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ASTRAEA: Grammar-based Fairness Testing
Ezekiel Soremekun*, Sakshi Udeshi*, Sudipta Chattopadhyay

Abstract—Software often produces biased outputs. In particular, machine learning (ML) based software is known to produce
erroneous predictions when processing discriminatory inputs. Such unfair program behavior can be caused by societal bias. In the last
few years, Amazon, Microsoft and Google have provided software services that produce unfair outputs, mostly due to societal bias (e.g.
gender or race). In such events, developers are saddled with the task of conducting fairness testing. Fairness testing is challenging;
developers are tasked with generating discriminatory inputs that reveal and explain biases. We propose a grammar-based fairness
testing approach (called ASTRAEA) which leverages context-free grammars to generate discriminatory inputs that reveal fairness
violations in software systems. Using probabilistic grammars, ASTRAEA also provides fault diagnosis by isolating the cause of observed
software bias. ASTRAEA’s diagnoses facilitate the improvement of ML fairness. ASTRAEA was evaluated on 18 software systems that
provide three major natural language processing (NLP) services. In our evaluation, ASTRAEA generated fairness violations at a rate of
about 18%. ASTRAEA generated over 573K discriminatory test cases and found over 102K fairness violations. Furthermore, ASTRAEA

improves software fairness by about 76% via model-retraining, on average.

Index Terms—software fairness, machine learning, natural language processing, software testing, program debugging
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1 INTRODUCTION

IN the last decade, machine learning (ML) systems have
shown disruptive capabilities in several application do-

mains. As a result, the impact of ML systems on our
socio-economic life has seen an increasingly upward tra-
jectory [12], [60], [67]. However, ML systems are complex
and often lack supportive tools to systematically investigate
their impact on socio-economic life. For example, it is now
well known that computer systems may unfairly discrim-
inate certain individuals or groups over others [25], [34].
This may induce uneven allocation of resources and am-
plify the societal bias. Just like other software systems, ML
systems may potentially introduce societal issues, such as
biases based on gender, race or religion. Given the massive
adoption of ML systems in sensitive application domains,
including education and employment, it is crucial that these
systems are validated against their potential biases.

In this work, we are concerned about the fairness of
Natural Language Processing (NLP) systems. We consider
NLP systems due to their wide adoption and due to the
ethical concerns that arise with such systems. Indeed, Hovy
and Spruit [45] have highlighted the societal impact of
NLP systems, especially how such systems affect equal
opportunities for societal groups and individuals. Let us
first illustrate the bias in NLP systems via a simple example.
Consider the scenario depicted in Figure 1 for a sentiment
analysis task. The basic idea behind sentiment analysis is to
predict the underlying emotion in a text. The predicted emo-
tion can be positive, negative or neutral. For both sentences
a and b, the real emotion is clearly negative and indeed,
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a = {The CEO feels enraged} 

b = {The cleaner feels enraged} 🖥Sentiment 
Analysis
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😁

Fig. 1: Fairness violation in sentiment analysis

the sentence a captures negative emotion in our evaluation.
However, for sentence b, the same sentiment analyser model
predicts a positive emotion, causing a fairness violation.

Given an ML model and a set of sensitive parame-
ters (e.g. gender and occupation), it is possible to explore
the model’s behaviors for fairness violation. In this pa-
per, we conceptualize, design and implement ASTRAEA,
a grammar-based methodology to automatically discover
and diagnose fairness violations in a variety of NLP tasks.
ASTRAEA also generates tests that systematically augment
the training data based on the diagnosis results, in order to
improve the model’s software fairness. To the best of our
knowledge, ASTRAEA is the first grammar-based technique to
comprehensively test, diagnose and improve NLP model fairness.

The automated test generation embodied in ASTRAEA is
desirable even in the presence of an independent line of re-
search in data debiasing [19], [85]. This is because ASTRAEA
checks for fairness violations in the resulting NLP model,
which might still exhibit bias despite careful considerations
of data debiasing methods [37]. Moreover, ASTRAEA’s au-
tomated approach of test generation provides flexibilities
in testing NLP models, as compared to hand-made testing
data for checking fairness errors [65], [84]. While hand-
made test datasets are static in nature and are unlikely
to cope with diverse changes in the model requirement
and configuration, the approach embodied in ASTRAEA is
resilient to such changes by automatically generating the
test data for a variety of tasks, fairness requirement (e.g.
group fairness vs individual fairness) and bias (e.g. religion,
gender and race). Moreover, our ASTRAEA approach only
demands slight changes in the grammar (typically per-
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formed in 10-15 minutes) when adapting for a completely
new NLP task. This is substantially more lightweight as
compared to creating hand written datasets from scratch
for a new NLP task. In addition, ASTRAEA approach can
easily be integrated in the software development pipeline
for continuous testing.

While devising a software testing methodology for fair-
ness testing, we face two crucial challenges. Firstly, we need
to formalize the fairness criteria for a set of test sentences in
a fashion amenable to automated software testing. Secondly,
based on the fairness criteria, we need to facilitate the
generation of a large number of discriminatory inputs1. The
key insight ASTRAEA employs is to define metamorphic
relations between multiple test inputs in such a fashion
that all the inputs conform to a given grammar. To the
best of our knowledge, we are unaware of any software testing
framework that is based on such insight. We realize this unique
insight on software testing via a concrete application to
fairness testing. In particular, defining the metamorphic
relations between test inputs help us detect the presence
of fairness violation, whereas the grammar is leveraged to
generate a large number of discriminatory inputs. Moreover,
as test inputs with metamorphic relations conform to the
grammar, the fairness violation can be easily attributed to
specific grammar tokens. This is further leveraged to direct
the fairness testing approach. Moreover, using a grammar-
based framework opens the door for the test generation
process to leverage on any current and future advancement
of grammar-based testing. Although grammars have been
used in the past for functional testing, ASTRAEA is the
first approach to leverage grammars and systematically generate
discriminatory inputs via metamorphic relations.

ASTRAEA is a two-phase approach. Given an ML model
f , the input grammar and sensitive attributes from the
grammar, ASTRAEA first randomly explores the grammar
production rules to generate a large number of input sen-
tences. For any two sentences a and b that only differ in
the sensitive attributes, ASTRAEA highlights an (individual)
fairness violation when f(a) differs from f(b). For instance,
considering the example introduced in Figure 1, sentences
a and b differ only in their sensitive attributes, i.e. the
subjective noun. In the second phase, ASTRAEA analyses the
fairness violations discovered in the first phase and isolates
input features (e.g. the specific occupation or gender) that
are predominantly responsible for fairness violations. In the
second phase, such input features are prioritized in generat-
ing the tests. The goal is to direct the test generation process
and steer the model execution to increase the density of
fairness violations.

ASTRAEA is designed to be a general and extensible
framework for testing and diagnosing fairness violations
in NLP systems. Specifically, the grammars leveraged in
ASTRAEA cover a variety of NLP tasks (i.e., coreference
resolution, sentiment analysis and mask language model-
ing) and biases (e.g. gender, religion and occupation). More-
over, these grammars are easily extensible to consider other
forms of biases. Finally, ASTRAEA can be used to test and
diagnose both individual and group fairness violations. An

1. In this paper, discriminatory inputs refers to input sentences that
induce fairness violations in our subject programs.

appealing feature of ASTRAEA is that its diagnosis not only
helps in highlighting input features responsible for fairness
violation, but the diagnosis results can also be leveraged
to generate new tests and retrain the model, in order to
improve software fairness.

Fairness in NLP systems requires unique formalization,
which distinguishes ASTRAEA from existing works in fair-
ness testing [35], [72]. In contrast to the directed fairness
testing approach embodied in ASTRAEA, existing works on
testing NLP systems either explore prediction errors ran-
domly [63], [73] or they require seed inputs for test genera-
tion [53]. Existing test generation process based on seed in-
puts [53] requires tens of thousands of initial inputs. This not
only entails bias inherent in the seeds, but such a process is
also significantly more resource intensive than constructing
the grammars in ASTRAEA. Moreover, ASTRAEA is the only
approach that provides diagnosis and systematic retraining
of NLP systems to improve their fairness.

The remainder of the paper is organized as follows.
After providing a brief background (Section 2) and overview
(Section 5), we make the following contributions:

1) We introduce grammars for testing fairness of a variety
of NLP tasks (Section 5 and Section 6).

2) We introduce ASTRAEA, an automated framework to
discover and diagnose fairness errors in NLP software
systems (Section 6).

3) We instantiate ASTRAEA for three NLP tasks i.e. coref-
erence resolution (coref), sentiment analysis (SA) and
mask language modeling (MLM) (Section 6).

4) We show the application of ASTRAEA to test and di-
agnose both individual and group fairness violations
(Section 6).

5) We implement ASTRAEA and evaluate it on a total of
18 models for a variety of NLP tasks. Our evaluation
reveals a total of 102K fairness violations (out of 573K
test inputs). Moreover, with the directed approach (i.e.,
the second phase), the fairness error rate discovered by
ASTRAEA is boosted by a factor of 1.6x. Finally, with
the newly generated inputs, ASTRAEA improves the
fairness of a sentiment analysis model by 76%, on
average (Section 7).

6) We compare ASTRAEA with the state-of-the-art NLP
testing approaches i.e. Checklist [63] and MT-NLP [53].
We show that, in terms of generating error inducing
inputs, ASTRAEA outperforms MT-NLP by a factor of
26. Meanwhile, ASTRAEA is 1.03x more effective than
Checklist in terms of revealing fairness errors (Sec-
tion 7).

7) We evaluate the generalisability of our bias mitigation
(via retraining). To this end, we run our retrained
model on a WINOGENDER dataset, where none of the
sentences conform to our grammar and have different
sentence structure as compared to sentences generated
from ASTRAEA grammars. We show that our bias miti-
gation improves the model fairness by 45% for WINO-
GENDER dataset (Section 7).

8) We evaluate the correctness of our input grammar by
examining the validity of the generated input sentences,
in terms of their syntactic and semantic validity. Firstly,
we employ grammarly to evaluate the syntactic va-
lidity of all generated inputs, we show that almost all
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TABLE 1: Sample Test Inputs Generated by ASTRAEA, showing fairness (Fair.) and predictive (Pred.) errors. MLM x(oc) =
Pr (MLM(. . .) = x | oc), A(x) captures the anomaly index of x and τ is a threshold.

NLP
Task

Fairness
Criteria

Sensitive
Attribute

Metamorphic
Oracle

Fair.
Error

Prediction
Outcome

Pred.
ErrorBias Sample Discriminatory Test Cases

Co
reference

Resolution
(CR)

Individual Gender
Subjective
Pronoun

{a/b} = The farmer was passing by.
CR(a) == CR(b) 3

CR(a) ={farmer, He}
CR(b)={farmer, baker}

7
3

{He/She} told the baker that the document
was signed.

Individual Religion Subjective
Noun

{a/b} = The {Christian/Hindu} person
CR(a) == CR(b) 3

CR(a) ={the engineer, his}
CR(b)={the Hindu person, his}

N/Anotified the engineer that his game
was excellent.

Individual Occupation
Objective

Noun
{a/b} = The person asked the {attendant

/mechanic} if he can bake bread.
CR(a) == CR(b) 3

CR(a) ={the person, he}
CR(b)={the mechanic, he}

N/A

Mask
Language
Modeling

(MLM)

Individual Occupation
Objective
Pronoun

{a/b} = The {doctor/nurse} took a plane
to [MASK] hometown.

|MLMhis(a)−MLMhis(b)| ≤ τ∧
|MLMher(a)−MLMher(b)| ≤ τ

3 MLM (a) = {his} (conf = 0.7)
MLM (b) = {her} (conf = 0.69)

N/A

Group Occupation
Objective
Pronoun

a = The {oc} walked to [MASK] home. 3
A(MLMhis(‘receptionist’)) = -3.61
A(MLMher(‘receptionist’)) = 5.66

N/A|A(MLMhis(oc))| ≤ τ ∧
|A(MLMher(oc))| ≤ τ ,
∀ oc ∈ Occupation

Sentiment
Analysis

(SA)

Individual Occupation Subjective {a/b} = The {CEO/cleaner} feels enraged. SA(a) == SA(b) 3
SA(a) = -ve 7

Noun SA(b) = +ve 3

Individual Race Subjective {a/b} = {Tia/Mark} made me feel SA(a) == SA(b) 7
SA(a) = -ve 7

Noun disappointed. SA(b) = -ve 7

Individual Neutral Objective {a/b}= I saw {Tia/Mark} in the market. SA(a) == SA(b) 3
SA(a) = -ve 3

Noun SA(b) = neutral 7

(97.4%) of ASTRAEA’s generated inputs are syntactically
valid (Section 7). We also conduct a user study with
205 participants to evaluate the semantic validity of
ASTRAEA’s generated inputs, especially in comparison
to semantic validity of human-written input sentences.
Our results show that ASTRAEA’s generated input sen-
tences are 81% as semantically valid as human-written
input sentences (Section 7).

After discussing threats to validity (Section 8) and related
work (Section 3), we conclude in Section 9.

2 BACKGROUND

In this section, we illustrate the fairness measures employed
in this work. We also provide background on our natural
language processing (NLP) use cases and NLP testing.

Fairness Measures: In this paper, we focus on two main
fairness measures, individual fairness and group fairness. In
our context, a software satisfies individual fairness if its
output (or prediction) for any two inputs which are similar
with respect to the task at hand are the same. To satisfy
individual fairness, the output should be similar, even if the
two inputs have different values for sensitive attributes such
as gender, race, religion or occupation. Individual fairness is
critical for eliminating societal bias in software [32]. As an
example, a sentiment analysis system (e.g. Google NLP [51])
should classify the sentence below as a negative sentiment,
regardless of the choice of noun in use, i.e. either “CEO" or
“cleaner" (in fact, this input caused a fairness violation in
Google NLP):

{a/b} = The {CEO/cleaner} feels enraged.

On the other hand, a software satisfies group fairness if
subjects from (two) different groups (e.g. texts containing
male vs. female (pro)nouns or African-american vs. Euro-
pean names, etc.) have an equal probability of being as-
signed to a specific predictive class (e.g. positive or negative
sentiment) [74]. Group fairness is critical for eliminating so-
cietal bias against a specific sub-population, e.g. minorities.
For instance, texts containing male and female (pro)nouns
(e.g. {He, him, himself} vs. {She, her, herself}) should have
equal probability of being assigned a positive (or negative)

sentiment, by a sentiment analysis software (e.g. Google
NLP [51]).

Natural Language Processing (NLP): Natural Language
Processing (NLP) has seen numerous advances in the last
decade. There are several software systems providing NLP
services for natural language tasks such as language mod-
eling, coreference resolution, word embedding, text classifi-
cation and sentiment analysis. These include NLP services
provided by Amazon, Google, IBM and Micorosoft [46],
[51], [66], [75]. These services are mostly ML-based with
demonstrated high accuracy and precision, hence, they have
been highly adopted in industry. However, despite the proven
high accuracy of these software services, they often produce bi-
ased outputs. Indeed, such software has produced several
predictions that portray racial and gender-based societal
bias [18], [21]. Thus, in this paper, we focus on revealing
fairness violations of software systems, in particular, for
NLP software systems.

