [6], [10] support
commercial UE targets and over-the-air exploitation, they
require extensive manual effort to create the test cases. Ad-
ditionally, DoLTEst [6] does not explicitly target 5G. Finally,
only a few prior works consider the LTE/5G protocol states
systematically to generate valid packet sequences [2], [6].
In contrast, 5GHOUL automatically constructs the protocol
state machine to guide the fuzzing process and manipulate
the 5G packet sequences over-the-air.

Model-based Approaches: Alternative approaches such as
5GReasoner [1] aims to discover the vulnerabilities in 5G
protocol by modeling the protocol behavior and using
verification tools. Such an approach does not target vul-
nerabilities in real implementation of 5G stack (e.g., 5G
UE). Moreover, this work requires the protocol state mod-
eling manually. In contrast, 5GHOUL targets vulnerabilities
on commercial edge devices. This is accomplished via a
stateful 5GHOUL fuzzing, where even the protocol states are
automatically generated from live communication traces.

Conventional Greybox Fuzzing: Most greybox fuzzers in-
strument code to optimize code coverage. Such is not
possible for commercial and closed wireless stacks. More-
over, classic greybox fuzzers aim to generate a single input
leading to crashes. For wireless protocols, often a sequence
of packets with strict timing constraints triggers crashes.
Even though stateful greybox fuzzing has been developed
in recent years [24], they are not applicable to fuzz closed

17

wireless stacks due to the required instrumentation. More-
over, such work demands access to the protocol source code
variables to construct the state machine. Such is imprac-
tical for cellular fuzzing, especially due to unavailability of
proprietary wireless protocol implementation. In contrast
to the aforementioned works, 5GHOUL is fully capable to
test arbitrary 5G stacks without requiring any access to the
source code or emulation effort.

Notably, 5GHOULis the first fuzzer that targets all 5G NR
protocols down to the MAC. Moreover, it supports fuzzing
arbitrary COTS over-the-air and without inspection to their
firmware. The approach taken by 5GHOUL is shown to be
practical via the exposure of new implementation vulnera-
bilities across major vendors.

IX. CONCLUSION

In this paper, we propose 5GHOUL, a framework to auto-
matically discover and replicate security vulnerabilities on
arbitrary 5G UE devices. Compared to prior works, 5GHOUL

brings some concrete advantages: (i) 5GHOUL is the first
approach to have full control on all downlink packets
down to the data link layer and (ii) 5GHOUL approach can
be employed out-of-the-box for any COTS 5G UEs. This
opens up significant opportunities to automatically and
comprehensively test all 5G layer 2 and layer 3 protocol
implementations at scale. We have demonstrated that our
approach is practical: specifically, 5GHOUL discovered ten
previously unknown vulnerabilities on COTS UEs that use
cellular modems from major vendors. Moreover, 5GHOUL

shows extensibility beyond the discovery of crashes and
hangs: it can faciliate discovery of existing as well as new
downgrade attacks. For reproduction and advance research
activities in 5G cellular fuzzing, 5GHOUL source code and
exploits are available at the following URL:

https://github.com/asset-group/5ghoul-5g-nr-attacks

ACKNOWLEDGMENT

This research is partially supported by MOE Tier 2 grant
(Award number MOE-T2EP20122-0015), National Research
Foundation, Singapore and Infocomm Media Development
Authority under its Future Communications Research & De-
velopment Program (Award number FCP-SUTD-RG-2022-
017) and National Research Foundation, Singapore, under
its National Satellite of Excellence Programme “Design
Science and Technology for Secure Critical Infrastructure:
Phase II” (Award No: NRF-NCR25-NSOE05-0001). Any opin-
ions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not reflect the views of the respective funding agencies.

REFERENCES

[1] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5GReasoner: A Property-Directed Security and Privacy Analysis
Framework for 5G Cellular Network Protocol,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, Nov. 2019, pp. 669–684.

[2] Z. Salazar, H. N. Nguyen, W. Mallouli, A. R. Cavalli, and E. M.
de Oca, “5Greplay: A 5G Network Traffic Fuzzer – Application to
Attack Injection,” in The 16th International Conference on Availability,
Reliability and Security, Aug. 2021, pp. 1–8.

[3] M. E. Garbelini, Z. Shang, S. Chattopadhyay, S. Sun, and E. Kur-
niawan, “Towards Automated Fuzzing of 4G/5G Protocol Imple-
mentations Over the Air,” in GLOBECOM 2022 - 2022 IEEE Global
Communications Conference. Rio de Janeiro, Brazil: IEEE, Dec. 2022,
pp. 86–92.

[4] S. Potnuru and P. K. Nakarmi, “Berserker: ASN.1-based Fuzzing of
Radio Resource Control Protocol for 4G and 5G,” in 2021 17th Inter-
national Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), Oct. 2021, pp. 295–300.

