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The number of Connected and Autonomous Vehicles (CAVs) is increasing rapidly in various smart 
transportation services and applications, considering many benefits to society, people, and the environ-
ment. Several research surveys for CAVs were conducted by primarily focusing on various security threats 
and vulnerabilities in the domain of CAVs to classify different types of attacks, impacts of attacks, 
attack features, cyber-risk, defense methodologies against attacks, and safety standards. However, the 
importance of attack detection and prevention approaches for CAVs has not been discussed extensively 
in the state-of-the-art surveys, and there is a clear gap in the existing literature on such methodologies to 
detect new and conventional threats and protect the CAV systems from unexpected hazards on the road. 
Some surveys have a limited discussion on Attacks Detection and Prevention Systems (ADPS), but such 
surveys provide only partial coverage of different types of ADPS for CAVs. Furthermore, there is a scope 
for discussing security, privacy, and efficiency challenges in ADPS that can give an overview of important 
security and performance attributes.
This survey paper, therefore, presents the significance of CAVs in the market, potential challenges in CAVs, 
key requirements of essential security and privacy properties, various capabilities of adversaries, possible 
attacks in CAVs, and performance evaluation parameters for ADPS. An extensive analysis is discussed of 
different ADPS categories for CAVs and state-of-the-art research works based on each ADPS category that 
gives the latest findings in this research domain. This survey also discusses crucial and open security 
research problems that are required to be focused on the secure deployment of CAVs in the market.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Connected and Autonomous Vehicle (CAV) is an automotive en-
tity configured with revolutionary technologies such as sensors, 
robotics, and complex software. It automatically executes differ-
ent automotive system operations (like computation and com-
munication) for Vehicle-to-Everything (V2X) communications and 
In-Vehicle Network (IVN) data transmission through wireless tech-
nology, i.e., Dedicated Short-Range Communications (DSRC), Long-
Term Evolution (LTE, i.e., 5G/6G), or Wireless Fidelity (Wi-Fi). The 
integration of such modern technologies with Intelligent Trans-
portation Systems (ITS) is a powerful tool that can gather meaning-
ful information for data analytics and provide real-time informa-
tion and effective services to the end users, thereby benefiting so-
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ciety, vehicle passengers, other people, industrialists, governments 
in the development of a sustainable world [1], [2]. Therefore, CAVs 
are widely practiced in various applications, i.e., advanced road 
safety, business and human productivity, traffic flow and conges-
tion management, data-driven mobility, sustainability, and trans-
port accessibility. Hence, CAVs provide new business opportunities 
through next-generation automotive applications and services.

CAVs are mainly developed to offer effective productivity while 
commuting on the road. Thus, the control of various CAV compo-
nents is primarily managed by the vehicle rather than the driver. 
To make it more straightforward for the implementation purpose, 
different automation levels for a vehicle are categorized while con-
sidering the level of vehicle and driver controls. A range of these 
levels starts at level 0 (no automation) and ends at level 5 (full au-
tomation). They are classified as (i) level 0: no driving automation, 
(ii) level 1: driver assistance, (iii) level 2: partial driving automa-
tion, (iv) level 3: conditional driving automation, (v) level 4: high 
driving automation, and (vi) level 5: full driving automation. In this 
classification, the first three levels are categorized as the driving 
environment based on human driver monitoring, whereas the au-
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Fig. 1. The Overview of Connected and Autonomous Vehicle with Different Components.
tomated system monitors the driving environment in the other 
three levels [3].

1.1. Introduction of IVN and CAN

IVN is the backbone of CAVs in today’s modern vehicles for data 
computation and communication among different installed sensors 
and mechanical components within a vehicle [4]. CAVs consist of 
several Electronic Control Units (ECUs) that are connected over 
the Controller Area Network (CAN) to transmit meaningful auto-
motive instructions for further action(s). There are different com-
munication protocols for IVNs, i.e., CAN, FlexRay, Media-Oriented 
System Transport (MOST), and Local Interconnect Network (LIN). 
Among these protocols, CAN is mainly practiced in an automo-
tive network due to the effective data rate comparatively and 
bus topology to connect critical ECUs to a high-speed CAN bus 
and less-critical ECUs to a low-speed CAN bus for critical real-
time data exchanges in the IVN. Such connections facilitate the 
quick broadcasting of crucial automotive messages with a higher 
priority. Moreover, high-speed CAN, i.e., ISO 11898-2 is particu-
larly resistant to electrical interference and offers design flexibil-
ity while considering the cost of implementation. Moreover, the 
CAN protocol significantly manages arbitration and collision avoid-
ance while messages are sent simultaneously, thereby solving the 
problem of message re-transmission [5]. Fig. 1 displays the out-
line of a CAV [6], [7], [8] that connects with different types of 
ECUs, Telematics and Infotainment System (TIS) and On-Board Di-
agnostic (OBD) II through IVN to broadcast automated operational 
messages, whereas the outside world is connected via DSRC, LTE, 
or Wi-Fi for better services. Fig. 1 also presents an outline of ad-
versaries’ target CAV components to perform illegal activities by 
launching impersonation, modification, injection, CAN bus-off, and 
side-channel attacks.