In this work, we focus on three major NLP tasks, namely
coreference resolution, mask language modeling and sentiment
analysis. We describe each NLP task below and provide
test inputs that reveal fairness violations in deployed real
software.

1.) Coreference Resolution (Coref): Coreference resolution
is an NLP task to find all the expressions in a piece of text
that refer to a specific entity [68]. As an example, consider
the following text (cf. row one, column four in Table 1):

{a/b} = The farmer was passing by. {He/She} told
the baker that the document was signed.

For this text, an accurate Coref system should re-
solve that the noun “The farmer" refers to the pronoun
“{He/She}". In this example text, “He" or “She" are the op-
tional pronouns. Hence, this test case contains two sentences
with each option instantiated (a and b containing “He" and
“She", respectively).

In terms of fairness, we posit that the gender of the
pronoun (i.e. “He" or “She") in the text should not influence
the output of the Coref system. This is the predicate for our
metamorphic oracle, i.e. Coref(a) == Coref(b) (cf. Table 1).
Hence, for this text, we consider it an individual fairness viola-
tion, if the Coref system could accurately resolve coreference
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in input a but could not resolve that of input b. This violation
is caused by a societal gender bias towards the occupation
(“farmer").

The above test case (a, b) was generated by ASTRAEA and
triggered a gender-based violation of individual fairness
in the AllenNLP Coref system [36]. Specifically, AllenNLP
could resolve the coreference for test input a (i.e. choosing
“He") but it could not resolve the coreference for test input
b (i.e. choosing “She"). In fact, on test input b, AllenNLP
references “the farmer" and “the baker", instead of “She".2

2.) Masked Language Modeling (MLM): This is a fill-
in-the-blank NLP task, where a software uses the context
surrounding a blank entity (called [MASK]) in a text to
predict the word that fills the blank. The goal of the MLM
system is to predict the word that can replace the missing
entity in a text, in order to complete the sentence [5]. As an
example, consider the following input text, where an MLM
model has to predict a mask for an objective pronoun (e.g.
“his" or “her"):

{a/b} = The {doctor/nurse} took a plane to
[MASK] hometown

Using BERT MLM system [29] for this task, the top sug-
gestion for the masked word is his with a 70.0% and her
with a 17.9% confidence respectively for test input a (i.e.
choosing doctor). Meanwhile, test input b (i.e. choosing
nurse) produces the top suggestion her with a 69.1% and
his with a 18.2% confidence, for the same BERT system [29].

This is an example of a gender bias, in particular, an
individual fairness violation induced by societal occupational
bias.3 Indeed, in our evaluation, ASTRAEA generated the
above sentence and reveals that the BERT MLM system
displays this occupational gender bias.4

Note that depending on the use case and the adopted
societal bias policy, the expected outcomes for this example
may differ. For instance, in a use case where the bias policy
is based on facts or real-world statistics, one would expect
that the MLM outcome represents the real-world gender
distribution of nurses and doctors. Based on the statistics
of the department of labor [58], the outcome based on real-
world gender distribution should be his with a 55% and her
with a 44% confidence for doctors, since the proportion of
women who are doctors (aka physicians) is actually about
44% [58]. Meanwhile, in a use case where the bias policy is
to maintain equality of gender representation, the outcome
based on equal gender distribution should be equal, with his
with a 50% and her with a 50% confidence for doctors. Al-
though the expected outcome for both use cases are almost
similar, they are in fact very different from the outcome of
BERT MLM [29].

However, note that the goal of this paper is not to define
the correct/expected outcome, the intended use case or

2. We encourage the readers to execute the test cases for AllenNLP
Coref. here: https://demo.allennlp.org/coreference-resolution/
coreference-resolution (erroneous as of 27th January, 2021 AOE)

3. In this example, we assume expected equal outcomes, or any
threshold difference less than or equal to 50% between similar out-
comes.

4. We encourage the readers to execute this test case for BERT MLM
here: https://tinyurl.com/gender-bias-male and https://tinyurl.com/
gender-bias-female (erroneous as of 27th January, 2021 AOE)

the bias policy. Our goal is to allow users the flexibility
to test for fairness violations regardless of their adopted
societal policy. Clearly, in this example, the difference in
BERT outcomes is clearly higher than the expected outcomes
in both use cases, the returned BERT outcome does not
represent either the equal distribution or the distribution
of doctors seen in the US Bureau of Labor Statistics [58].
Instead, it clearly reinforces or amplifies the societal bias
about the occupation.

3.) Sentiment Analysis (SA): This is an NLP task which
aims to identify, extract and quantify the emotion associated
with a text [56]. The goal of SA systems is to predict the
sentiment in a text, i.e. positive, negative, or neutral. As
an example, consider the following sentence with a clear
negative sentiment:

{a/b} = The {CEO/cleaner} feels enraged.

In terms of fairness, we consider it a fairness violation, if
for instance, the test input a (i.e. with CEO) is predicted as
a negative sentiment, meanwhile, the test input b (i.e. with
cleaner) is predicted as a positive sentiment.

In our evaluation, ASTRAEA generated the above test
input, which triggered an individual fairness violation in the
Google NLP service [51]. Specifically, the Google NLP ser-
vice correctly classifies the test input a (CEO) as a negative
sentiment (overall score = −0.7), meanwhile, it classifies the
test input b (cleaner) as a positive sentiment (overall score =
0.6). This is an example of a societal occupational bias found
in a real world deployed NLP service (Google NLP).5

NLP Testing: A few approaches have been proposed for
testing NLP systems. These includes testing techniques such
as OGMA [73], CHECKLIST [63] and GYC [54]. In particular,
OGMA proposes a grammar-based approach to test the
accuracy of NLP systems [73], while CHECKLIST proposes
a schema-based approach to generate inputs that improves
the performance of NLP systems [63]. GYC [54] leverages a
pre-trained transformer (specifically GPT-2 [59]) to generate
counterfactual statements to a particular input statement
and directs the generation towards a particular condition.

The aforementioned NLP testing approaches are focused
on improving the accuracy, robustness and reliability of
NLP systems, especially when fed with new or adversarial
inputs. However, none of these approaches comprehen-
sively define and perform fairness testing of NLP software
services. To the best of our knowledge, ASTRAEA is the first
application of input grammars to expose, diagnose and improve
software fairness. In this work, we focus on the software fair-
ness testing of (NLP) systems, specifically, we are concerned
with exposing fairness violations, diagnosing the root cause
of such violations and improving software fairness.

Bias Analysis of NLP Systems: Blodgett et al. [16] provides
a comprehensive survey on bias in NLP. The authors sur-
veyed 146 papers that analyse bias in NLP systems, they
identified the common pitfalls arising from bias analysis
of NLP systems, and propose a set of recommendations
to avoid these pitfalls. In particular, the authors found

5. We encourage the readers to execute these sample tests for
Google NLP’s Sentiment Analysis here: https://cloud.google.com/
natural-language/ (erroneous as of 27th January, 2021 AOE)

https://demo.allennlp.org/coreference-resolution/coreference-resolution
https://demo.allennlp.org/coreference-resolution/coreference-resolution
https://tinyurl.com/gender-bias-male
https://tinyurl.com/gender-bias-female
https://tinyurl.com/gender-bias-female
https://cloud.google.com/natural-language/
https://cloud.google.com/natural-language/
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that most papers on NLP bias measurement or mitiga-
tion propose approaches that poorly match the intended
or motivating societal bias. The paper also recommends
that researchers should conduct bias evaluation in practical
settings, with actual language technology in practice and
the lived experiences of people [16]. In line with these
recommendations, ASTRAEA’s fairness analysis provides a
specification-based approach that allows for the flexibility
of defining the intended bias to be tested in a manner that
ensures that revealed fairness violations match the evalu-
ated societal bias. We demonstrate this by testing several
biases (e.g., race, gender or religion) and fairness criteria (i.e.,
individual or group fairness). Furthermore, our evaluation
of ASTRAEA employs real-world deployed NLP systems,
as well as an evaluation of generated inputs by human
participants to ensure that found fairness violations are
representative of actual language use in practice.

Several papers have studied bias mitigation in NLP for
a specific task or societal bias. Field et al. [33] and Sun et
al. [69] provide critical surveys of gender and racial bias
mitigation for NLP systems, respectively. Field et al. [33] sur-
veyed 79 papers analyzing race-related bias in NLP systems,
in order to understand how racial biases manifest at all stages
of NLP model pipelines. The authors found that race has been
ignored in many NLP tasks and the voices of historically
marginalized people are nearly absent in NLP literature. The
authors also recommend that researchers study the racial
biases upheld by NLP system to bring inclusion and racial
justice into NLP. Meanwhile, Sun et al. [69] surveyed papers
studying gender bias detection and mitigation in NLP systems.
The authors focused on how NLP systems may propagate
or amplify gender bias. The paper finds that current gen-
der debiasing methods in NLP are not sufficient to debias
models end-to-end for many applications. The authors also
found that most gender debiasing methods are task-specific,
and have only been empirically verified in limited applica-
tions [80], [83]. Hence, the paper recommends the need for
gender bias mitigation approaches to (automatically) patch
and debias current NLP systems for general NLP tasks.
Addressing some of the issues raised in these surveys, in
this paper, we propose a general, task-agnostic and bias-
agnostic fairness testing approach for NLP systems. Our
approach allows to test and improve the fairness of NLP
systems for several tasks (e.g., MLM, Coref and Sentiment
analysis), and various societal biases (including gender and
racial biases). Moreover, the approach is easily extensible to
other NLP related tasks and biases.

Bias-related Harms: Bias in machine learning software gen-
erally causes two types of tangible harms: allocative harms
and representational harms [25]. On one hand, an allocative
harm is when a system withholds an opportunity or a
resource from certain groups (e.g., women) in comparison to
other groups (e.g., men). This harm is often immediate and
generally easy to quantify. It has been demonstrated that
ML applications such as credit rating systems [72] and risk
recommendation systems [6] may cause allocative harms.
For instance, consider the COMPAS risk recommendation
system for recidivism. This system exhibits an allocative
harm when it withholds resources (i.e., social justice and
freedom) for certain groups (e.g., women and black mi-

norities), even though those groups have similar (or fewer)
number of crimes or even less severe crimes than other
groups (e.g., men and white majorities).

On the other hand, representative harms occur when sys-
tems reinforce the subordination of some groups along the
lines of identity. These harms are long-term and harder
to quantify. Our work (ASTRAEA) aims to automate the
discovery of such harms of representation in NLP software.
ASTRAEA allows practitioners to discover fairness viola-
tions that reinforce certain stereotypes (e.g., occupational
stereotypes). As an example, we found such representa-
tional harms in our evaluation of MLM models. For MLM
models, ASTRAEA revealed that a “doctor” is more likely
to be predicted as “male”, while “nurses” are likely to be
predicted as “female” (see RQ2 in Section 7). Thus these
models may reinforce the societal stereotypes about such
occupations. Evidently, ASTRAEA is applicable for the auto-
matic discovery of representational harms in NLP systems.

3 RELATED WORK

Fair classifiers: Recent approaches on designing fair clas-
sifiers have focused on pre-processing the training data
to limit the effect of societal bias in the data (e.g. due
to non-uniform distribution of sub-populations) [79], [87].
Other approaches propose that classifiers are trained to be
independent of sensitive attributes and dependencies in
the training data [20], [48], [78]. Nevertheless, recent work
has shown that such classifiers are still prone to fairness
violations [35]. Thus, it is vital to rigorously test classifiers
for fairness. This is in line with the goal of ASTRAEA that
uncovers fairness violations in software.
Fairness in NLP: Several researchers have studied the state-
of-the-art approaches for bias analysis and mitigation of
NLP systems [33], [69], [70]. Blodgett et al. [70] highlight
the common pitfalls arising from bias analysis of NLP sys-
tems, and propose a set of recommendations to avoid these
pitfalls. The authors emphasize the need to conduct bias
evaluation of NLP systems in practical settings with actual
language technology in practice and the lived experiences
of people. Meanwhile, Field et al. [33] and Sun et al. [69]
study gender and racial bias mitigation for NLP systems. The
authors highlight the need to (automatically) patch and de-
bias current NLP systems for general NLP tasks. This paper
addresses some of these concerns by proposing a general,
task-agnostic and bias-agnostic fairness testing approach for
NLP systems called ASTRAEA. Our approach also allows
to test for several biases (e.g., race, gender or religion) and
fairness criteria (i.e., individual or group fairness) on real-
world deployed NLP systems.

In comparison to ASTRAEA, the closest related work on
bias mitigation of NLP systems address bias by employing
debiasing word embedding, either using a post-processing
debiasing method [19] or adversarial learning [85]. Despite
best efforts in data debiasing, these models are still prone
to fairness violations [37]. In contrast, researchers have also
demonstrated that the found biases in word embedding by
Gonen and Goldberg [37] are due to the wrong assumptions
about the employed metric and the operationalization of
bias in practice. In particular, their evaluation relied on
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employing a metric that assumes that English language
lacks grammatical gender, when in reality it does. For in-
stance, researchers have shown that occupation words in
English language automatically carry gender information
(e.g., “policeman” versus “policewoman”) [86], [88]. Follow-
ing Gonen and Goldberg [37], there has been significant
work to improve existing word debiasing techniques [19].
Notably, Dev and Phillips [28] proposed a natural language
inference-driven method for debiasing word embeddings.
The authors further demonstrate that this approach effec-
tively mitigates the effect of specific biases in word em-
bedding [27]. While these works are focused on alleviating
the biases at the word embedding level, our approach com-
plements these works. In particular, it considers the NLP
model as a black box and automatically discovers biases in
the model. Indeed, a parallel line of work points out the
need to employ various metrics to quantify and measure
bias in NLP systems [15]. This further emphasizes the need
for a tool like ASTRAEA to support the accurate detection
and measurement of fairness violations through systematic
testing. Some researchers have also designed hand-made
testing data to reveal gender-based fairness violations in
NLP systems [65], [84]. In contrast, ASTRAEA is a general
automated testing approach to reveal and diagnose fairness
violations in NLP software.

Fairness Testing: Researchers have proposed several tech-
niques to test and mitigate fairness in ML systems [3],
[14], [22], [35], [44], [71], [72], [82]. Themis [35] proposes
a schema-based causal testing method to tackle algorith-
mic fairness. Aequitas [72] presents a (probabilistic) search-
based approach for software fairness testing. Aggarwal et.
al [3] have also proposed a black-box fairness testing ap-
proach, and it improves over the performance of Aequitas.
DeepInspect [71] proposed a property-based testing method
that reveals bias and confusion in DNN-based image classi-
fiers [71].

More recently, Biswas and Rajan [14] proposed a causal
method to reason about the fairness impact of data prepro-
cessing stages in the ML pipeline. Chakraborty et al. [22]
proposed a mutation-based algorithm (called Fair-SMOTE)
for removing biased labels and re-balancing internal dis-
tributions of sensitive attributes in ML systems, such that
examples are equal in both positive and negative classes.
Besides, Hort et al. [44] proposed a model behaviour muta-
tion technique to benchmark ML bias mitigation methods.
Recent work also focuses on building unified platforms for
mitigating algorithmic bias [23], [47] and to understand at
which stage of the machine learning development cycle the
bias mitigation techniques should be applied [13].