[5] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the Untouchables:
Dynamic Security Analysis of the LTE Control Plane,” in 2019 IEEE
Symposium on Security and Privacy (SP), May 2019, pp. 1153–1168.

[6] C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “DoLTEst:
In-depth Downlink Negative Testing Framework for LTE Devices,” in
USENIX Security Symposium, 2022.

[7] G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park,
T. Scharnowski, T. Tucker, P. Traynor, and K. Butler, “FirmWire:
Transparent Dynamic Analysis for Cellular Baseband Firmware,” in
Proceedings 2022 Network and Distributed System Security Sympo-
sium. San Diego, CA, USA: Internet Society, 2022.

[8] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “BaseSpec: Comparative
Analysis of Baseband Software and Cellular Specifications for L3 Pro-
tocols,” in Proceedings 2021 Network and Distributed System Security
Symposium. Virtual: Internet Society, 2021.

[9] D. Maier, L. Seidel, and S. Park, “BaseSAFE: Baseband SAnitized
Fuzzing through Emulation,” in Proceedings of the 13th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks, Jul.
2020, pp. 122–132.

[10] E. Bitsikas, S. Khandker, A. Salous, A. Ranganathan, R. Piqueras Jover,
and C. Pöpper, “Ue security reloaded: Developing a 5g standalone
user-side security testing framework,” in Proceedings of the 16th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, ser. WiSec ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 121–132. [Online]. Available:
https://doi.org/10.1145/3558482.3590194

[11] M. Kotuliak, S. Erni, P. Leu, M. Röschlin, and S. Čapkun, “{LTrack}:
Stealthy Tracking of Mobile Phones in {LTE},” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1291–1306.

[12] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei, “5G
New Radio: Waveform, Frame Structure, Multiple Access, and Initial
Access,” IEEE communications magazine, vol. 55, no. 6, pp. 64–71,
2017.

[13] S. Potnuru, “Fuzzing Radio Resource Control Messages in 5G and LTE
Systems: To Test Telecommunication Systems with ASN. 1 Grammar
Rules Based Adaptive Fuzzer,” 2021.

[14] D. Klischies, M. Schloegel, T. Scharnowski, M. Bogodukhov,
D. Rupprecht, and V. Moonsamy, “Instructions unclear: Undefined
behaviour in cellular network specifications,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 3475–3492. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity23/presentation/klischies

[15] M. E. Garbelini, C. Wang, and S. Chattopadhyay, “Greyhound: Di-
rected Greybox Wi-Fi Fuzzing,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 2, pp. 817–834, Mar. 2022.

[16] I. Karim, F. Cicala, S. R. Hussain, O. Chowdhury, and E. Bertino,
“Opening Pandora’s Box through ATFuzzer: Dynamic Analysis of AT
Interface for Android Smartphones,” in Proceedings of the 35th Annual
Computer Security Applications Conference, ser. ACSAC ’19. New York,
NY, USA: Association for Computing Machinery, Dec. 2019, pp. 529–
543.

[17] “Vodafone Unveils Prototype 5G Network Built on a Raspberry Pi
Computer.”

[18] M. Kotuliak, S. Erni, P. Leu, M. Röschlin, and S. Čapkun, “{\vphan-
tom}LTrack\vphantom{}: Stealthy Tracking of Mobile Phones in
{\vphantom}LTE\vphantom{},” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 1291–1306.

[19] N. Ludant and G. Noubir, “SigUnder: A stealthy 5G low power attack
and defenses,” in Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks. Abu Dhabi United
Arab Emirates: ACM, Jun. 2021, pp. 250–260.

[20] D. Fraunholz, R. Schörghofer-Vrinssen, H. König, and R. Zahoransky,
“Show Me Your Attach Request and I’ll Tell You Who You Are: Practical
Fingerprinting Attacks in 4G and 5G Mobile Networks,” in 2022 IEEE

https://github.com/asset-group/5ghoul-5g-nr-attacks
https://doi.org/10.1145/3558482.3590194
https://www.usenix.org/conference/usenixsecurity23/presentation/klischies
https://www.usenix.org/conference/usenixsecurity23/presentation/klischies

18

Conference on Dependable and Secure Computing (DSC), Jun. 2022,
pp. 1–8.

[21] E. Bitsikas and C. Pöpper, “Don’t hand it Over: Vulnerabilities in
the Handover Procedure of Cellular Telecommunications,” in Annual
Computer Security Applications Conference, ser. ACSAC ’21. New
York, NY, USA: Association for Computing Machinery, Dec. 2021, pp.
900–915.

[22] S. Bae, M. Son, D. Kim, C. Park, J. Lee, S. Son, and Y. Kim, “Watching
the Watchers: Practical Video Identification Attack in {LTE} Networks,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1307–1324.

[23] B. Karakoc, N. Fürste, D. Rupprecht, and K. Kohls, “Never Let Me
Down Again: Bidding-Down Attacks and Mitigations in 5G and 4G,”
2023.