The CAN bus bit rate varies from 125 kbps to 1 Mbps with a 
payload up to 8 bytes, whereas the maximum bit rate for CAN 
Flexible Data (FD) is 8 Mbps, and the payload size is 64 bytes 
in CAN-FD. The third generation, CAN eXtra Long (CAN-XL) can 
provide a bit rate of up to 10 Mbps with a payload size of up 
to 2048 bytes, and it is implemented through Internet protocol-
based services [9]. CAN in CAVs is responsible for the overall be-
havior of different system functionalities, such as steering, engine 
management, braking system, navigation, lane/parking assistance, 
indicator panel, cruise control, and power window. Technological 
developments in recent years have allowed modern vehicles to ac-
cess cloud services and to communicate with other vehicles using 
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mobile cellular connections, thereby providing valuable services. 
However, they may also introduce new attack surfaces, leading 
to advanced security vulnerabilities that can be launched to dis-
turb CAV components. Through the compromised ECU, the attacker 
can take control of the vehicle, which may result in severe conse-
quences, e.g., the attacker can alter the speed of the vehicle or stop 
the vehicle altogether [1], [10].

1.2. Market scope of CAVs

Automotive applications and services are used in various indus-
tries, such as transportation, retail, autonomous vehicles, financial, 
insurance, energy, health services, and media for multiple purposes 
that lead to a huge market scope of automotive businesses in the 
present and future world. According to a survey [11], the automo-
tive industry sector’s total annual revenue in 2014 was around 2 
trillion USD in the United States (US) only, which was 11.5% of 
US Gross Domestic Product (GDP) in the year of 2014. Around 
USD 735 billion (of the total annual revenue) was explicitly gener-
ated from autonomous vehicles [11]. While looking at the roadmap 
of the New South Wales region of Australia [12], CAVs will be 
adopted at a large scale in a service environment for different us-
ages, aiming for new economic opportunities, great connectivity 
in customers’ lives, and better accessibility of places through data 
analytics, new technologies, and strong collaborations. Moreover, 
autonomous vehicles provide functionality and services that are 
beneficial to decrease energy requirements and achieve sustainable 
mobility development. Such functionality and services include: (i) 
vehicle lightweight and rightsizing, (ii) powertrain electrification, 
(iii) platooning, and (iv) eco-driving [13].

Worldwide, e-commerce sales extensively grew to around USD 
3.5 trillion from USD 572 billion in the period of 2010-2019 [14], 
and even more people have become E-commerce customers due to 
the Covid-19 pandemic for multiple individuals and societal ben-
efits. The demand for last-mile delivery has therefore increased 
exponentially, resulting into higher delivery costs, longer delivery 
times, and fixed time slots due to limited human resources. More-
over, the environment will have negative impacts as delivery traffic 
continuously increases. Therefore, it is necessary to mitigate ad-
verse effects for a sustainable development. To deal with these 
challenges, Autonomous Vehicles (AVs) can play a significant role 
in delivering various products to customers effectively and quickly 
to fulfill customer preferences, leading to a new delivery concept 
as Anything to Consumer (X2C). Considering the trend in shopping 
(for any products), the X2C delivery market will dominate regu-
lar parcel delivery in the near future that can be possible through 
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Automated Guided Vehicles (AGVs) to deliver products in urban ar-
eas and Unmanned Aerial Vehicles (UAVs) for rural or hilly areas 
delivery, benefiting customers, businesses, and government [15]. 
Considering the significant intentions of government agencies, au-
tomotive industries, and researchers, many economic opportunities 
extensively open various ways to develop and commercialize new 
components and systems through future mobility technologies.

1.3. Security, privacy, and efficiency challenges

The market of CAVs is exponentially increasing for different au-
tomotive services and applications due to various benefits of CAN 
bus system-based CAVs that integrate the outside world and the 
IVN for better real-time data analytics. For example, CAVs inter-
act with different components (via an available central gateway in 
IVN), such as wireless sensors, other vehicles, network infrastruc-
tures, pedestrians, and other smart devices over LTE, DSRC, and 
Wi-Fi technologies for sustainable mobility. However, the nature of 
messages broadcast in CAN opens the opportunity for the attackers 
to penetrate the CAN for susceptible activities in the system. More-
over, CAN does not provide in-built authentication and encryp-
tion facilities to protect the system from potential security attacks. 
Thus, CAVs are vulnerable to many security threats in the expo-
sure of IVNs to the remote attackers [7], [8], [16], [17], [18], [79]. 
It is also demonstrated through experiments on a Jeep Cherokee 
that compromised electronic control units (ECUs) can be remotely 
accessed to broadcast forged or bogus messages on the CAN bus 
system [19], [20]. The discussed experimental results [21] revealed 
the possibility of security threats in different Bayerische Motoren 
Werke (BMW) car models, thereby the remote attacker can con-
trol the IVN of CAVs where various types of ECUs, OBD-II, and TIS 
are connected over the CAN bus. CAN is eventually susceptible to 
different security and privacy attacks due to the unavailability of 
encryption mechanisms and poor management of access control.