The aforementioned approaches are mostly focused on
the fairness testing of systems such as credit rating, re-
cidivism, fraud, default (more generally, vector encoded
datasets) or computer vision. In contrast to these ap-
proaches, ASTRAEA formalizes and tests for individual and
group fairness of NLP software systems. MT-NLP [53] and
ADF [82] are recent mutation-based fairness testing ap-
proaches for NLP software. Zhang et. al [82] proposed a
gradient-based approach (called ADF) for generating dis-
criminatory samples of deep learning models. However,
ADF requires white-box access. MT-NLP [53] is a recent

mutation-based fairness testing approach for the sentiment
analysis NLP task, it generates discriminatory inputs by
mutating a set of seed inputs. In contrast to this work,
ASTRAEA does not require access to seed inputs and it
is a general automated testing framework for a variety of
NLP tasks, as shown via instantiating ASTRAEA for Coref,
sentiment analysis and MLM. Moreover, ASTRAEA provides
useful diagnosis that highlights the input features attributed
to fairness errors. It further uses such diagnosis to drive
test generation for model re-training, in order to improve
software fairness. Finally, we empirically show that AS-
TRAEA outperforms the state-of-the-art (i.e., MT-NLP [53])
by orders of magnitude.

Neural Language Models: Neural language models have
been applied to test NLP systems by generating realis-
tic statements used for robustness checks [54]. These ap-
proaches apply language models such as GPT-2 [59], to
learn to generate input sentences for robustness testing,
not fairness testing. Besides, applying generative models
(e.g. GPT-2) for fairness testing is more computationally
expensive and difficult than writing input grammars for AS-
TRAEA, which takes about 30 minutes. Training a generative
model for an NLP task requires the availability of a massive
training dataset to train or fine-tune a pre-trained generative
model. It is also expensive to control the test generation
process and extend generative models for new tasks. For
instance, testing for a new sensitive attribute (e.g. sexuality)
or a new input token requires gathering new dataset and
retraining or fine-tuning the trained model to generate new
test inputs. Meanwhile, for ASTRAEA, this only requires
adding or modifying a grammar production rule.

Explainable AI: Our diagnosis aims to identify tokens
in a test-suite that cause fairness errors. In contrast, an
explanation-based framework (such as LIME [61]) solves
an orthogonal problem: to reason why a model generates
a specific output for an input?

Specifically, LIME [61] explains the predictions of a clas-
sifier by trying to understand the behaviour of the predic-
tion around a given classifier locally using linear classifiers.
Meanwhile, Anchor [62] explains classifier predictions via
if-then rules called anchors. SHAP [52] employs a game the-
oretic approach to explain the output of a model by connect-
ing optimal credit allocations with local explanations. This
is done using Shapely values from game theory. Another
recent work [55] seeks to explain models using contrastive
explanations based on structural causal models [38].

Data augmentation based Mitigations: Recent works [72],
[73] mitigate errors in machine learning models by aug-
menting the training set with the discovered error-inducing
inputs. In contrast to these techniques, ASTRAEA generates
a new set of inputs based on the top five and top ten
error inducing tokens in a grammar. These newly generated
inputs are then added to the training data and the model
is retrained. We also demonstrate the generalisability of
this bias mitigation approach by showing that these re-
trained models exhibit a reduction in fairness violations on
previously unseen data. This unseen data is based on the
WINOGENDER [65] dataset. To the best of our knowledge,
ASTRAEA is the first technique to investigate the generalis-
ability of its bias mitigation for fairness violations in natural
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language processing models.

4 DEFINITION OF TERMS

In this section, we will introduce the terms that are used
throughout the rest of the paper, and the context in which
they are applied.

Bias: In this work, we specifically talk about bias in the
sense of algorithmic bias. Algorithmic bias refers to when
a computer systems systematically and unfairly discriminate
certain individuals or groups of individuals in favour of
others [34]. Bias is a form of discrimination by a computer
system that produces one of two types of harms, namely
harms of allocation and harms of representation [25]. This
paper focuses on uncovering the behaviours of computer
systems (more specifically, NLP systems) that cause such
harms.

Software Fairness: We explore fairness as a software property,
especially in terms of software quality [35]. We are particu-
larly interested in the quality control of fairness properties
in ML-based systems (i.e., NLP software). The aim is to
examine how to measure and prevent bias in software via the lens
of software testing and debugging. In other words, we quantify
fairness as the number of fairness violations found in the
input space. For a given input, a fairness violation occurs
when a software under test does not satisfy a given fairness
criteria. We discuss the fairness criteria employed in this
paper below.

Fairness Criteria: In this work, we employ two fairness
criteria in this work, namely individual fairness and group
fairness. In the following, we define each fairness criterion.

Individual fairness: Intuitively, individual fairness means we
should treat similar individuals similarly. In the context of
machine learning, the individuals should be similar for the
purposes of the respective task and the outcomes should
have similar distributions. Formally, we can define individ-
ual fairness as a violation of the following condition:∣∣f(a)− f(a′)∣∣ ≤ τ (1)

Here, a and a′ are similar individuals (inputs), f is a
model and τ is some threshold which is chosen using the
inputs and the model as context. For a more comprehensive
treatment of individual fairness, we refer the reader to the
earlier work [32].

Group fairness: In group fairness, the focus is that two groups
should be treated similarly. Specifically, a system satisfies
group fairness if subjects in the protected and unprotected
groups have equal probability of being assigned a particular
outcome [74]. Formally, group fairness is maintained if the
following condition is true:

Pr(f(a) = +|A = a) = Pr(f(b) = +|A = b) ∀a, b ∈ A (2)

Given equivalent inputs from different groups a and b, the
aforementioned definition checks for the equivalence of the
outputs from model f . Here, the choice of a group is de-
termined by random variable A and the positive prediction
rate is denoted by +.

Fairness Diagnosis: In this paper, our diagnosis of fair-
ness violations is based on analyzing the input space of
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Fig. 2: Workflow of ASTRAEA’s Fairness Test Generation

the ML task at hand. Specifically, ASTRAEA diagnoses the
root cause of fairness violations by identifying the input
tokens (e.g., terminals) that correlate with the violations
exposed by ASTRAEA. ASTRAEA analyzes and identifies
the input tokens that are anomalous, for instance, because
they are prevalent among exposed fairness violations. This
implies that ASTRAEA can only diagnose or identify the root
cause of a violation if it is due to the input space, since
our diagnosis is grammar-based. Other causes of fairness
violation beyond the input space (such as limitations of
the dataset, model architecture, training policy or external
software interactions [70], [81]) can not be diagnosed by
ASTRAEA. If the found violation is due to any of these
aforementioned reasons beyond error-inducing input tokens
in the input space, ASTRAEA would not be able to identify
or diagnose the root cause of such violations. However,
our experimental results demonstrate that the root cause of
fairness violations are in the input space for our tasks and
subjects, as demonstrated by the improvement in software
fairness achieved by ASTRAEA via re-training using our
diagnosed error-inducing input tokens (see RQ3 and RQ4).

Bias Mitigation: Researchers have proposed several bias
mitigation approaches, Blodgett et al. [70] and Hort et
al. [44] provide comprehensive description of the state-of-
the-art approaches to mitigate bias in NLP and software
engineering, respectively. Some of these approaches either
(pre-)process the training data to reduce bias in the data,
mitigate bias during training by directly optimizing algo-
rithms, or change the prediction outcomes of a model to
mitigate bias after the model has been trained [44], [70].
In comparison to these mitigation approaches, ASTRAEA
mitigates fairness violations and improves software fairness
via the input space. Specifically, by augmenting the train-
ing dataset with sentences containing the topmost error-
inducing input tokens and re-training the model with the
augmented training dataset. Thus, ASTRAEA’s mitigation
is at the input space and dataset level, and it is a pre-
processing mitigation approach achieved via data augmen-
tation and model re-training.

5 OVERVIEW

Our approach (ASTRAEA) follows the workflow outlined in
Figure 2; highlighting the major components (and steps) of
ASTRAEA. In the following, we explain each component and
(sub)steps, showing how ASTRAEA generates sample test
cases with examples (see Table 1).
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Coref Unambiguous → Struct1 | Struct2 | · · ·

Struct1 →
Subject Aux-Verb. Subject

((Main-Verb1 Object Conjunction1 Action1) |
(Main-Verb2 Object Conjunction2 Action2)) | · · ·

Subject → Noun | Subj-Pronoun
Object → Noun | Obj-Pronoun

Noun → Occupation | Religion | Name | · · ·
Occupation → ‘‘The farmer’’ | ‘‘The CEO’’ | · · ·

Religion → ‘‘The Jewish person’’ | ‘‘The Hindu person’’ | · · ·
Name → ‘‘Mark’’ | ‘‘Jerry’’ | · · ·

Subj-Pronoun → ‘‘He’’ | ‘‘She’’ | · · ·
Obj-Pronoun → ‘‘him’’ | ‘‘her’’ | · · ·

Aux-Verb → ‘‘was passing by’’ | ‘‘was sitting’’ | · · ·
Main-Verb1 → ‘‘told’’ | · · ·
Main-Verb2 → ‘‘asked’’ | · · ·

Action1 → ‘‘the document was signed’’ | · · ·
Action2 → ‘‘painting’’ | ‘‘swimming’’ | · · ·

Conjunction1 → ‘‘that’’ | · · ·
Conjunction2 → ‘‘about’’ | · · ·

· · ·
Struct2 → · · ·

Fig. 3: Grammar for Unambiguous Coreference

a.) Input (Parameters): Firstly (in step 1), the developer
provides an input grammar and the sensitive attribute(s)
of interest. The input grammar captures the input spec-
ifications for a specific task (e.g. Figure 3 for Coref NLP
task), while the sensitive attribute(s) refers to the entities
(e.g. non-terminals) that define discriminatory inputs (e.g. a
subjective pronoun like “He"/“She"). Subsequently, the de-
veloper can optionally provide a set of input parameters for
ASTRAEA, i.e., specify the fairness criteria to investigate (e.g.
individual or group fairness) and the bias of interest (e.g.,
gender bias). Additionally, she can also optionally define
predicates for a predictive oracle, which serves as ground truth
or expected outcome for each input. This oracle determines
(in)correct predictions. Next, (in step 2) the provided input
(parameters) are fed into ASTRAEA for test generation.

b.) Test Generation: Given the input grammar, ASTRAEA
proceeds (in step 3) to generate test cases using the input
grammar and the sensitive attributes defined in (a). In
this phase, the sensitive attribute(s) is a source of bias in
generated test cases, hence, it restricts the non-terminals
concerned with the attribute to specific values (e.g. restrict-
ing subjective pronoun to only “He" or “she"). Then, ASTRAEA
randomly covers the input structure using the optional
input parameters for guidance6. Specifically, the sensitive
attributes help define discriminatory test cases, for instance,
where (two) inputs are similar except that they differ in the
value of sensitive attribute(s) (see row one Table 1). ASTRAEA
performs random grammar-based test generation in a manner
similar to previous approaches [41], [43], i.e. making ran-
dom choices among alternatives in production rules and
terminal symbols. Technically, for random generation, all
alternatives have a uniform distribution, hence, each one
can be equally chosen.

For instance, consider the input grammar for Coref in
Figure 3 and a subjective pronoun as the sensitive attribute.
Let us assume, the developer specifies the following (op-
tional) parameters for test generation; individual fairness
and gender bias. Then, ASTRAEA will generate inputs such
as the test case in row 1 of Table 1. It generates this test
case by specifically setting the pronoun choice (e.g. to “He"
or “She") for each test input, but randomly exploring the

6. When optional input parameters are unspecified (i.e. bias and fair-
ness criteria are not provided), ASTRAEA proceeds to randomly explore
parameters. For instance, it generates test cases for both individual and
group fairness.
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Fig. 4: Derivation Tree of an Input generated by ASTRAEA
using the Unambiguous Coreference grammar in Figure 3

rest of the grammar, i.e. randomly selecting alternatives for
other production rules (e.g. noun choices like occupation).
Similarly, for sentiment analysis, using subjective noun as
the sensitive attribute and given input parameters for indi-
vidual fairness and occupational bias, ASTRAEA generates
test cases such as row six in Table 1 by randomly exploring
all alternatives, but ensuring the choice of nouns is set to
only explore occupations.

c.) Test Oracle: The software (aka MUT, e.g. Google NLP)
processes the test cases generated by ASTRAEA (in step 4).
Then, using the metamorphic oracle, the test oracle collects
the software’s outputs and determines if the observed out-
put is unfair or not (in step 5). In the case that the ground
truth is available in (a) (e.g. via a deterministic oracle), the
test oracle also determines if an output is a mis-prediction
(see predicates in Table 1).

As an example, for the sentiment analysis test case (see
row six in Table 1), the individual fairness predicate checks
that both test inputs evaluate to the same sentiment (i.e.,
SA(a) == SA(b)). Since this is not true, there is an individual
fairness violation. Meanwhile, the predictive oracle checks
that each test input evaluates to a negative sentiment. Again
this is false for test input b, hence we detect a mis-prediction.

d.) Anomaly Detection: The anomaly detector collects all
of the inputs that induced a fairness violation (or mis-
prediction), and determines a diagnosis for each (sub)set
of violations using the median absolute deviation (MAD) (in
step 6). Such a diagnosis highlights specific features of the
input that predominantly cause fairness violations. On one
hand, the diagnosis provided by the inputs are provided
as outputs to the developer for analysis and debugging (in
step 7). On the other hand, the error rate and anomalies
found by the anomaly detector are fed to the test optimizer
(in step 8). Based on the provided error rates, the test opti-
mizer computes the weights of each alternative in the input
grammar. These weights are in turn used to probabilistically
select alternatives in production rules and terminals in the
next test generation phase (step 9). The objective of such a
strategy is to maximize the number of fairness violations as
the test generation advances.

For instance, for Coref, after generating numerous inputs
(similar to the test in row one of Table 1), ASTRAEA isolates the
occupation “CEO" as anomalous. Indeed, sentences contain-
ing CEO showed a 98% error rate in NeuralCoref [76].

e.) Model Re-training: Given a predictive oracle (i.e. ground
truth), ASTRAEA’s anomaly detector provides a diagnosis
for wrong outputs (in step 10). These diagnoses are used to
improve the software via model re-training. In the model re-
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TABLE 2: Notations used in ASTRAEA
Input

f Model under test (MUT)
G Input used for test generation
Gsens The sensitive production rules of the grammar

G
Gbias Noun choice such that the developer can choose

a specific type (such as occupation, religion,
name) to test for violations of individual or
group fairness

n number of inputs in a test case (e.g. n = 2 for
SA)

iters number of iterations for RAND or PROB phase
(e.g. iters = 3000)

Intermediate Variables
Gcount

term Counts of all the terminal symbols selected
while generating tests

Gerr
term Counts of all the terminal symbols selected for

inputs that exhibit individual fairness violations
Gprob The production rules where ASTRAEA uses

weighted probability for selecting the terminal
symbols in the directed phase

PC Probability of choosing each terminal symbol in
G

Output
Scount Unique sentences generated
Serr Unique fairness violations found

training step, ASTRAEA’s fairness and prediction diagnoses
are used to generate new inputs to augment the training
data (in step 11). The predictive oracle enables the correct
class labeling of generated inputs, i.e. to label the new train-
ing data. The augmented training data is then used to retrain
the model, which in turn improves software fairness (in
step 12). Indeed, ASTRAEA reduced the number of fairness
violations by 76% via model-retraining, on average.