[24] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
Greybox Fuzzing,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3255–3272.

Matheus E. Garbelini graduated with a PhD from
Singapore University of Technology and Design
(SUTD). His research interests include Wireless
Security, cyber-physical Systems and IoTs and
embedded systems. Matheus is known for the
discovery of a collection of wireless vulnerabilities
such as Sweyntooth, Braktooth and 5Ghoul. For
his discovery of SweynTooth, he was recognized as
an outstanding research contributor by Medtronic
Inc.

Zewen Shang graduated with a Bachelor’s degree
in Computer Science and Cybersecurity (Merit
with Distinction) from the Singapore University
of Technology and Design (SUTD). Currently, he is
pursuing a PhD at SUTD’s ASSET Research Group,
under the supervision of Professor Sudipta Chat-
topadhyay. His research focuses on 5G security,
IoT security, and vulnerability analysis. He was
awarded over 5,000 USD in funding for his work
on high-severity 5G vulnerabilities in MediaTek’s
systems.

Shijie Luo graduated with a Bachelor’s degree in
Computer Science from the Singapore University
of Technology and Design (SUTD). Currently, he is
pursuing a PhD at SUTD’s ASSET Research Group.
His research focuses on 5G security, IoT security,
and vulnerability analysis.

Sudipta Chattopadhyay is an Associate Professor
in the Information Systems Technology and De-
sign pillar, Singapore University of Technology and
Design, Singapore. His general research interests
are in the broad area of cybersecurity, includ-
ing but not limited to safety & security for AI,
wireless technologies and the Internet of Things
(IoTs). Together with his student, he discovered
SweynTooth, BrakTooth and 5Ghoul, families of
Bluetooth and 5G NR vulnerabilities affecting bil-
lions of devices worldwide. His research has been

featured in Channel News Asia, WIRED, PC Magazine and Hacker News,
among others. His discovery has also led to cybersecurity alerts from
government regulatory agencies including the Cyber Security Agency
(Singapore), the Department of Homeland Security (DHS) and the Food
and Drug Administration (FDA). For his discovery of SweynTooth, he was
recognized as an outstanding research contributor by Medtronic Inc. He
is an Associate Editor of ACM Computing Surveys and IEEE Transactions
on Software Engineering.

Sumei Sun is the Executive Director of the
Institute for Infocomm Research (I2R), A*STAR,
Singapore. She is also holding a joint appoint-
ment with the Singapore Institute of Technology,
and an adjunct appointment with the National
University of Singapore, both as a full profes-
sor. Her current research interests are in next-
generation wireless communications, cognitive
communications and networks, industrial internet
of things, communications-computing-control in-
tegrative design, joint radar-communication sys-

tems, and signal intelligence. Sumei has a strong passion in industry-
relevant research and technology creation. She has authored and co-
authored 300 technical papers and received three best paper awards. She
is the inventor/co-inventor of over thirty patented technologies, with most
of them licensed to industries.

Ernest Kurniawan is (Senior Member, IEEE) was
a Post-Doctoral Fellow at the Department of Elec-
trical Engineering, Stanford University, Stanford,
CA, USA, from 2011 to 2013. He is currently a
Principal Scientist with I2R, A*STAR, Singapore.
His research interests include signal processing,
information theory, integrated sensing and com-
munications, and artificial intelligence for wireless
communication.

	Introduction
	Background and Framework Overview
	Background
	Challenges of Fuzzing 5G and Technical Contribution
	Threat Model
	Challenges of Distributing 5G Patches Downstream
	5Ghoul workflow

	Design of 5Ghoul
	5Ghoul Fuzzer Design
	5Ghoul Fuzzer State Mapper
	Mapping Rules Mu
	Completeness of State Machine
	Optimization

	UE Monitoring and Control
	Post Fuzzing Analysis

	Implementation and Evaluation Setup
	Evaluation Results
	RQ1: How effective is 5Ghoul fuzzer in terms of generating error-prone inputs?
	RQ2: How effective is 5Ghoul fuzzer w.r.t fuzzing time?
	RQ3: How do the different design choices contribute to the effectiveness of 5Ghoul fuzzer?
	RQ4 - How efficient is the Post Fuzzing Analysis in replicating crash/hang?
	RQ5 - How does 5Ghoul compare to existing 5G security testing frameworks?
	RQ6 - Can 5Ghoul be extended to find vulnerabilities beyond crash or hangs?

	5G Implementation Vulnerabilities
	Summary of Vulnerabilities

	Vulnerabilities Impact
	Impact on Mobile Devices
	Impact on specialized 5G use cases

	Related Work
	Conclusion
	References
	Biographies
	Matheus E. Garbelini
	Zewen Shang
	Shijie Luo
	Sudipta Chattopadhyay
	Sumei Sun
	Ernest Kurniawan