CAVs communicate with heterogeneous devices to deliver 
meaningful information timely and provide the best available con-
tent that enables decision-making systems to offer better efficiency 
and effective results. CAVs are also capable of gathering move-
ment and location-based data of travelers through the installed 
sensors, and this captured data can be saved into the database (by 
using cloud-assisted systems) to analyze it based on available soft-
ware, providing meaningful information to end users [22], [23], 
[24]. The automotive system in CAVs is also linked with differ-
ent user accounts to provide relevant services effectually. However, 
the exposure of IVN also directly reveals the users’ personal and 
confidential data (i.e., private conversations, user activities, vehicle 
locations, payment details, etc.). Since the design and implementa-
tion of privacy protection regulations are comprehensively pending 
for the collected data from CAVs, the collected data is shared 
among different stakeholders, such as the government, private in-
dustries (as the third-party service provider), and people [18], [25]. 
Consequently, privacy protection in CAVs is essential to avert the 
disclosure of identifiable information, vehicle tracking, and per-
sonal activities.

ECUs are resource-constrained components, and they are con-
nected over the CAN bus to regularly broadcast messages for de-
livering different automotive instructions to the receiver entities so 
the automotive system can make better decisions in CAVs, where 
the human intervention is significantly less or null. However, the 
broadcast nature also increases the computation and communica-
tion overheads on the CAN bus and receiver end. Besides, security 
mechanisms need resources during the implementation stage to 
verify the authenticity and integrity of the sender and transferred 
messages [16], [79], [87]. Therefore, it is vital to minimize the 
requirement of computational resources in attack detection and 
3

prevention solutions to quickly identify intrusions and provide pro-
tection against crucial threats in CAVs.

1.4. Motivation towards a new survey article

Several survey articles [2], [10], [17], [26], [27] on the cyber se-
curity of CAVs are presented by discussing various security threats 
and vulnerabilities in the domain of CAVs. Such articles have fo-
cused on the classification of attacks, attack features, impacts of 
attacks, cyber-risk, defense strategies against attacks, and safety 
standards. CAVs perform different IVN operations based on the 
automotive control system for effective services, but there is re-
markably less or null human interference [3]. To offer effective 
productivity and comfortable journey to vehicle passengers, CAVs 
are connected with the outside world via DSRC, LTE, or Wi-Fi [2]. 
As a result, attackers can perform adversarial activities to disrupt 
IVN functionalities by launching different attacks remotely. This 
may lead to a major disaster on the road [7], [8], [16], [17], [18]. 
It is hence necessary to effectively identify vulnerable activities, 
detect defective components, protect the automotive system, and 
recover from unexpected situations to avert infrastructure and hu-
man life damages.

An Intrusion Detection System (IDS) is a software-based proce-
dure or tool to monitor the system/network to capture any adver-
sarial incidents or activities that infringe the system’s normal func-
tionalities [28]. Attack Detection and Prevention Systems (ADPSs) 
are software-based approaches, developed to detect anomalies in 
the system and protect it from malicious activities to continue its 
operations. Though it is vital to timely detect incidents and prevent 
the automotive system, the importance on attack detection and 
prevention approaches for CAVs has not been covered extensively 
in earlier surveys [2], [17], [26], [27]. There are some surveys [1], 
[7], [10], [26], [29] with a limited discussion on attacks detection 
and prevention, but all different types of ADPSs for CAVs are un-
explored that can indeed improve the automotive system of CAVs. 
We have summarized the coverage (based on important subjects) 
of relevant recent survey articles in Table 1 to understand the sta-
tus of existing security survey articles in CAVs. We also notice that 
the significance of key requirements for CAVs (in terms of security, 
privacy, and efficiency) are not discussed substantially. This moti-
vated us to extensively discuss all ADPS categories for CAVs that 
can help detect security problems in IVN and reduce the damage 
cost through CAVs on the road. Focusing on the aforementioned 
requirements, we write a detailed survey on different categories of 
ADPS and potential challenges in these ADPSs.

1.5. Organization of paper

The remaining part of the paper is organized as follows: Sec-
tion 2 provides an overview of important security and privacy 
properties, attack scenarios, possible attacks in CAV, and per-
formance evaluation parameters for ADPS. Section 3 described 
the considered approach to include the most relevant articles in 
preparing a survey paper. Section 4 discusses the overview of dif-
ferent ADPS categories and state-of-the-art research works based 
on each ADPS category that gives the latest findings in this re-
search domain. In Section 5, we suggest important and open secu-
rity research problems that are required to be focused on for novel 
contributions in CAVs. Section 6 gives our concluding remarks on 
the survey article and intended fuzzing approaches for intrusion 
detection.

2. Key requirements for CAVs: security, privacy, and efficiency

This section discusses essential security and privacy properties 
for IVN. We explain crucial security and privacy threats that can 
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Table 1
Subject Coverage Comparison of Related Survey Articles on Connected/Autonomous Vehicles Security.