6 METHODOLOGY

In this section, we describe ASTRAEA in detail. ASTRAEA
relies on an input grammar to generate test inputs and
employs grammar-based mutations to generate equivalent
test inputs. It then applies metamorphic relations to evaluate
equivalent test inputs for software fairness. In addition,
ASTRAEA analyses (failing) test cases to provide diagnostic
intuition and it leverages the diagnostic information to fur-
ther optimize the test generation process. Table 2 captures
the notations used in describing the ASTRAEA approach.

a.) Grammar: We illustrate the grammar features employed
in ASTRAEA with an example. For instance, consider a
software or model f (e.g. NeuralCoref) and an input gram-
mar G for the NLP task coreference resolution (Coref) in
Figure 3. Figure 4 provides a derivation tree of a sample
sentence generated using the grammar G (Figure 3). This
sentence is generated via random exploration of grammar
G. Once such a sentence is generated, metamorphic relations
can be defined on equivalent sentences, in order to check
for fairness violations. A metamorphic relationship for this
example (Figure 4) is defined as follows: Replacing the Subj-
Pronoun in Figure 4 with other alternative tokens (e.g. “She")
in the Subj-Pronoun production rule (cf. Figure 3) generates
equivalent sentences. For a given model f (e.g. Neural-
Coref), equivalent sentences should produce the same out-
put to preserve software fairness. It is important to note
that the input grammars are designed to ensure that most
of the sentences that are generated are semantically and

Algorithm 1 Grammar-Based Test Generation
procedure BUILD_TEST(G, n, PC ,Gsens,Gbias)
Slist ← φ
. Builds input using G. Selects terminals with probability PC for Gbias

S ← Build_Input(G, PC ,Gbias)
Slist ← Slist ∪ S
if n > 1 then
. Mutates and creates n equivalent inputs for the attributes Gsens

Slist ← Slist∪ Mutate_Input(G, S,Gsens, n− 1)
end if
return Slist

end procedure

syntactically valid (see RQ8). This is accomplished using
known text structures such as the EEC schema [50]. The
proposed grammars are also easy to construct and are a
one-time effort. A CS graduate student made the initial
input grammar in 30-45 minutes. The cost of building the
grammar is a one time cost. With ASTRAEA, we publicly
release the grammar so that users do not need to create a
new grammar to use ASTRAEA for the tasks under test. This
grammar is arbitrarily extensible and we hope a library of
such grammars for each task can be curated in the future.
Adapting the initial grammar to various tasks takes another
10-15 minutes/task because of task overlap. The initial
grammar that the student built is also fairly expressive. The
grammar can generate ≈ 139,500 sentences7.

b.) Grammar Based Input Generation: We illustrate the
main idea of our test generation method (ASTRAEA) using
the input grammar in Figure 3. Algorithm 1 illustrates the
test generation methodology embodied in ASTRAEA.

First, ASTRAEA randomly explores the input grammar
to generate an initial test input S (using Build_Input in
Algorithm 1). To create equivalent inputs, ASTRAEA mutates
the token in input S that is associated with Gsens by select-
ing alternative tokens in Gsens (using Mutate_Input). In
ASTRAEA, Gsens refers to the sensitive attribute for which
two inputs are considered equivalent for the task at hand.
As an example, given that Gsens is Subj-Pronoun (in Figure 3),
ASTRAEA generates the initial input sentence S in Figure 4:

The farmer was passing by. {He/She} told the
baker that the document was signed.

In this example, the alternative tokens in the production
rule Subj-Pronoun (i.e., “He" and “She") are instantiated to
generate equivalent inputs.

ASTRAEA also enables the developer to choose only
specific production rules for ease of testing. For instance,
we can restrict the production rule of the attribute Noun to
only select the production rule for Occupation. This helps
ASTRAEA to test for specific gender biases in occupations.
Similarly, when we restrict the attribute Noun to only choose
the production rules for Religion, ASTRAEA generates test
inputs to check gender biases in religion. ASTRAEA encodes
this information (i.e. Occupation or Religion in this example)
via Gbias.
c.) Test Generation for Individual Fairness: In the context
of software fairness, certain input attributes are considered
sensitive depending on the task at hand. Sensitive attributes
include, but are not limited to gender, occupation and re-
ligion. The goal of software fairness is to ensure that the

7. See calculation here: https://git.io/JRI3m

https://git.io/JRI3m
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Occupation: {‘‘The farmer’’ :1, ‘‘The baker’’ :1, · · ·}
Religion: {‘‘The Jewish person’’ :0, ‘‘The Hindu person’’ :0, · · ·}

Name: {‘‘Mark’’:0, ‘‘Josh’’:0, · · ·}
Subj-Pronoun: {‘‘He’’ :1, ‘‘She’’ :1, · · ·}
Obj-Pronoun: {‘‘him’’ :0, ‘‘her’’ :0, · · ·}

Aux-Verb: {‘‘was passing by’’ :1, ‘‘was sitting’’ :0, · · ·}
Main-Verb1: {‘‘told’’ :1, · · ·}
Main-Verb2: {‘‘asked’’ :0, · · ·}

Action1: {‘‘the document was signed’’ :1, · · ·}
Action2: {‘‘painting’’ :0, ‘‘swimming’’ :1, · · ·}

Conjunction1: {‘‘that’’ :1, · · ·}
Conjunction2: {‘‘about’’ :0, · · ·}

Fig. 5: Example terminal symbol count map

outcome of a task is the same for different values of a
sensitive attribute Gsens. Algorithm 2 provides an outline
of ASTRAEA’s test generation process. The test generation
process is in two phases, namely random test generation
(RAND) and probabilistic test generation (PROB).

In the RAND phase, the probabilities of choosing alter-
natives in production rules (e.g. terminal tokens) from the
Grammar G is uniform (i.e. equal for all alternatives), as
seen in Algorithm 2. ASTRAEA then uses Build_Test to
generate a set of equivalent sentences Slist. We also update
the count of the tokens used to build test cases in Gcountterm . The
data structure Gcountterm is visualized in Figure 5. Specifically,
for each production rule, we record the number of times
each token is instantiated in the generated tests. Figure 5
is the state of Gcountterm after the production of the sentence
seen in Figure 4. For example, it captures that the token
“The farmer" was instantiated from the production rule
of Occupation.

After generating a set of equivalent sentences Slist,
ASTRAEA checks whether sentences in Slist are considered
to be equivalent with respect to the NLP model f . If the
sentences are not considered equivalent by f , then this
indicates a violation of individual fairness. This is then
counted as an error and recorded to the set of errors Serr.
Additionally, the number of instantiated tokens in Serr is
updated in Gerrterm. The structure Gerrterm is similar to Figure 5.
Concretely, Gerrterm is a projection of the map Gcountterm for the
set of erroneous sentences Serr.

The PROB phase begins by computing the probabilities
associated with the alternatives of the production rules in
Gprob. As an example of gender bias in occupations, we
have Gprob =[Occupation]. We calculate the error rates(

Gerr
term

Gcount
term

)
for the tokens (terminal symbols) of the production

rule of Occupation. Subsequently, we assign probabilities to
these tokens proportional to their error rates. While gener-
ating tests, ASTRAEA selects the tokens of the production
rule for Gprob according to the pre-assigned probabilities.
Intuitively, when generating tests in the PROB phase, we
prioritize the terminal that are prominent in error-inducing
input sentences.

It is worthwhile to mention that the general idea of
Algorithm 2 is applicable to a wide variety of NLP tasks
and use cases. In this paper, we show the generality of the
approach and instantiate the same test generation process
for coreference resolution, sentiment analysis and mask
language modeling.

d.) Diagnosis: As explained in the preceding paragraphs,
for each attribute, we record the occurrences of the tokens
in the generated tests (Gcountterm ) and the number of occur-
rences of these tokens in tests that exhibit fairness violations
(Gerrterm). Using this information we compute the error rates

Algorithm 2 ASTRAEA Test Generation - Individual Fairness
procedure TEST_GEN_IND(f , G, n, PC ,Gsens, iters,Gprob,Gbias)
Serr, Scount ← ∅, ∅
Gcount

term ,Gerr
term ← ∅, ∅

. All tokens have equal probability of being chosen
PC ← Equal_Prob(G)
TEST_GEN(f , G, n, PC ,Gsens, iters,Gprob,Gbias, S

err, Scount)
. Sends the token count data for diagnosis before PROB phase
Fault_Diagnosis(Gerr

term,G
count
term )

. Enter the PROB phase

. Gets the probabilities of choosing tokens proportional to Gerr
term

Gcount
term

for
Gprob

PC ← Get_Probabilities(Gcount
term ,Gerr

term,Gprob)
TEST_GEN(f , G, n, PC ,Gsens, iters,Gprob,Gbias, S

err, Scount)
return Serr

end procedure
procedure TEST_GEN(f , G,n, PC ,Gsens, iters,Gprob,Gbias, S

err, Scount)
for i in (0, iters) do
Slist ← Build_Test(G, n, PC ,Gsens,Gbias)
Scount ← Scount ∪ Slist

. Updates terminal symbol count
Update_Term_Count (Gcount

term , Slist)
. Determines if the sentences are equivalent w.r.t the NLP model f
if (Equivalent_Input(f, Slist) == FALSE) then
Serr ← Serr ∪ Slist

Update_Term_Count (Gcount
err , Slist)

end if
end for

end procedure

(Gerr_rate
term ) associated with each token (in Algorithm 3). The

error rate is also stored in a map similar to the one seen in
Figure 5.

The goal of the diagnosis stage is to identify anomalous
tokens in terms of the error rate. This, in turn, provides
useful information to the developer regarding the specific
weaknesses of the model. We detect anomalous tokens via
median absolute deviation, which is known to be robust even
in the presence of multiple anomalies [39]. For a univariate
set of data X = {X1, X2, X3, · · · , Xn}, the median absolute
deviation (mad) is the median of the absolute deviations
from the data point’s median (X̃ = median(X)). Thus mad
is defined as median(|Xi − X̃|) ∀i ∈ [1, n]. We then use
mad to calculate the anomaly indices for all the data points:
Xi−X̃
mad ∀i ∈ [1, n]. If we assume the underlying distribution

is a normal distribution and a data point’s anomaly index
has an absolute value greater than two, then there is > 95%
chance that the data point is an outlier. As a result, we use
two as a reasonable threshold to identify outlier tokens for
ASTRAEA.

In ASTRAEA, the data points to compute the median
absolute deviation constitute the error rate for each token
(as retrieved from Gerr_rate

term ). If the token has an abso-
lute anomaly index greater than two (2), then ASTRAEA
records such token to Ganomalousterm . The structure Ganomalousterm

is shared with the developer for further diagnosis.
To illustrate with an example, consider the sentence:

The CEO was talking. He/She asked the designer
about horse racing.

Sentences containing “CEO" showed a 98% error rate in
NeuralCoref [76]. This means that in 98% of the sentences,
“CEO" was coreferenced to “He" and was not coreferenced
to “She". The anomaly index for the error rate of “CEO" was
6.5. In contrast, for the rest of the tokens in the Occupation
production rule, anomaly indices were in the range (-2, 2).
The error rate for “CEO" is a clear outlier. It is diagnosed as
a fault in the model.
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Algorithm 3 ASTRAEA Fault Diagnosis
procedure FAULT_DIAGNOSIS(Gerr

term,G
count
term )

Gerr_rate
term ← Get_Error_Rate (Gerr

term,G
count
term )

Ganomalous
term ← ∅

for prodrule_terminals in Gerr_rate
term do

anomaly_indices← Get_Anomaly_Index(prodrule_terminals)
for terminal, anomaly_index in anomaly_indices do

if |anomaly_index| > 2 then
Ganomalous

term ← Ganomalous
term ∪ terminal

end if
end for

end for
return Ganomalous

term
end procedure

Algorithm 4 ASTRAEA Test Generation - Group Fairness
procedure TEST_GEN_GRP(f,G, iters,Gsens,Gbias)

Mean_Scores ← ∅
. All tokens have equal probability of being chosen
PC ←Equal_Prob(G)
for token in Gsens do
Scores← ∅
for i in (0, iters) do
input← Build_Test(G, 1, PC ,Gsens,Gbias)
. Changes the terminal symbol of Gsens to token
input← Modify_Terminal (Gsens, token)
. Collects task specific score for input
Scores← Scores ∪ Get_Task_Score(f, input)

end for
Mean_Scores←Mean_Scores ∪ Average(Scores)

end for
. gets the terminals with anomalous (high or low) mean scores
anomalies← Get_Anomaly_Index(Mean_Scores)
return anomalies

end procedure

e.) Group Fairness: In addition to testing for individual
fairness violations (in Section 6 (c)), ASTRAEA also tests for
group fairness violations. We instantiate ASTRAEA to discover
group fairness violations, in particular, for the Masked
Language Modeling (MLM) task. As an example of testing
MLM task, we use the grammar seen in Figure 6. A sentence
generated by this grammar can be seen in Figure 7.

The group fairness criteria used by ASTRAEA is stricter
than the traditional group fairness criteria seen in Equa-
tion (2) (see Theorem 1 for proof). Intuitively, given equiv-
alent inputs a and b, the definition in Equation (2) checks
for the equivalence of the outputs from model f . ASTRAEA
imposes a stricter condition where it uses the median absolute
deviation based anomaly index to check for outliers and
determine violations of fairness. This condition is stricter
than the traditional definition of group fairness which only
checks for equivalence between multiple groups. Specifi-
cally, tokens with absolute anomaly indices greater than two
are considered outliers. The median absolute deviation is a
robust statistic, which means that it is performant for data
drawn from a wide range of probability distributions [64].
This is advantageous to ASTRAEA, as the technique does
not need to make assumptions about the underlying data
distribution. Formally, our definition of group fairness is as
follows:

|Anomaly_Index(Pr(f(a) = +|A = a))| ≤ 2 ∀a ∈ A (3)

As observed in Algorithm 4, we generate a set of inputs
for each token in the production rule of Gsens. In the case of
MLM the tokens are occupations (e.g. nurse, salesperson).
We then find the task-specific score, which for MLM is
the confidence of predicting “his” and “her” as the output.

MLM → Struct1 | Struct2 | · · ·
Struct1 → Subject Main-Verb Direct-Object Mask Indirect-Object | · · ·
Subject → Noun | · · ·

Noun → Occupation | Name | · · ·
Occupation → ‘‘The salesperson’’ | ‘‘The CEO’’ | · · ·

Name → ‘‘Mark’’ | ‘‘Jane’’ | · · ·
Main-Verb → ‘‘took’’ | ‘‘walked’’ | · · ·

Direct-Object → ‘‘a taxi to’’ | ‘‘a bus to’’ | · · ·
Mask → ‘‘[Mask]’’ | ‘‘<mask>’’ | · · ·

Indirect-Object → ‘‘home’’ | ‘‘place of work ’’ | · · ·
· · ·

Struct2 → · · ·

Fig. 6: Example Grammar for Masked Language Modelling
MLM

Struct1

Subject

Noun

Occupation

The salesperson

Main-Verb

took

Direct-Object

a taxi to

Mask

[MASK]

Indirect-Object

home

Fig. 7: Derivation Tree for Masked Language Modelling

ASTRAEA then finds the average of these scores over all test
inputs. This is repeated for each token (groups) in Gsens.
Once all average scores are collated, they are assigned an
anomaly index based on the median absolute deviation
based outlier detection. Specifically, all tokens with absolute
anomaly indices above two are considered to exhibit a vio-
lation of group fairness (cf. Equation (3)). For instance, if we
use BERT [29] for the MLM task with Gsens = [Occupation],
the occupations receptionist, nurse and hairdresser (amongst
other occupations) have anomaly indices lesser than -2
for the his scores (average confidence of predicting his).
For these occupations, it means the model’s prediction are
anomalously underrepresented for males. Unsurprisingly,
the anomaly indices for the same occupations are over 2
for the her scores (average confidence of predicting her).
This implies that these occupations are anomalously over-
represented for females in the model’s predictions.

Theorem 1. The definition of group fairness introduced by
ASTRAEA i.e. Equation (3) is stricter than the definition of
traditional group fairness introduced in Equation (2). Let Utrad
(UASTRAEA, respectively) be the set of pairs of groups that are
considered to be treated unfair according to Equation (2) (Equa-
tion (3), respectively). For example, if (a, b) ∈ Utrad, then groups
a and b violate group fairness according to the definition in
Equation (2). We have UASTRAEA ⊂ Utrad.

Proof. Our goal is to show that any set of inputs not satis-
fying Equation (3) implies that these set of inputs do not
also satisfy Equation (2). However, a set of inputs violating
Equation (2) may not necessarily violate Equation (3). We
formalise this reasoning below.

Let a ∈ A violate the conditions seen in Equation (3).
This means there exists an a ∈ A that has an anomaly index
≥ 2. This implies a violation of Equation (2) because there
exists a b ∈ A such that

Pr(f(a) = +|A = a) 6= Pr(f(b) = +|A = b) (4)

Let a, b ∈ A be the set of all inputs such that

Pr(f(a) = +|A = a) = Pr(f(b) = +|A = b) + δ (5)

where δ is a very small value. This violates Equation (2) but
these inputs do not violate Equation (3).
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TABLE 3: Details of Input Grammars

NLP Input Test #Prod. #Term.
Tasks Grammar Oracle Rules Nodes

Coreference
Resolution

Ambiguous Metamorphic 16 103
Unambiguous Deterministic 16 92

MLM Ambiguous Metamorphic 11 87
Sentiment
Analysis Ambiguous Metamorphic/ 48 237Deterministic

Hence, our definition Equation (3) is stricter than Equa-
tion (2) and the theorem holds.

7 EVALUATION

In this section, we describe the evaluation setup and results
for our fairness testing approach (i.e., ASTRAEA).

Research Questions: We evaluate the performance and
utility of ASTRAEA in detecting and diagnosing both indi-
vidual and group fairness violations. Specifically, we ask the
following research questions:
• RQ1 Individual fairness: How effective is ASTRAEA in
revealing individual fairness violations?
• RQ2 Group fairness: Is ASTRAEA effective at exposing
group fairness violations?
• RQ3 Diagnosis of fairness violations: How effective is
the fault diagnosis of ASTRAEA in improving the fairness of
NLP software via model re-training?
• RQ4 Generalizability of ASTRAEA’s Bias Mitigation:
Does ASTRAEA’s bias mitigation (via model-retraining) gen-
eralise to unseen input sentences (e.g. WINOGENDER [65])?
• RQ5 Effectiveness of test optimisation: Does the test
optimisation of ASTRAEA (in Section 6 c.) improve the
detection of fairness violations?
• RQ6 Comparative Effectiveness: How effective is AS-
TRAEA in comparison to the state of the art – CHECKLIST?
• RQ7 Stability of ASTRAEA’s test generation: How stable
is the test generation approach of ASTRAEA?
• RQ8 Validity of ASTRAEA’s generated inputs: Are the
input sentences generated by the input grammars (used by
ASTRAEA) syntactically and semantically valid?

7.1 Experimental Setup

Generated Inputs: Given an input grammar, ASTRAEA gen-
erates two types of test suites based on the following test
generation strategies (or phases):
1) Random Generation (RAND) - the choice between produc-
tions is determined by a uniform (or equal) distribution.
2) Probabilistic Generation (PROB) - the choice between pro-
ductions is determined by the probability distribution com-
puted after the RAND phase (see Section 6 c.).

Subject Programs: We evaluated ASTRAEA using 18 soft-
ware systems designed for three major NLP tasks (see
Table 4). These software are based on nine different ML
architectures, including rule-based methods, pattern anal-
ysis systems, naive bayes classifiers and Deep Learning
systems (e.g. DNNs, RNNs, LSTMs). Our subject programs
include 13 pre-trained models (such as Google NLP) and
five models trained locally. All models (except for Google
NLP) were executed locally.

Input Grammars: We evaluated our approach using four
hand-written input grammars, with at least one grammar
for each task. Our grammars are either ambiguous or un-
ambiguous. An unambiguous grammar generates sentences
where the ground truth is known (e.g. Figure 3). Meanwhile,
for an ambiguous grammar, the ground truth is unknown
(e.g. Figure 6). We also evaluated for direct or analogous
gender roles (e.g. “father” vs. “mother”) and random gender
comparisons (e.g. “father” vs. “girlfriend”). Overall, our
grammars contain about 23 production rules and 130 ter-
minal nodes, on average (see Table 3). Terminal nodes that
portray societal biases such as gender-biased occupations
are collected from established databases that classify the rel-
evant data [2], [17], [50], [58], [84]. For instance, occupational
and first name data were collected from the public websites
of the U.S. Bureau of Labor Statistics [58] and the U.S. Social
Security Administration [2].

Grammar Construction: We employed a coding protocol
to construct the input grammars for our NLP tasks [24].
Our coding protocol involved all three researchers (i.e., the
authors). The goal of the protocol is to ensure correctness
of the input grammar and reduce experimenter bias in the
construction. Specifically, the following are the steps of the
protocol:

1) For an NLP task (e.g., coreference resolution), the first
researcher (researcher #1) constructed an initial input
grammar based on the expected structure of sentences
for the task, for instance, using known datasets such as
EEC schema [50] and WINOBIAS [84]. The production
rules of the grammar are populated by employing the
relevant public data sets for each specific input to-
ken, for instance, gender-based occupational data were
obtained from the Department of labor statistics [58]
and racially biased names were obtained from the U.S.
Social Security Administration [2]. This initial input
grammar took about 30 minutes to complete.

2) Two other researchers (researcher #2 and #3) indepen-
dently inspected the input grammar (written in Step
one) and samples of the resulting input sentences gen-
erated by ASTRAEA, while identifying any errors in the
grammar or the resulting inputs.

3) Next, all three researchers meet to cross-validate the
grammar, i.e., discuss errors, contentions and conflicts,
and update the input grammar with appropriate correc-
tions to produce the final input grammar for the task at
hand.

4) All researchers independently then inspect samples of
the resulting inputs generated by ASTRAEA from the fi-
nal grammar to ensure conflicts and errors are resolved.

5) Then, for a new NLP task (e.g., sentiment analysis),
another researcher (researcher #2) adapts and extends
the initial input grammar with the expected structure
and tokens for the task (similar to step 1). This activity
took about 10 to 15 minutes.

6) Two other researchers (researcher #1 and #3) indepen-
dently inspected the input grammar and samples of
the resulting input sentences generated by ASTRAEA
for the new task to identify errors in the grammar or the
resulting inputs.

7) Next, all three researchers meet to cross-validate the
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input grammar, and discuss errors and conflicts, then
update the input grammar with appropriate corrections
for the new task.

8) Finally, all researchers independently inspect samples
of the resulting inputs generated by ASTRAEA from the
final grammar for the new task to ensure corrections
were effected.

The initial grammar construction is a one-time effort (per
task), it takes a researcher about 30 to 45 minutes to
construct and populate the production rules for an initial
input grammar. Adapting and extending the initial input
grammar for a new task is also fast, it takes about 10 to
15 minutes per task. Meanwhile, inspecting and correcting
the grammar for error or conflicts takes about five (5) to
10 minutes. Overall, constructing an input grammar for the
first NLP task takes about one hour, while extending or
adapting for a new task takes (less than) half an hour.

As described above, our proposed grammars are easy to
construct and are a one-time effort. The ease of writing (and
correctness) is due to the availability of guiding schemas
namely EEC schema [50] and WINOBIAS [84]. In contrast,
perturbation-based fairness testing approaches require a
large dataset of valid statements, e.g. MT-NLP needs over
17,000 sentences [53]. We assert that curating such datasets
is more resource-intensive than creating an input grammar.
These grammars can also be automatically synthesized, for
instance, by adapting blackbox grammar mining approaches
for inferring program inputs [10] or learning from a large
corpus of text [8]. However, we consider this an orthogonal
problem. Additionally, we evaluate the syntactic and seman-
tic validity of sentences produced by ASTRAEA in RQ8.

Predictive Oracle: ASTRAEA requires only a metamorphic
oracle to expose fairness violations, this is similar to several
(fairness) testing approaches [8], [70], [77]. However, to
mitigate against fairness violations and improve software
fairness, ASTRAEA employs a predictive oracle to provide
the ground truth on the actual expected outcome of a
prediction. This information is only necessary to create the
correct labels for the data augmentation dataset. Defining
a predictive oracle for our tasks is achieved by rule-based
checks for the presence of task-specific tokens in generated
sentences. As an example, for sentiment analysis, we check
for the presence of positive or negative emotions using the
production rules for each emotional state. The oracle simply
checks for the presence of a positive (or negative) emotion
rule in a sentence to determine a positive (or negative) sen-
timent, or vice versa. For instance, the presence of “excited"
in a sentence, indicates a positive sentiment.

Biases: In this work, we evaluated four types of biases,
namely gender (e.g. male vs female (pro)nouns), race (e.g.
african-american vs european names), religion (e.g. Chris-
tian vs Hindu) and occupation (e.g. CEO vs cleaner). In ad-
dition, we evaluated for neutral statements, i.e. statements
with no bias connotation. This is particularly important for
sentiment analyzers where neutral sentiments should be
accurately classified.

Measure of Effectiveness: We evaluated ASTRAEA’s effec-
tiveness using fairness violations, this is in line with closely-
related literature [35], [72]. To the best of our knowledge
this is the only measure employed by all fairness testing

approaches. Unlike traditional testing, where metrics such
as code coverage are employed as proxy measures of test
effectiveness, there are no other known measures of test
quality for fairness testing (besides violations). There is no
evidence that typical (ML) test criteria (such as code cover-
age, neuron coverage or surprise adequacy criteria [49]) are
effective measures of test suite quality for fairness proper-
ties. The problem of alternative proxy measures of effective-
ness for fairness testing (other than violations) remains an
open problem. In fact, researchers have demonstrated that
traditional proxy measures are not meaningfully objective
for evaluating test suite quality for (ML-based) software sys-
tems, and have instead called for the use of defect detection
(e.g., errors) as a better metric for evaluating the quality of
test suites for (ML-based) software systems [40], [42].

Besides, we are confident in fairness violation as a mea-
sure of effectiveness since most ASTRAEA generated input
sentences are both syntactically and semantically correct
(see RQ8). Analogously, a reduction in fairness violation via
data augmentation and re-training indicates that a violation-
inducing input token was correctly identified and success-
fully mitigated, therefore indicating an improvement in
software fairness.
Test Adequacy: We employ grammar coverage as a test ad-
equacy criterion for ASTRAEA. We have selected grammar
coverage because it is the most practical metric in a black box
setting. Typically, the most popular NLP systems are de-
ployed in a black box scenario, without access to the model
(e.g. Google NLP). To the best of our knowledge, there is no
(other) reliable metric to measure fairness test adequacy of
ML models in a black-box setting. Besides, this metric allows
to measure and direct the effectiveness of ASTRAEA since
it is grammar-driven. In our setup, ASTRAEA systematically
covers input features e.g. all terminals in the input grammar.
Moreover, the aim is also to cover as many combinations of
sensitive attributes in the grammar within the time budget
e.g. by generating pairwise combinations of gender sensitive
(pro)nouns or occupations. In our evaluation, we report
ASTRAEA’s achieved grammar coverage (see Table 8). Specif-
ically, we report the number of covered terminal nodes and
the number of covered pairwise combination of sensitive
attributes.
Implementation Details and Platform: ASTRAEA was im-
plemented in about 20K LOC of Python. All implementa-
tions were in Python 3.8 using (machine learning) modules
such as Tensorflow 2.3, Spacy 2.1, Numpy and Scipy. All
experiments were conducted on a MacBook Pro (2019), with
a 2.4 GHz 8-Core Intel Core i9 CPU and 64GB of main
memory.

7.2 Experimental Results

RQ1 Individual fairness: In this section, we evaluated
the number of individual fairness violations induced by AS-
TRAEA, using 18 subject programs and three NLP tasks.
Specifically, we evaluated the number of individual fairness
violations induced by gender, religious, occupational and racial
biases (see Table 5).

ASTRAEA’s random test generation approach (RAND)
is highly effective in exposing fairness violations for all
subjects and tasks, especially in terms of the number of
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TABLE 4: Details of Subject Programs (aka Models Under
Test (MUTs))

NLP Subject Machine Learning Pre-trainedTask Program (ML) Approach

Coreference
Resolution

Neural-Coref DNN 3
AllenNLP DNN 3
Stanford CoreNLP Rule-based 3

Mask
Language
Modeling

BERT-cased DNN 3
BERT-uncased DNN 3
DistilBERT-cased DNN 3
DistilBERT-uncased DNN 3

Sentiment
Analysis

VaderSentiment Rule-based 3
TextBlob I Pattern Analysis 3
TextBlob II Naive Bayes 3
NLTK-Vader Rule-based 3
Google NLP Deep Learning 3
Stanford CoreNLP RNN 3
TensorFlow Text Transfer learning

7Classifier I (Hub)
TensorFlow Text RNN (LSTM)

7Classifier II Padded
TensorFlow Text RNN (LSTM)

7Classifier II Unpadded
TensorFlow Text RNN (Stacked

7Classifier III Padded LSTMs)
TensorFlow Text RNN (Stacked

7Classifier III Unpadded LSTMs)

TABLE 5: Individual fairness violations found by ASTRAEA
(RQ1 and RQ5). Each cell has three values: The total value
in unformatted text, and the values in bracket are results for
RAND in italics and for PROB in bold.