Subject [1] [2] [7] [10] [17] [26] [27] [29] This Paper

IVN security and 
privacy properties

AU ; PR AU ; IN; PR; AU ; CO; IN; AU ; AU ; PR AU ; AU ; IN; PR; — AU ; AV ; CO; IN; PR;

Attack scenarios 
and feasible attacks

� � � � � � � � �

ADPS categories 
overview

× × × � × � × � �

Analysis of 
state-of-the-art 
ADPS methods

Partial × Partial Partial × Partial × Partial Extensive

ADPS performance 
evaluation 
parameters

× × × × × � × × �

AU : authentication; AV : availability; CO: confidentiality; IN: integrity; PR: privacy;
significantly impact the IVN. We also discuss various malevolent 
ways, used for adversarial activities in IVN. Therefore, it may lead 
to security and privacy challenges that need to be addressed to 
protect the IVN from illegal actions. Moreover, different perfor-
mance parameters are explained that are useful to measure the 
performance efficiency of CAN-based ADPS and to understand the 
performance results of future ADPS universally.

2.1. Security and privacy properties

We explain relevant security and privacy properties that are 
more important in IVN as the exposures of private data and the 
system may lead to various issues in CAVs [30].

2.1.1. Authentication
When messages are exchanged over a common communication 

channel, the receiver entity should confirm the sender and data 
exactness of transferred messages to prevent misleading informa-
tion and forgery. Furthermore, confirming both entities (sender and 
receiver) through mutual authentication and key agreement mech-
anisms in two-way message communications that confirm data 
exchanges between legitimate entities is necessary. Otherwise, it 
may lead to impersonation and data modification attacks, resulting 
into infrastructure damage and/or life threats to vehicle travelers. 
ECUs are connected over the CAN bus to send relevant messages 
to execute different operations in the automotive systems, and it 
thus becomes necessary to authenticate the sender in CAVs to 
avoid counterfeit information. If the sender is not authenticated, 
then there is a possibility that adversaries can perform malicious 
actions to interrupt IVN functionality, aiming to damage the auto-
motive system in CAVs [1], [2], [7], [10], [17], [26], [27]. To satisfy 
authenticity in the CAN, various security solutions that are mainly 
designed using MACs and digital signatures can be practiced.

2.1.2. Availability
It refers to the reliability of obtained information at the receiver 

side within a stipulated time to consider as the input in further 
actions. If imperative information is unavailable to the authorized 
entity at the required time, it may lead to unfortunate events that 
can put the entire automotive system in impairment situations 
[111]. CAVs are configured with the CAN to exchange meaningful 
information (collected/given vehicular data) to perform automated 
IVN operations. Crucial automotive components (i.e., engine, power 
train, tire pressure monitoring, etc.) should receive instructions 
without any delay to execute related operations successively for 
providing an impeccable experience in autonomous vehicles. If ex-
igent data is unavailable to crucial automotive components, it may 
lead to vehicle accidents on the road that might also have direct 
risks to human life. Moreover, it is also required to send appropri-
ate messages if data delivery fails for some reason. Therefore, data 
availability is a crucial requirement in CAN-based CAVs.
4

2.1.3. Confidentiality
When messages are transferred over a public channel, it is es-

sential to ensure that only legitimate receivers understand such 
information from the sent messages to satisfy the secrecy of data. 
Data confidentiality is lost if adversaries or other entities can ex-
tract meaningful information by intercepting exchanged messages. 
A compromised device can then disclose confidential information 
while sending data into the system. IVN messages are sent over 
the CAN bus and include automotive instructions used as input 
to perform further operations. Further, transmitted messages are 
available to all connected ECUs due to the broadcast nature of the 
CAN. Thereby, suppose any compromised ECU is connected over 
the CAN bus (and there is no guarantee that other ECUs know 
the connectivity of compromised ECUs over the CAN bus). In that 
case, an adversary can use confidential information of CAVs during 
malevolent activities [7]. Thus, encryption of CAN messages has 
become essential during data transmission, but it is also vital to 
consider the resource-constraint problem in CAN while applying 
encryption techniques to satisfy data confidentiality.

2.1.4. Integrity
When messages are transferred from the sender to the receiver 

side, information should be available at the receiver entity the 
same as the sender sent it. If the receiver obtains modified in-
formation, then transmitted messages are tampered, resulting in 
the loss of data integrity. Thereby, the receiver should discard 
such altered messages without considering them. If the receiver 
accepts amended information, it may lead to different decisions, 
as the received information is used as input values for further 
operations. The functionalities in CAVs are operated based on au-
tomatic operations, and the intervention of humans is highly less 
or completely null in an automated system-monitored driving en-
vironment. Therefore, data integrity requirement becomes more 
significant in CAVs to verify the exactness of obtained messages 
from various senders. If adversaries can alter the CAN message, it 
creates data integrity problems in the system. It is also challenging 
to identify the sender in CAN to report malicious actions (per-
formed by the specific entity) due to the unavailability of sender 
information in CAN messages [2], [7], [27]. One-way hash-based 
authentication techniques are effective to avoid data tampering 
in CAN messages. Consequently, integrity is also vital in knowing 
whether exchange messages are altered or not.