Individual Fairness Violations

NLP Tasks Bias Sensitive
Attribute

#unique
test cases

Fairness
#errors

Fairness
Error Rate

Coref
(3 MUT)

Gender Amb. Subjective
Pronoun

16621
(8672, 7949)

7849
(3565, 4284)

0.47
(0.41, 0.54)

Gender Unamb. Subjective
Pronoun

17151
(8951, 8200)

6318
(2268, 4050)

0.37
(0.25, 0.49)

Religion Objective
Noun

17833
(8964, 8869)

3050
(806, 2244)

0.17
(0.09, 0.25)

Occupation Subjective
Noun

17135
(8895, 8240)

3447
(994, 2453)

0.2
(0.11, 0.3)

MLM
(4 MUT)

Occupation
(τ=0.05)

Objective
Pronoun

23195
(11801, 11394)

13003
(6532, 6471)

0.56
(0.55, 0.57)

Occupation
(τ=0.1)

23145
(11806, 11339)

8822
(4160, 4662)

0.38
(0.35, 0.41)

Occupation
(τ=0.15)

23016
(11774, 11242)

6230
(2689, 3541)

0.27
(0.23, 0.31)

Occupation
(τ=0.2)

22914
(11809, 11105)

4720
(1775, 2945)

0.21
(0.15, 0.27)

Occupation
(τ=0.25)

22750
(11806, 10944)

3619
(1167, 2452)

0.16
(0.1, 0.22)

Occupation
(τ=0.3)

22542
(11780, 10762)

2811
(785, 2026)

0.12
(0.07, 0.19)

Sentiment
Analysis
(11 MUT)

Gender
(Direct)

Subjective
Noun

56707
(29700, 27007)

5589
(1979, 3610)

0.1
(0.07, 0.13)

Gender
(Random)

Subjective
Noun

63039
(33021, 30018)

5502
(2029, 3473)

0.09
(0.06, 0.12)

Gender Occupation 61917
(33034, 28883)

6600
(2435, 4165)

0.11
(0.07, 0.14)

Gender Name 60887
(33028, 27859)

6822
(2134, 4688)

0.11
(0.06, 0.17)

Race Name 61628
(33017, 28611)

6730
(2353, 4377)

0.11
(0.07, 0.15)

Neutral None 62720
(33011, 29709)

11424
(4637, 6787)

0.18
(0.14, 0.23)

Total 573200
(301069, 272131)

102536
(40308, 62228) -

Average 35825
(18817, 17008)

6408
(2519, 3889)

0.23
(0.18, 0.28)

fairness violations triggered. In our evaluation of RAND,
about one in eighth test cases generated by ASTRAEA triggered
an individual fairness violation. In particular, we found that
13% (about 40K out of 301K) of the unique discriminatory
tests generated by RAND triggered a fairness violation
(see Table 5). These results demonstrate the effectiveness of
ASTRAEA’s random test generator in exposing individual
fairness violations.

Overall, 13% of all discriminatory test cases generated by
ASTRAEA (RAND) triggered individual fairness violations.

Fig. 8: Effectiveness of ASTRAEA’s diagnosis: comparing the
fairness error rate of RAND vs. Re-trained models augmented
with ASTRAEA test inputs of sizes {1-5}% of the original training
data. The numbers on top of the bars are the #fairness errors
found.

RQ2 Group fairness: Let us evaluate group fairness for the
NLP MLM task. The “groups” in this experiment refers
to each occupation, e.g., “nurse” is considered a group
and evaluated against every other group (e.g., “doctor”)
using the criteria seen in Equation (3). We have chosen to
use each occupation as a group, in order to be objective,
avoid inherent bias in self-categorization, and ensure that
our found violations are not due to biased categorizations
in known datasets. For instance, an alternative approach
is to employ the categorization of occupations as male-
biased and female-biased according to known datasets [58],
[84]. However, this introduces any inherent biases in those
categorizations into our experimental findings. Thus, to be
objective, we apply each occupation as a group. All occu-
pations employed in the experiment are collected from the
the U.S. Bureau of Labor Statistics [58]. To normalize the fre-
quency of each occupation for each model and experiment,
we generate about 150 unique test cases for each occupation,
and measure the average confidence of the prediction of
“her" and “his" as the output of the [MASK] (see Figure 6).
ASTRAEA uses a stricter definition of group fairness based
on the median absolute deviation anomaly index, in particular,
it checks if the absolute anomaly index is greater than two
(see Equation (3)). An absolute anomaly index less than two
(or greater than two) means that the particular occupation
is under-represented (or over-represented, respectively) for
the gender (in the output of [MASK]). Both cases capture
group fairness violations.

We evaluate four state of the art models, namely BERT-
cased, BERT-uncased, DistilBERT-cased and DistilBERT-
uncased (see Table 6), for 43 different occupations. On av-
erage, we find a group fairness violation for 9.3% of the
occupations for the male pronoun (his) and 10.46% of the
occupations for the female pronoun (her). These violations
represent occupations which are either over or under rep-
resented for a given gender, inadvertently causing societal
bias. For instance, we found that occupation salesperson and
nurse were over-represented and underrepresented in the
predictions of BERT for his and her, respectively.

About one in ten (≈10%) tested occupations exhibit
group fairness violations, on average.
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TABLE 6: Group fairness violations for the MLM task by
ASTRAEA. We capture the #occupations that show anoma-
lously high or low indices as violations of group fairness.

MUT Obj-Pronoun #violations %violation

BERT-cased his 5 11.63
her 7 16.28

BERT-uncased his 3 6.98
her 3 6.98

DistilBERT-uncased his 2 4.65
her 6 13.95

DistilBERT-cased his 6 13.95
her 2 4.65

Average his 4 9.30
her 4.5 10.47

RQ3 Diagnosis of fairness violations: In this section,
we investigate the effectiveness of ASTRAEA’s diagnoses
in improving software fairness. Specifically, we leverage
ASTRAEA’s diagnosis to generate new test inputs for the
Tensorflow Text Classifier model, for the sentiment analysis
task. After RAND generation (RQ1), we prioritize the tokens
associated to the observed fairness violations, using the fault
diagnosis step (see Section 6 d.). Then, ASTRAEA’s PROB
leverages this diagnosis to generate a set of unique test
inputs that are more likely to reveal fairness violations. AS-
TRAEA determines the label for these generated test inputs
using the predictive oracle. A random sample of the newly
generated test inputs is then added to the training data for
model re-training. The sample size is one to five percent of
the size of the training data. In total, we had five models for
our evaluation. For each model, we evaluated individual
fairness violations with five bias configurations resulting in
25 test configurations.

In our evaluation, ASTRAEA improves software fairness
for all tested models and biases. On average, the number
of fairness violations was reduced by 76% after model re-
training. In addition, we observed the number of fairness
violations decreases as the ratio of augmented data increases
(i.e. from one to five percent). Figure 8 illustrates the re-
duction in the number of fairness violations found in the
model, when augmenting the training data with varying
ratio of inputs generated via fairness diagnosis. Particu-
larly, augmenting only one percent of the training data
via ASTRAEA’s diagnoses reduced the number of fairness
violations by 43%. Meanwhile, augmenting five percent of
the training data reduced such violations by 93%. These
results demonstrate the accuracy of ASTRAEA’s diagnoses
and its efficacy in improving software fairness, via model-
retraining.

Notably, model re-training does not significantly impact
the prediction accuracy of our models. For all models, the
model accuracy was reduced by 1.42% (87% - 85.58%), on
average. The retrained model with one percent augmented
data had the highest accuracy of 86.2%, while the worst
accuracy of 84.8% was in the retrained model with five
percent augmented data.

Model re-training with ASTRAEA’s diagnoses reduced the
number of fairness violations by 76%, on average.

RQ4 Generalisability of ASTRAEA’s Bias Mitigation: In
this experiment, we examine whether ASTRAEA’s bias miti-

TABLE 7: Generalisability of ASTRAEA’s Bias Mitigation
(via model re-training): the performance of ASTRAEA’s (re-
)trained models on unseen inputs for sentiment analysis
using WINOGENDER dataset [65] (N/A = Not Applicable)

Top 5 Diagnosis (Top 10)
TensorFlow Text #Fairness Error ASTRAEA %
Classifier Models Errors Rate Improvement
Original 2592 0.144 N/A
Trained Model (2217) ( 0.123) (N/A)
Re-trained Model 16966 0.0943 35
+ 0.25% data Aug. (15171) (0.0843) (32)
Re-trained Model 16588 0.0922 36
+ 0.5% data Aug. (14006) (0.0778) (37)
Re-trained Model 14833 0.0824 43
+ 0.75% data Aug. (13441) (0.0747) (39)
Re-trained Model 15782 0.0877 39
+ 1% data Aug. (14224) (0.0790) (36)
Re-trained Model 12257 0.0681 53
+ 2% data Aug. (10552) (0.0586) (52)
Re-trained Model 12913 0.0717 50
+ 3% data Aug. (12094) (0.0672) (45)
Re-trained Model 11916 0.0662 54
+ 4% data Aug. (10367) (0.0576) (53)
Re-trained Model 13054 0.0725 50
+ 5% data Aug. (12261) (0.0681) (45)
Re-trained Model 10474 0.0582 60
+ 6% data Aug. (10491) (0.0583) (53)
Re-trained Model 8582 0.0477 67
+ 7% data Aug. (7102) (0.0395) (68)
Re-trained Model 10115 0.0562 61
+ 8% data Aug. (9663) (0.0537) (56)
Re-trained Model 8847 0.0492 66
+ 9% data Aug. (8090) (0.0449) (64)
Re-trained Model 8759 0.0487 66
+ 10% data Aug. (8392) (0.0466) (62)
Average of all 12391 0.0688 52
Re-trained Models (11220) (0.0623) (49)
Median of all 12257 0.0681 53
Re-trained Models (10552) (0.0586) (52)

gation (i.e., its data augmentation with error-inducing input
tokens, and re-training with sentences containing such to-
kens) generalises to unseen input sentences, in particular,
sentences in the wild that contain previously error-inducing
tokens. For instance, if ASTRAEA identified the token “CEO"
as the most error-inducing token for a sentiment analyser,
we check if other sentences in the wild containing “CEO"
token still lead to fairness violations in the re-trained models
obtained via ASTRAEA’s bias mitigation. To address this, we
collected five (5) and ten (10) of the topmost error-inducing
input tokens identified by ASTRAEA. As an example, we
choose the top five or 10 most biased (fe)male occupations
from our sentiment analysis experiments in RQ3. Then,
using the sentences provided by a different sentiment anal-
ysis dataset WINOGENDER [65], we replaced these error-
inducing tokens in these sentences and test them on both
the original and re-trained models. We performed model
re-training using a setup similar to that of RQ3, i.e., we
re-trained models with different levels of data augmenta-
tion using the Tensorflow Text Classifier Hub model. We
experimented with 13 data augmentation configurations
of sample sizes 0.25% to 10%, specifically, {0.25, 0.5, 0.75,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (see Table 7). To mitigate the
randomness in the sampling of newly generated test inputs,
we sampled test inputs 10 times and trained 10 models for
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(a) Fairness Error Rate for the Top 5 error tokens (b) Fairness Error Rate for the Top 10 error tokens

(c) Drop in Fairness Violations for the Top 5 error tokens (d) Drop in Fairness Violations for the Top 10 error tokens

Fig. 9: Generalisability of ASTRAEA’s bias mitigation on unseen input sentences (from WINOGENDER [65]) containing the top five
and top 10 error-inducing input tokens, using re-trained models augmented with ASTRAEA test inputs of sizes {0.25, 0.5, 0.75,
1-10}% of the original training data. Charts (a) and (b) show the trend in fairness error rate of the re-trained models for each data
augmentation sample size, and charts (c) and (d) show the percentage drop in fairness violations between the original model
and each data augmentation sample size for re-trained models. For each chart, we compute the linear regression trend line (thick
blue line) and report the R-squared value (R2) (or goodness of fit). The blue shaded region surrounding the trend line is the 95%
confidence interval.

each configuration, following the standard for random test
experiments [7]. Overall, we trained 130 models, 10 models
for each of the 13 data augmentation levels. Table 7 and Fig-
ure 9 illustrate the observed fairness violations on our (re-
)trained models, when fed with unseen inputs containing
ASTRAEA’s identified error-inducing tokens.

In our evaluation, ASTRAEA’s mitigation generalises to
unseen input sentences containing our diagnosed error-inducing
input tokens, i.e., unseen inputs refer to input sentences that
differ from the original error-inducing inputs, the training
data and the augmented data. Figure 9(a) and (b) show the
drop in the rate of fairness violations induced by unseen
inputs in the re-trained models, for both the topmost five
and ten error-inducing input tokens. Likewise, Figure 9(c)
and (d) show the reduction in fairness violations between
the original model and the trained model for each data
augmentation configuration. Overall, we observed that AS-
TRAEA’s mitigation reduced the rate of fairness violations in
a re-trained model by 51%, on average (see Table 7). This re-
sult suggests that ASTRAEA’s bias mitigation generalises to
unseen inputs containing previously error-inducing inputs,
even when the inputs are different from the input sentences
generated by the grammar, the original training data or the

augmented training data. Indeed, there are error-inducing
input tokens that generally induce fairness violations in
sentences regardless of the task-specific input (grammar),
and ASTRAEA can identify and mitigate against such tokens
via data augmentation.

ASTRAEA’s mitigation generalises to unseen inputs: It reduces
fairness violations in unseen inputs by about half (51%), on

average.

In addition, we observed that re-training with the topmost
five (5) error-inducing tokens outperforms re-training with the
topmost 10 error-inducing tokens. Specifically, for all data
augmentation configurations (except 0.5%), re-training with
the topmost five error-inducing input tokens outperformed
re-training with the topmost 10 error-inducing tokens. For
each data augmentation configuration, models trained with
the topmost five error-inducing inputs reduced fairness vio-
lations better than models trained with the topmost 10 error
tokens. Overall, re-training with the topmost five error-
inducing input tokens is 5.67% better than re-training with
the topmost 10 error-inducing input tokens, on average. This
is also evident by the slight difference in the trend line and
R2 of the top five versus top 10 error tokens (cf. Figure 9).
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Specifically, the R2 value of the top five error tokens (0.8639
and 0.8621), is higher than that of the top 10 error tokens
(0.7723 and 0.7802). This result demonstrates the efficacy of
ASTRAEA’s identification of error tokens and the importance
of ranking the input tokens causing fairness violations.

For most configurations (12 out of 13), re-training with the
topmost five (5) error-inducing tokens outperformed re-training

with the topmost 10 tokens (by 5.67%), on average.

Finally, we observe a steady decrease in the number of fairness
violations as the sample size of the augmented data used for
model re-training increases. For instance, for the topmost five
error-inducing tokens, when 0.25% of the training data is
augmented for re-training, the observed reduction in error
rate was 35% (from 0.144 to 0.0943). Meanwhile, we ob-
served almost twice (66%) the reduction in fairness error
rate (from 0.144 to 0.0487) with 10% data augmentation (see
Table 7 and Figure 9). This is also evident in the trend lines,
showing that there is a strong positive trend (R2 > 0.7) for
all charts (see Figure 9(c) and (d)). This result implies that the
reduction in fairness error rate improves as the size of the
augmented training data increases even for unseen inputs,
i.e., our results on fairness improvements (reported in RQ3)
generalise to unseen inputs.