2.1.5. User privacy
CAN is highly useful in automotive systems to execute various 

automated operations in CAVs, UAVs, AGVs, the health sector, and 
other related application areas, reducing/removing human moni-
toring for rich experience during the usage. In such applications, 
the system is connected to different devices for effective data an-
alytics by exchanging meaningful communications. Furthermore, 
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data is particularly crucial, so it has substantial inhibitive impacts 
on the system and its users if it does not have adequate data pro-
tection mechanisms. Thus, if data leakage is possible in CAVs, it 
can expose vehicle users’ activities, previously visited places, ve-
hicle movements, and related actions [2], [17], [27]. In order to 
avert illegal data access, it is required to ensure that only legiti-
mate entities should know vehicle users’ activities. Therefore, it is 
necessary to satisfy user privacy in CAVs.

2.2. Attacks vector

The attack vector is the way to enter the system to launch a 
diversity of attacks. We describe different possible ways for adver-
sarial activities in CAVs based on the CAN bus architecture, OBD-II, 
wireless interface, physical ports, and ECUs components [7], [8], 
[10], [18], [27].

2.2.1. External and internal adversaries
The external adversary is an outsider entity that is capable to 

receive public channel parameters (transferred over the TIS). How-
ever, the system parameters (given to the registered entities during 
the registration/initial phase) are not available to such adversaries 
as the external adversary is not registered with the system for 
legally executing various operations and communications in the 
future. Therefore, this type of adversary has limited capabilities 
to launch various attacks on the IVN components of CAVs. How-
ever, external adversaries can monitor exchanged messages (trans-
ferred over the public communication channel) to eavesdrop on 
such messages and then use such information to intercept future 
communications through adversarial actions.

An internal adversary (also known as an insider attacker) can 
be an authorized entity (who is registered with the central author-
ity) to communicate with other registered entities. Thus, an inter-
nal adversary has own credentials, system parameters, and public 
channel parameters, enabling the adversary to perform malicious 
activities (launching diverse attacks) on the IVN components, i.e., 
ECU, CAN bus network, and infotainment system. Since internal 
adversaries aim to execute illegal actions on the system as a reg-
istered entity to avoid identification and detection. It is indeed 
challenging to identify inside attackers.

2.2.2. Active and passive adversaries
An active adversary aims to interrupt prevailing functionali-

ties of the AV systems by generating/sending deceitful packets 
into the system. Thereby, it has a direct impact on the AV sys-
tems which may persist important components of CAVs (i.e., en-
gine/power train/chassis ECUs, CAN bus, gateway ECU) to perform 
abnormal actions, e.g., stop/delay messages, do changes in com-
munications, overwhelm CAN packets, etc. Since level 3/4/5 CAVs 
have very less or no human intervention, it becomes more cru-
cial to manage CAVs during unexpected events (due to adversarial 
activities on the IVN). Therefore, malicious actions by active adver-
saries are more precarious comparatively that may lead to massive 
damage to the system infrastructure and/or humans.

A passive adversary mainly targets to eavesdrop on exchanged 
messages over the CAN bus and TIS to capture/learn meaningful 
information/communications from the collected data. An adver-
sary then uses such eavesdropped data later for illegal purposes 
(i.e., forge message communications, modify messages, imperson-
ate data transmissions, etc.) to disturb the IVN components of 
CAVs. This type of adversary is not easily identifiable as passive ad-
versaries do not intercept the AV systems’ functionalities directly.

2.2.3. Local and remote adversaries
When the manufacturers/service providers install tampered/vul-

nerable hardware equipment during the device installation or up-
grading procedures, adversaries have an opportunity to connect 
5

with the automotive system devices (i.e., OBD-II, TIS, and ECUs) 
to understand on-going operations and other functionalities. Since 
such entities are overtly involved with the direct access of physical 
devices, they play a crucial role in the initialization/upgradation. 
An adversary can thus become more powerful to covertly perform 
harmful actions, making it difficult to identify such compromises. 
The risk level in CAVs is therefore disastrous in the presence of 
compromised hardware components. Hence, it is vital to protect 
CAVs from such local entities to minimize the system exposure.

Malicious code can be implemented in CAV equipments re-
motely to create backdoor vulnerabilities. This, in turn, enables the 
adversary to gain unauthorized remote control of the system/de-
vice [105], [106]. The remote attacker can then execute commands 
over malware to carry out damaging operations in CAVs and ex-
tend the scope of affecting areas through various malware vulner-
abilities. Thus, adversaries can disrupt the CAN bus system archi-
tecture, software programs, and hardware devices/designs.

2.3. Possible attacks in CAV

The conventional CAN and CAN-FD bus architectures are mostly 
used for real-time IVN communications due to the reduced cost, 
better efficiency, and simplified installation. However, they are ex-
posed to various security attacks due to system vulnerability pos-
sibilities through the common CAN/CAN-FD communication bus, 
lack of authentication mechanisms, data encryption methods, and 
wide network connectivity over DSRC, Wi-Fi, LTE, and Bluetooth. 
As a result, the adversary can launch a variety of attacks over the 
CAN bus, ECUs, OBD-II, and keyless entry systems [7], [8], [10], 
[18], [27]. We have considered important attacks based on the 
significant impact on the IVN. Thereby, the explanation of pivotal 
attacks is limited to the CAN bus architecture, OBD-II, and ECUs, 
but we have not considered Light Detection And Ranging (LiDAR), 
Radio Detection and Ranging (Radar), and Global Positioning Sys-
tem (GPS)-based attacks in the following discussion.