For unseen inputs, there is a steady reduction in fairness
violations as the size of the augmented re-training data

increases.

RQ5 Effectiveness of test optimisation: We investigate
the effectiveness of our test optimisation approach, i.e., the
probabilistic test generator (PROB). In particular, we exam-
ine the effectiveness of ASTRAEA’s PROB, in comparison
to the random test generation (RAND) (reported in RQ1).
We also compare the grammar coverage achieved by both
RAND and PROB, in order to determine whether PROB’s
test optimisation achieves a higher error rate whilst covering
fewer grammar production rules, in terms of terminal nodes
and pairwise sensitive terminals.

ASTRAEA’s probabilistic test generation approach
(PROB) outperforms the random generator (RAND), in
terms of the number of individual fairness violations found
and the total number of generated test cases. Specifically,
PROB triggered 54% (1370) more unique fairness violations
in comparison to RAND, on average (see row “Average" in
Table 5). In addition, PROB reduced the total number of
generated test cases by 10% (see row “Total" in Table 5).
Consequently, ASTRAEA’s PROB induced a higher failure
rate (61% more) than RAND, for individual fairness viola-
tions (see row “Average" in Table 5). These results show the
improvement in test generation effectiveness of our fairness
test optimizer (PROB).

PROB exposed 54% more unique individual fairness violations
than RAND.

In our evaluation, ASTRAEA’s probabilistic test genera-
tion approach (PROB) achieves less grammar coverage than
the random generator (RAND), even though, PROB reveals
more fairness errors than RAND. Overall, ASTRAEA’s PROB
covered nine percent fewer terminal nodes than RAND,
and about 20% fewer pairwise sensitive terminal nodes (see

Fig. 10: ASTRAEA versus CHECKLIST: Comparing the fault
revealing effectiveness of ASTRAEA to that of CHECKLIST w.r.t.
to the error rate, numbers atop the bars indicate the number of
fairness errors found

Table 8). This result demonstrates that PROB is able to
reveal more unique errors, despite covering fewer (error-
inducing) terminal nodes, suggesting that ASTRAEA (i.e.,
PROB) accurately learns the error-inducing input tokens
necessary to induce more unique fairness errors.

PROB achieves lower grammar coverage than RAND, despite
revealing more (54%) fairness errors.

RQ6 Comparative Effectiveness: We compare the effective-
ness of ASTRAEA to the state of the art in NLP testing,
i.e., CHECKLIST and MT-NLP. CHECKLIST is a schema
based NLP testing approach that generates valid inputs to
improve the performance of NLP systems [63], and MT-
NLP is perturbation-based fairness testing approach for
sentiment analyzers. In this experiment, we compare the
effectiveness of ASTRAEA to both approaches in revealing
fairness violations. In particular, we compare the number
of fairness violations revealed by each approach when we
feed its generated sentences to each pre-trained sentiment
analyzer in our dataset. Table 9 and Figure 10 illustrate the
comparative effectiveness of ASTRAEA and CHECKLIST on
all (6) pre-trained sentiment analyzers in our setup.

Our evaluation results show that ASTRAEA had a higher
error rate than CHECKLIST for all pre-trained models, except
for the two TextBlob sentiment anlayzers (i.e., TextBlob’s
Naive Bayes and Pattern analysis models). Figure 10 shows
that for most (four of six) of our subjects, ASTRAEA had
between 13 to 222 percent higher error rate than CHECK-
LIST. Specifically, ASTRAEA had more than three times the
error rate of CHECKLIST for both Vader and NLTK-vader
sentiment analyzers, and twice the error rate of CHECKLIST
for Stanford Core NLP (see Table 9). Meanwhile, CHECKLIST
outperformed ASTRAEA for the TextBlob models where
ASTRAEA had only a third of the error rate of CHECKLIST.
This result suggests ASTRAEA is more effective across our
subjects, and is complementary to CHECKLIST for revealing
fairness errors.

ASTRAEA had a higher error rate than CHECKLIST for most
(4/6) of our subject programs.

Additionally, we compare the effectiveness of ASTRAEA
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TABLE 8: Grammar Coverage achieved by ASTRAEA RAND versus PROB for each/all tasks, showing the RAND coverage
in normal text and PROB coverage in parenthesis “()", as well as the percentage reduction in grammar coverage achieved
by PROB, in comparison to RAND.

Tasks (#MUT) Input Terminal Symbols Pairwise Symbols
Grammar #AllSymbols #Covered % Covered #AllPairs #Covered % Covered

Coreference Resolution (3) Unambiguous 276 272 (216) 98.6 (78.3) 1449 1445 (649) 99.7 (44.8)
Ambiguous 369 369 (369) 100.0 (100.0) 4416 4158 (3434) 94.2 (77.8)

Mask Language Modeling (4) Ambiguous 284 284 (276) 100.0 (97.2) 1848 1842 (1472) 99.7 (79.7)
Sentiment Analysis (11) Ambiguous 2497 2464 (2211) 98.7 (88.5) 89089 14366 (11979) 16.1 (13.4)
Overall 3426 3389 (3072) 98.9 (89.7) 96802 21811 (17534) 22.5 (18.1)
Percentage Reduction in Coverage (%) 9.4 19.6

TABLE 9: Comparative Effectiveness: ASTRAEA versus
CHECKLIST, the higher error rates and positive improve-
ments are marked in bold

Error Rates ASTRAEA %
MUT ASTRAEA CHECKLIST Improvement

(#errors) (#errors) (#folds)
Stanford CoreNLP 0.08 (1416) 0.05 (656) 51(1.5)
VaderSentiment 0.11 (1574) 0.04 (442) 222 (3.2)
NLTK-Vader 0.10 (1319) 0.04 (442) 190 (2.9)
Google NLP 0.12 (2172) 0.11 (1344) 13 (1.1)
TextBlob I 0.08 (1131) 0.23 (2846) -67 (0.3)
TextBlob II 0.08 (1138) 0.23 (2846) -67 (0.3)

to that of previous work — MT-NLP [53]. MT-NLP is a
perturbation-based fairness testing approach for NLP sys-
tems. We compare the performance of ASTRAEA and MT-
NLP on the subject program used in Ma et al. [53], i.e.,
the popular Google NLP sentiment analyzer. Both ASTRAEA
and MT-NLP [53] were evaluated using Google’s sentiment
analysis engine.

Our results show that ASTRAEA is more effective than
MT-NLP in terms of the number of fairness errors found
and error rate. ASTRAEA’s RAND and PROB revealed 14
and 16 times as many fairness violations as MT-NLP, re-
spectively. In total, ASTRAEA found 2,172 fairness violations
(out of 17,713 generated inputs) for PROB and 1,893 viola-
tions (out of 17,711 generated inputs) for RAND (see Google
NLP in Table 9). Meanwhile, MT-NLP found 140 fairness
errors out of 30,504 generated inputs [53]. ASTRAEA also
outperforms MT-NLP in terms of error rate, it discovers
fairness errors at a rate that is 23 and 26 times higher
than that of MT-NLP, for ASTRAEA’s RAND and PROB,
respectively. Clearly, these results show that ASTRAEA is
more effective than the perturbation-based fairness testing
of MT-NLP.

ASTRAEA reveals fairness errors at a rate that is up to 26
times higher than that of MT-NLP.

RQ7 Stability of ASTRAEA’s test generation: To illustrate
the stability of ASTRAEA, we examine the impact of random-
ness on the effectiveness of ASTRAEA for both ASTRAEA
(RAND) and ASTRAEA (PROB). We compared results for
ten runs of ASTRAEA for the Coreference NLP tasks. In this
evaluation, we tested for gender bias in three MUTs, namely,
Allen NLP, Neural Coref and Stanford CoreNLP.

Overall, our evaluation reveals that ASTRAEA is stable
in terms of discovering fairness violations and the number
of generated test cases. Across all runs, ASTRAEA had a
very low standard deviation (SD). In terms of error rate,

TABLE 10: Syntactic validity of Generated Inputs

NLP Task Bias Score Alerts Grammar
Errors

Coref.

Gender Amb. 97 12 laborer ->labourer
Gender Unamb. 97 6 laborer ->labourer
Religion 97 2 laborer ->labourer
Occupation 96 5 laborer ->labourer

MLM Occupation 97 22

laborer ->labourer,
neighborhood ->
neighbourhood,
counselor ->
counsellor

Sentiment
Analysis

Gender
(Direct) 99 2 feel ->feels

Gender
(Random) 99 1

The housekeeper ->
Housekeeper
tailor made ->
tailor-made

Gender
(Occupation) 99 2 NA

Gender
(Name) 100 0 NA

Race 100 0

The The Paralegal ->
The Paralegal
The The Librarian ->
The Librarian

Neutral 90 37 feel ->feels
Average 97.4 8.1

ASTRAEA had an SD of 0.0054, on average. Specifically, in
the RAND mode, ASTRAEA had an SD of 0.0045, and in
the PROB mode, the SD was 0.0063. This demonstrates the
negligible effect of randomness on ASTRAEA’s effectiveness.
Specifically, the inherent randomness in ASTRAEA has little
impact on the number of fairness violations found or the
error rate.

ASTRAEA is stable, the effect of randomness on ASTRAEA’s
effectiveness is negligible.

RQ8 Validity of ASTRAEA’s generated inputs: This RQ
evaluates the correctness of the input grammars employed
by ASTRAEA. Specifically, this is accomplished by evaluat-
ing the syntactic and semantic validity of the resulting input
sentences. To this end, we conducted two experiments to
examine the correctness of the generated inputs and investi-
gate how ASTRAEA’s generated inputs compare to human-
written sentences, in terms of sensibility. First, we fed all
generated inputs to a grammar checker (i.e., grammarly) to
evaluate their syntactic validity. Table 10 highlights the syn-
tactic validity results for our generated inputs. Secondly, we
conducted a user study with 205 participants to evaluate the
semantic validity (i.e., sensibility) of ASTRAEA’s generated
inputs, especially in comparison to human-written input
sentences (from WINOGENDER [65]). In this experiment, we
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compare the human-rated sensibility of 10 human-written
sentences to ASTRAEA’s generated sentences, in particular,
using 10 benign sentences and 10 error-inducing sentences.
Table 11 highlights the aggregated results of our semantic
validity user study.

Syntactic Validity: Our evaluation results show that almost
all input sentences (97.4%) generated by ASTRAEA are syntacti-
cally valid. Table 10 highlights the correctness of ASTRAEA’s
generated inputs, it shows that the majority (97.4%) of
the generated sentences are syntactically valid. In addition,
we employ Grammarly to evaluate the correctness, clarity,
engagement and delivery of ASTRAEA’s generated input
sentences. Our evaluation results showed that the clarity, en-
gagement and delivery of ASTRAEA’s generated sentences
are “very clear, just right and very engaging”. Grammarly
recommended very few corrections for our generated sen-
tences, in particular, correctness alerts were low at about 8.1
alerts on average (see Table 10). Common errors found in
the generated sentences can be easily corrected by updating
the terminal symbols, more importantly, these errors do not
impact fairness checks. Found syntactic errors include errors
about English dialects (American versus British English, e.g.
“laborer" vs “labourer”), minor grammar errors (“feel" vs
“feels”) and accidental incorrect terminal symbols (“The
The paralegal” vs “The paralegal”). Overall, this result
suggests that the inputs generated by ASTRAEA are mostly
syntactically valid, and the input grammar employed for
this generation are syntactically correct.

Most input sentences (97.4%) generated by ASTRAEA are
syntactically valid.

Semantic Validity: We conducted a user study to eval-
uate the semantic validity (sensibility) of the input sen-
tences generated by ASTRAEA8. In this experiment, we
randomly selected 10 sentences from the WINOGENDER
dataset [65] and 20 sentences from the inputs generated
by ASTRAEA, specifically, ten benign sentences and ten
error-inducing sentences. The handcrafted, human-written
WINOGENDER [65] sentences are chosen as a baseline for
sensibility of input sentences, such that we can compare the
sensibility ASTRAEA’s automatically generated sentences to
human-crafted sentences. In total, we had 30 sentences for
the user study, we provide all sentences in a random order
to participants while posing the following question:

How sensible are these sentences on a scale
of one (1) to 10 (one being completely

nonsensical, 10 being perfectly sensible)?

For each sentence in the survey, we asked participants
to rate its sensibility using a 10 point Likert scale. Each
sentence was rated from one (1) to 10, with score one being
completely nonsensical, and 10 meaning perfectly sensi-
ble. The study had 205 participants recruited via Amazon
Mechanical Turk (mTurk or AMT). The user study took
approximately five hours and a study participants took
about 7 minutes and 29 seconds to complete the survey, on
average.

8. The user study form can be seen here: https://forms.gle/
bEudnfucckPkG8GP6

TABLE 11: Semantic User Study Scores

Winogender
(Baseline)

Astraea
(Overall)

Astraea
(Error)

Astraea
(Non-Error)

Mean 7.848 6.323 6.529 6.118
% drop - 19.42% 16.81% 22.04%

Median 8.50 6.75 7.00 6.50
% drop - 20.59% 17.65% 23.53%

Our evaluation results showed that ASTRAEA’s generated
sentences are mostly sensible (6.3/10), and comparable to human-
written sentence, they were rated 81% as sensible as the hand-
crafted sentences from the WINOGENDER dataset [65], on aver-
age. The set of (20) input sentences generated by ASTRAEA
had a 6.3 sensibility score, while human-written input sen-
tences (from WINOGENDER) had a 7.8 sensibility score, on
average. Table 11 highlights the sensibility score for each
set of sentences employed in our user study. In particular,
the error-inducing sentences generated by ASTRAEA were
rated mostly sensible, even slightly more sensible than the
benign sentences. Notably, ASTRAEA’s error-inducing in-
puts were rated 83% as sensible as human-written sentences
(i.e., WINOGENDER). The error-inducing sentences are also
slightly more sensible (7%) than the benign sentences gen-
erated by ASTRAEA, with benign sentences rated 6.1 versus
error-inducing sentences rated 6.5, on average (see Table 11).
This result suggests that the fairness violations induced
by ASTRAEA are from sensible and human-comprehensible
sentences.

ASTRAEA’s generated sentences are mostly sensible (6.3/10)
and almost (81%) as sensible as human written sentences.