2.3.1. Impersonation
When the adversary gets the CAN bus network access, s/he can 

obtain all transferred messages due to the broadcast nature. Ad-
versaries can learn the way of ECU behavior, i.e., CAN identity 
(ID), transmission rate, and payload range. The sender’s informa-
tion is not involved in CAN messages, making it easier to imitate 
ECU behavior by including the same information with an identi-
cal frequency. However, there is a possibility of a Denial of Service 
(DoS) attack due to the increment in the number of CAN messages, 
but an adversary can appropriately manage the timings for send-
ing data over the CAN bus and disabling a particular ECU to launch 
an impersonation attack [2], [7].

2.3.2. Modification/fabrication
This attack is performed to alter the CAN message payload with 

bogus information as CAN is enabled with the limited security fea-
tures [8]. The erroneous data is then sent to the receiver ECUs for 
misleading and to perform faulty operations in CAVs. Attackers can 
get a CAN ID of exchanged messages through the CAN bus connec-
tivity, as well as the authentication and integrity properties are not 
implemented effectively in the CAN bus protocol. Therefore, adver-
saries can easily launch a modification attack to deliver fallacious 
information to disrupt vehicle functionalities by obstructing ECUs, 
TIS, and the CAN bus system. Since the adversary can broadcast in-
correct data by injecting malicious messages, it is also difficult to 
correctly identify a modification attack due to a small amount of 
payload in CAN messages [2], [7], [27].

2.3.3. Sybil
CAN does not offer robust security features, resulting into the 

exposure of IVN to the attackers [8]. Authentication mechanisms 
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are thus developed to protect illegal activities over the CAN bus 
architecture while exchanging CAN messages. However, the system 
requires computational resources to complete all the verification 
procedures before proceeding with the received data. All ECUs are 
connected over the CAN bus to continuously broadcast messages, 
but such ECUs are resource-constrained in nature [16], [79], [87]. 
Thus, authentication schemes should be cost-effective; otherwise, 
they may require more computational resources. Moreover, the re-
ceiver ECU takes more time to confirm the legality of received CAN 
messages, and it is overburdened with many remaining messages 
(which are required to be verified), including high-priority data, 
leading to a Sybil attack in IVN. Therefore, minimizing the impact 
of a Sybil attack is important by designing lightweight authentica-
tion protocols for CAN.

2.3.4. Replay
Messages are sent over the common CAN bus and are accessi-

ble to all the connected ECUs due to the broadcast nature of data 
transmission. The purpose of a replay attack is to stop transferred 
messages and re-transmit them (with or without modifications in 
data payload) later. Thus, the receiver ECUs cannot receive es-
sential data timely, impacting vehicle services and functionalities 
provided through an automated vehicle system. Since CAN mes-
sages include crucial and real-time information which are used as 
an input in other operations to perform further executions, the 
unavailability of CAN messages to the receiver ECUs significantly 
impacts the overall IVN system. Besides, when adversaries broad-
cast CAN messages (already captured from the CAN bus) again, it 
increases the communication overhead on the CAN bus and the 
computation cost (to authenticate delayed messages) at the re-
ceiver ECUs. CAN components thus require more computational 
resources though ECUs have limited computing power to execute 
various operations [1], [2]. Hence, detecting a replay attack quickly 
is indispensable, reducing the additional requirement of compu-
tational resources and delivering CAN messages timely to make 
accurate decisions in CAVs.

2.3.5. Injection
An adversary aims to change the sequence of legal CAN frames, 

message frequency, the number of CAN frames, and message pay-
load through an injection attack. Since CAN has limited security 
features to support authentication and encryption for transferred 
messages, adversaries can inject payload over the CAN bus (to fab-
ricate messages) at an abnormal rate with unusual CAN traffic. This 
situation leads to the generation of simulated events that direct 
CAV parts to implement automotive operations based on the given 
instructions by an adversary. Thus, it directly interrupts the ex-
ecution of crucial operations in the CAN [1], [7], [10]. Therefore, 
adequate authentication and integrity verification mechanisms are 
required to confirm exchanged CAN messages’ legitimacy and ex-
actness to protect from such attacks.

2.3.6. CAN bus-off
Connected components to the CAN bus use the arbitration field 

to find the preference of CAN messages and then decide the oc-
cupancy of the CAN bus for delivering priority data first to the 
receiver ECU(s) before sending less important data to the desti-
nation. Since CAN messages are mainly sent without encryption 
(due to the fixed size of data fields), and a robust authentication 
mechanism is not available for CAN communications, adversaries 
can send many CAN messages with the highest attribution identity 
to dominate the CAN bus. Therefore, the communication link be-
comes unavailable to deliver crucial CAN messages for legitimate 
CAV components. Besides, the adversary can send the same CAN 
messages with a high frequency to overwhelm CAN resources to 
6

make the CAN bus unavailable for normal operations and function-
alities of CAVs [1], [10].

2.3.7. Side-channel
Adversaries can easily connect with the TIS applications and 

services and collect pertinent information (e.g., timing, energy con-
sumption, cache, etc.) through connected devices (over wireless 
connectivity) with the IVN. In CAVs, in-vehicle infotainment sys-
tems can provide information, i.e., location, speed, access to related 
applications, and other data to make better decisions. Adversaries 
first analyze target systems’ activities based on the collected per-
tinent information and then launch an attack on a specific sys-
tem/user to disrupt normal operations and functionalities of the 
CAN. The target system is then exploited through analyzed data 
[31]. Since the gathered data (based on various TIS applications 
and services) may include personal information, visited location, 
and other activities of vehicle users, it may lead to user privacy 
issues. Hence, protecting the IVN and avert from potential side-
channel attacks is also important.

2.3.8. Remote sensor
Sensors support various functionalities to measure environmen-

tal details, detect objects, and share information to effectively per-
form automotive operations in CAVs. Such delivered information is 
crucial in IVN as it is used as input to make different decisions. 
There are vital sensors, i.e., camera, ultrasonic radar, LIDAR, vision, 
sonar, and GPS [99], [100], which are used in crucial applications of 
CAVs. When inaccurate values are measured and not sent correct 
information to the receivers by the installed sensors, the automo-
tive system may lead to spoofing and eavesdropping attacks [1], 
[2], [7]. Since CAN has limited security features, and demonstra-
tions confirmed that adversaries could remotely access the CAN 
[8], security risks are significant in the automotive systems as CAVs 
have very less or no human intervention. Hence, t is essential to 
regularly check the status of sensors (in terms of faulty, compro-
mised, or damaged) through intrusion detection mechanisms and 
protect data exchanges between such sensors and other IVN de-
vices with encryption schemes.

Fig. 2 displays CAV’s potential attack surface model. Different 
CAV components (i.e., IVN, physical ports, wireless interfaces, key-
less entry systems, infotainment system, and perception sensors) 
can be targeted to perform adversarial activities. The attackers can 
launch impersonation, Sybil, replay, injection, bus-off, side-channel, 
and modification attacks on the automotive driving system to in-
terrupt vehicle operations, get control of CAVs, and steal personal 
information. Essential security and privacy requirements are thus 
not satisfied while offering more comfort and intelligent vehicle 
services, leading to the insecure development of CAVs.

2.4. Performance measurement parameters in ADPS

It is vital to develop ADPS approaches that can detect abnor-
mal events and seamlessly identify the sources of such situations 
in real-time. Since designed approaches are used in CAVs for ro-
bust results, it is necessary to measure the performance efficiency 
of the developed approaches. We describe significant performance 
parameters as follows, understanding the effectiveness of various 
ADPS approaches. It is considered that each occurrence O that 
belongs to normal/regular events is considered as the positive sam-
ple, and other occurrences are considered as the negative samples 
[64], [72]. We have used notations (for Equations (1), (2), (3), and 
(4)) as T P O = the number of correctly identified positive sam-
ples, T N O = the number of correctly identified negative samples, 
F P O = the number of wrongly identified positive samples, and 
F N O = the number of wrongly identified negative samples.
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Fig. 2. The Attack Surface Model for Connected and Automotive Driving System Operations.
2.4.1. Accuracy
It is measured based on the average of faultless predictions for 

abnormal and normal events or accurate and erroneous values (oc-
curred in the system) from the total number of occurrences. The 
accuracy performance parameter formula is shown in Equation (1).

Accuracy =
∑

O
T P O +T N O

T P O +F P O +F N O +T N O

Number of O ccurrences
(1)

2.4.2. Sensitivity
It evaluates the ratio of correctly found abnormal events or er-

roneous values from the number of the same anomalous/incorrect 
occurrences. Sensitivity is computed as per Equation (2).

Sensitivity =
∑

O
T P O

T P O +F N O

Number of O ccurrences
(2)

2.4.3. Precision
The proportion of erroneous values or abnormal events (among 

the forecasted anomalous/erroneous) from the number of the same 
anomalous/incorrect occurrences is called precision, and it is cal-
culated based on Equation (3).

Precision =
∑

O
T P O

T P O +F P O

Number of O ccurrences
(3)

2.4.4. F1 score
It is the harmonic mean of precision and sensitivity, and it can 

be calculated through Equation (4).
7

F 1 Score = 2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(4)

2.4.5. Specificity
It is the proportion of the number of correctly found injected 

packets (represented as T N) to the total number of actually in-
jected packets (represented as T N + F P ), given its formula in Equa-
tion (5), where T N = true negative and F P = false positive.

Speci f icity = T N

T N + F P
(5)

3. Articles selection methodology

We first describe the considered article collection approach to 
identify related research papers for this survey article. After that, 
we discuss our results on a keyword searching process (that is 
carried out to include the most relevant papers for a more com-
prehensive and precise survey) and then explain how different 
research papers have been chosen for clear discussions.