7.3 Discussions and Future Outlook

Ethical Considerations: In this section, we consider the
ethical issues related to the use of ASTRAEA. In particular,
the ethical implications of applying ASTRAEA in analyzing
and mitigating societal biases, as well as issues relating to
the application of ASTRAEA in fairness testing, especially on
marginalized individuals and (minority) groups.
Intended Use: The intended use of ASTRAEA is to analyse,
detect and mitigate undesirable biases in text-based NLP
tasks. Although, test generation is important to ensure soft-
ware fairness for ML-based software systems, it is pertinent
to note that it is not sufficient to address the problem of
fairness in (NLP-based) software systems. Our recommen-
dation is that tools such as ASTRAEA should be deployed as
part of the ML pipeline and end-to-end analysis to validate
fairness properties. Indeed, ASTRAEA should be deployed
within the context of a well-defined societal or institutional
fairness policy. Besides, there are other concerns when ap-
plying software systems (such as ASTRAEA) to ensure fair
and inclusive ML systems. Notably, it is important to define
the social context of ASTRAEA’s application, the ethical
concerns in terms of the societal biases in consideration, the
desirable bias policy and the intended use cases of the NLP
system at hand. These concerns inform fair and inclusive
design and analysis of NLP systems. For more details on
the ethical concerns for NLP systems, Hovy and Spruit [45]

https://forms.gle/bEudnfucckPkG8GP6
https://forms.gle/bEudnfucckPkG8GP6
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provide a comprehensive survey on the social impact of
NLP systems, especially in terms of their impact on social
justice, i.e., equal opportunities for individuals and groups.

Experimental Design: In this paper, we have evaluated
ASTRAEA on a range of NLP tasks where it demonstrates
considerable benefit in improving software fairness. Beyond
fairness testing, we believe our implementation and evalu-
ation of ASTRAEA has very limited harmful applications.
ASTRAEA’s application does not risk deterring fairness,
amplifying bias, or enabling ethical or security issues such
as privacy and unintended release of personal information
or identities. In our experiments, we ensure to avoid at-
tributes that involve normative judgments that may cause
harm when interpreted pejoratively [26]. For instance, our
design of ASTRAEA ensures that generated input sentences
are strictly tied to the allowed values in the production
rules for a specific noun or pronoun, without prejudice for
specific attributes. In addition, in our experiments, we have
employed data sets, input grammars and programs that
have been made publicly available to allow for scrutiny,
reuse and reproducibilty.

Non-binary gender: In our experiments, we have only con-
sidered binary genders due to the limitations of our subject
programs. Indeed, most NLP tools do not account for non-
binary genders [45], [69], [83]. However, we do not condone
the classification of gender into binary categories. We be-
lieve such rigid classifications may be harmful, especially to
minority groups and marginalized individuals. The aim of
this work is not to perpetuate such stance or reinforce rigid
social classifications of gender. In fact, ASTRAEA allows to
test for non-binary gender, e.g., by adding their correspond-
ing non-binary nouns or pronouns to the input grammar.
This is evident in our preliminary experiments testing non-
binary genders on our subject programs. For instance, we
found that all of the coreference resolution (coref) systems
in our setup do not recognize or account for non-binary
gender (e.g., the singular they). Specifically, over 90% of
the sentences generated by ASTRAEA (containing a singular
they as a sensitive attribute) for all coreference resolution
(Coref) subject programs do not yield any output. Thus,
in our experiments, we did not evaluate for non-binary
gender, but we note that as NLP systems improve to be more
gender inclusive, ASTRAEA can be trivially extended to test
for non-binary gender. Overall, similar to the stance of the
research community [26], we believe that gender attributes
should not be binary or considered perceptually obvious
and discernible in text-based systems.

Age-related Bias: In our evaluation, we have not considered
other poorly understood biases (e.g., age-related biases).
However, we expect ASTRAEA to perform well on such
poorly understood biases provided there are input tokens
that characterize the societal bias. Extending an existing
input grammar for such biases is trivial provided there is
a well-defined age bias policy and a corresponding set of
age-related input tokens to be added to the input grammar.
As an example, fairness analysis for age-related bias for
our NLP tasks can be characterized by adding age-related
adjective as terminals, e.g., “young” versus “old”, or “teen”
versus “aged”. This is similar to how Díaz et al. [30] ad-
dressed age-related biases. To demonstrate this, we adapt

one of our grammars used for co-referencing to encode
age-related biases for the co-reference analysis task.9 It is
important to note that this is just a demonstration and the
actual efficacy of ASTRAEA’s performance on such biases
is not comprehensively understood. In the future, we plan
to study such poorly understood societal biases, we also
encourage other researchers to investigate approaches to
analyse and mitigate such under-studied societal biases.

Test Generation: Let us discuss the issues related to the
testing methodology of ASTRAEA, in particular, the choice of
test oracle and the potential to generate redundant test cases.

Alternative Test Oracles: In this paper, we have employed
metamorphic test oracles to compare the outputs of simi-
lar discriminatory input sentences. ASTRAEA requires this
oracle to automatically detect violations. For improving
fairness, we require a dataset to augment our training data
set. This augmented dataset is then used for re-training. To
achieve this, we employ a predictive oracle to determine
the ground truth output label for the newly generated test
inputs used in our data augmentation. Our predictive oracle
is based on the input grammar, in particular it checks for
the presence of certain terminals in the generated inputs
(as described in section 7.1). It is important to note that
this oracle is simple and it is only sound with respect to
the input grammar, indeed it is not sound in general for
any input sentence or grammar. Indeed, defining our rule-
based oracle for a large, complex or highly expressive input
grammar may be very difficult, incomplete and impact the
expressiveness of the input grammar and the resulting input
sentences. This is in particular a very difficult problem [9],
especially in the absence of ground truth about the output
labels of generated input sentences. Hence, it may be neces-
sary to employ more powerful or alternative test oracles for
more expressive input sentences or grammars.

Besides, there are alternative approaches to generate
predictive test oracles. For instance, other researchers have
employed probabilistic and majority voting oracles for the
same purpose. In particular, TRANSREPAIR [70] employs a
probabilistic majority voting oracle for inconsistency testing,
by feeding several similar discriminatory inputs to a model
and using the most common outcome as the ground truth.
Similarly, one can employ an ensemble of models, i.e., by
feeding a single input or several similar discriminatory in-
puts to these models, and taking the most common outcome
as the ground truth [9].

Redundant Test cases: ASTRAEA generates input sentences
by exploring the input grammar, especially in the random
(RAND) exploration mode. Hence, it may generate test
cases that are redundant, i.e., non-unique discriminatory
inputs. For instance, ASTRAEA may repeatedly generate a
set of discriminatory input sentences exposing similar fair-
ness violations. To mitigate this, ASTRAEA also has a more
targeted phase, the PROB mode (reported in RQ5). In this
phase, ASTRAEA automatically generates input sentences
that target seen fairness violations to expose more closely-
related violations. This is evident in RQ5 where ASTRAEA
reduces redundant test cases. In particular, ASTRAEA in
PROB mode generates fewer unique input sentences, and

9. See here: https://bit.ly/3s0PKKF

https://bit.ly/3s0PKKF
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yet exposed more unique fairness violations than the ran-
dom exploration mode of ASTRAEA (RAND).

In the future, we plan to investigate more targeted
approaches that can reduce the number of redundant test
cases, besides our probabilistic mode (PROB in RQ5). We
plan to reduce the number of redundant tests by exploring
alternative approaches, such as coverage-driven approaches
(e.g., OGMA [73]), mutation-driven approaches (e.g., TRAN-
SREPAIR [70]), and directed test generation approaches (e.g.,
AEQUITAS [72]).

Data Augmentation: The aim of our experiments concern-
ing model-retraining via data augmentation (in RQ3 and
RQ4) is to demonstrate that our approach is effective in
improving software fairness. Our goal is not to determine
the optimal ratio of data augmentation that achieves the
best mitigation of fairness violations. Even though our ex-
periments demonstrate that as the percentage of augmented
data increases, the rate of fairness violations decreases (see
RQ3 and RQ4), we do not ascertain the best data aug-
mentation ratio for the optimal reduction in fairness vio-
lations. Determining the best ratio for data augmentation is
a different optimization problem. In fact, this optimization
problem requires further investigation to determine when
data augmentation is sufficient to ensure maximal reduction
in fairness violations.

Disclaimer: The goal of this work is not to determine the
correct, desired or expected outcomes for a task, bias or
program, neither is it to define the societal policy that
determines the absence or presence of a violation. The focus
of our work is to allow developers the flexibility to analyze, test
and mitigate against different biases based on their use case. In
particular, based on their own defined societal or company
policy, their bias of concern and their expected behavior for
the task or program. We do not intend to define the societal
policy for bias (e.g., equality versus equity), however, our
methodology allows to check for such defined policy via
the test oracle. For instance, an equality policy can be easily
checked by ensuring the outcomes for a pair of sentences are
equal (e.g., in RQ1), and a threshold-based policy can be easily
checked by ensuring a certain threshold in the difference
in outcomes is maintained (e.g., in RQ2). This is important
because the fairness concerns of an organization may differ
depending on the task, bias or policy; our focus is to allow
the flexibility to test for different use cases.

As an example, in the individual fairness experiments
in RQ1, we assume that all predicted pronouns should be
equally likely for all occupations while testing for occu-
pational/gender bias. Meanwhile, in the case of the MLM
example in RQ2, we allow developers to test for group
fairness violations based on different threshold configura-
tions. We employed a threshold-based policy to ascertain if
there is a large disparity (exceeding the defined threshold)
between the his and her [MASK] outcomes. Likewise, we
can test for equality policy for the same MLM group fairness
task, such that we directly compare if both outcomes are
equal. In the real world, this approach translates to checking
that “all predicted outcomes should be equally likely for all
occupations”.

In summary, we do not intend to define the expected
outcome, policy or verdict for a subject program or task. We

are focused on providing a flexible approach (i.e., ASTRAEA)
that is easily amenable to test bias for different use cases,
by allowing to test for several policies, fairness criteria and
biases. Although, ASTRAEA supports testing for different
policies, we believe the definition of the desirable outcome
or tested bias policy (e.g., equality versus equity) is orthogonal
to our research and dependent on the use case. Indeed,
automatically determining the desirable outcome based on
the use case is an open problem and it should be further
studied by the research community.

8 LIMITATIONS AND THREATS TO VALIDITY

Grammar Construction and Correctness: The construction
of input grammars is relatively easy and the initial grammar
was constructed by a graduate student in 30-45 mins. We
demonstrate the ease of grammar construction by imple-
menting a wide range of grammars across three tasks,
namely Coreference Resolution, Sentiment Analysis and
Masked Language Modelling and for over fifteen models
under test. Additionally, we release the Python implemen-
tations of the grammars for future expansion.

We attempt to construct the input grammars in such a
way that the inputs generated by them are semantically
valid (by design of the grammar). This is aided by the
availability of EEC schema [50] and Winogender [65]. To
mitigate against errors that may creep into the grammar, we
use a popular online grammar checking tool Grammarly [1]
and verify generated input correctness. On average, we find
that the overall score is high at 97.4 (see Table 10).
Complex Inputs: ASTRAEA’s input grammars allow to spec-
ify and explore the input space beyond the training set.
In our evaluation setup, it was easy to construct input
grammars that expose fairness violations, within about 30
minutes. Our evaluation on NLP tasks with varying com-
plexities shows that ASTRAEA can be easily applied to NLP
tasks. Although grammars exist for some complex tasks
(such as images10), the correlation of grammar tokens and
image sensitive attributes are not yet explored. This line of
applications requires further research.
Completeness: By design, ASTRAEA is incomplete in dis-
covering fairness violations due to several reasons, namely
(1) input grammars – it can only expose the biases captured in
the employed input grammar, (2) lack of guarantees in testing
– in comparison to the guarantees afforded by verification,
ASTRAEA does not provide a guarantee or proof of fulfilling
fairness properties and (3) finite number of generated tests -
limited number of generated inputs within a reasonable
time budget. Firstly, ASTRAEA can not expose a fairness
violation if the input tokens associated with the violation are
not captured by the input grammar, hence, its effectiveness
is limited by the expressiveness of the employed input grammar.
Secondly, unlike, fairness verification approaches (such as
Albarghouthi et al. [4]), ASTRAEA is a validation approach.
Similar to typical testing approaches, it does not provide
any guarantees or proof that all fairness violations have
been exposed. Instead, it allows to explore the input space
to assess the fairness properties of NLP systems. Finally,

10. Binary format grammars for PNG and JPEG are available here:
https://www.sweetscape.com/010editor/repository/templates/

https://www.sweetscape.com/010editor/repository/templates/
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ASTRAEA is executed for a limited number of runs, till
it is saturated (i.e., no more unique inputs generated) or
all grammar production rules are explored. In the former
case there may be other potential fairness violations left
unexposed. This is because the input grammar may not have
been completely explored.

For instance, ASTRAEA runs till saturation or up to a
certain number of iterations is reached. This is due to the
absence of new unique test inputs being generated in two
successive iterations. However, it is possible to discover
more fairness violations with more iterations. For instance,
this can be accomplished by extending ASTRAEA to be
grammar coverage driven, e.g. via greedy exploration of all
pairwise combination of (sensitive) terminal symbols.
Generalizable ML: We assume all models are generalizable
to the task at hand, i.e. they should not over-fit to a specific
use case or training dataset. This assumption is reasonable
because the input space for a model, task or use case is
typically unconstrained and it is not fully captured by the
training data set. Besides, testing for out of distribution
(OOD) inputs is necessary to ensure model reliability, i.e.,
validating that an ML system generalizes beyond the biases
of its training dataset. Researchers have found that ML mod-
els can be easily fooled by out of distribution of inputs [31],
[57]. Out of distribution (OOD) testing validates that model
outputs are reliable regardless of the constraints on the
training data set. Notably, Berend et al. [11] investigated the
importance of OOD testing for ML validation and call for
the attention of data-distribution awareness during design-
ing, testing and analysis of ML software. In their empirical
study they found that distribution-aware testing is effective
in improving the reliability and robustness of ML models. In
this work, we have performed fairness testing by generating
several test cases that are mostly out of distribution (i.e.,
independent of the training dataset), but necessary to ensure
the reliability of the ML software.

In line with the findings of Berend et al. [11], we design
our experiments assuming that subject models generalize
beyond the training dataset. As an example, we expect that a
sentiment analysis model trained on movie reviews, should
generalize to other texts (e.g. conversational sentences) that
express positive, negative or neutral emotions. To dampen
this effect, we employ several models trained on varying
training datasets.
General Tasks: This refers to the generalisability of AS-
TRAEA to other (NLP) tasks. To mitigate this threat, we
evaluated ASTRAEA on three distinct NLP tasks with vary-
ing complexities, using 18 different subjects. ASTRAEA’s
effectiveness on all tested tasks and models shows it can
be easily employed for other (NLP) tasks or models.

9 CONCLUSION

In this paper, we have proposed ASTRAEA, the first
grammar-based framework to automatically discover and
diagnose fairness violations in NLP software. ASTRAEA
embodies a directed test generation strategy that leveraged
the diagnosis result and it significantly improves the test ef-
fectiveness. Moreover, the diagnosis employed by ASTRAEA
is further used to retrain NLP models and significantly
reduce the number of fairness errors. ASTRAEA is designed

to be a general fairness testing framework via an extensible
grammar. This is validated by instantiating ASTRAEA across
three different NLP tasks comprising 18 different models.
We show that ASTRAEA finds hundreds of thousands of
fairness errors in these models and significantly improves
software fairness via model re-training. ASTRAEA provides
a pathway to advance research in automated fairness testing
of NLP software – a crucial, yet underrepresented area
that requires significant attention. To reproduce and further
research activities, our tool and all experimental data are
publicly available here:

https://github.com/sakshiudeshi/Astraea
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