3.1. Article collection approach

To collect relevant papers for the survey scope, we first selected 
precise keywords that are appropriate for ADPSs in connected and 
autonomous vehicles. Based on these chosen keywords, we then 
started keyword searching for the timeline of 2011-2021 on the 
topmost relevant scientific publication venues. The selected key-
words for searching are Autonomous Vehicles/Cars, Connected Vehi-
cles/Cars, Controller Area Networks, In-Vehicle Networks, Automotive 
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Networks as domain keywords, whereas Intrusion Detection is taken 
into the account as a method keyword. Domain keywords mean 
the set of networks/services, which are based on the application 
areas. If a solution-based approach, technique, or mechanism is 
proposed/introduced toward the specific problem, it is considered 
a method keyword. We considered the following scientific publica-
tion venues to search for relevant papers. Conference proceedings:
IEEE Symposium on Security and Privacy; Network and Distributed Sys-
tem Security Symposium; USENIX Security Symposium; ACM Conference 
on Computer and Communications Security; Annual Computer Security 
Applications Conference; ACM ASIA Conference on Computer and Com-
munications Security; European Symposium on Research in Computer 
Security; International Symposium on Research in Attacks, Intrusions 
and Defenses; and IEEE European Symposium on Security and Privacy; 
Journals: IEEE Transactions on Information Forensics and Security; IEEE 
Transactions on Dependable and Secure Computing; ACM Transactions 
on Privacy and Security; IEEE Transactions on Intelligent Transportation 
Systems; IEEE Transactions on Vehicular Technology; Elsevier Computers 
and Security; ACM Computing Surveys; IEEE Communications Surveys 
& Tutorials; and IEEE Access; We explicitly elucidate the method for 
selecting relevant papers and their results in the next section.

3.2. Article selection method and its results

We follow certain criteria to include papers for more discussion 
in this survey article, and they are as follows:

• A paper is included if it introduces/discusses the general con-
cept of ADPS categories is included in it.

• A paper that proposes an ADPS approach, technique, or mech-
anism for CAVs.

• A set of ADPS performance measurements for CAVs are sug-
gested/introduced.

• We have excluded poster/work-in-progress/demo papers in the 
process of relevant papers collection.

We performed keyword searching for the selected keywords, 
and the results are shown in Table 2. While considering the above-
stated criteria, all keyword hits resulted in 3295 papers from the 
chosen scientific publication venues. We then studied all these pa-
pers based on their title/content to find relevant papers to the 
survey scope, resulting in 519 papers. Finally, we did an in-depth 
study of these articles to select papers for more discussions, and 
we found the most appropriate 75 papers for ADPSs for CAVs. Out 
of these 75 papers, various ADPS approaches/techniques/mecha-
nisms are proposed in 49 papers using different ADPS categories. 
We also did a query for “Connected and Autonomous Vehicles” and 
“Attack Detection and Prevention System” into the Web of Science 
(WoS) database,1 and it resulted in 2785 and 1500 articles, respec-
tively. In [59], [88], [89], the consideration of road context is taken 
into account to improve the AV system efficiency. Here, the road 
context includes the road conditions (i.e., bend/joint/fork of roads, 
traffic light, and bump), nearby vehicles, pedestrians, weather con-
ditions (i.e., fog, rain, and snow), lights conditions (i.e., the sunrise, 
sunset, and tunnel lights). Out of 75 papers are survey articles 
and other relevant papers in which the authors have discussed the 
ADPS for CAVs. Table 2 displays query results for each keyword and 
the number of selected papers eventually for this survey, making 
it more straightforward for better understanding.

Based on our literature study of various research articles, we 
have listed different ADPS categories, such as fingerprints, parame-
ters monitoring, information-theoretic, machine learning, and mes-
sage authentication. Attack detection and prevention solutions are 

1 https://www.webofscience .com /wos.
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Table 2
Keywords Query Results on Selected Scientific Publication Venues.

Keywords First Hits Paper Title/ Content ADPS for CAVs

Autonomous Vehicles/Cars 1350 250 75
Connected Vehicles/Cars 840 174
Controller Area Networks 165 34
In-Vehicle Networks 245 39
Automotive Networks 295 14
Intrusion Detection 400 83
Total 3295 519 75

Fig. 3. ADPS Categories Distribution with the Number of Papers in Selected Scientific 
Publication Venues.

mainly proposed based on these categories to find security threats 
and attacks in CAVs. After selecting 49 papers (that proposed ADPS 
approaches/techniques/mechanisms for CAVs), we have classified 
each paper under the specific ADPS category to understand their 
solution methodology to detect intrusions in CAVs. Fig. 3 shows 
the number of papers for each ADPS category. These papers are 
considered for the literature in this survey for a detailed discus-
sion, providing extensive information to the readers.

4. Attacks detection and prevention systems (ADPS) in CAVs

An IDS is a software application or device that can find real-
time incidents (performed by attackers to disrupt routine func-
tionalities of the system) for any policy violations or suspicious 
actions by monitoring network traffic. An IDS can also act as a 
resilient protection technology for system security once standard 
technologies fail in the system [28]. CAVs are enabled with many 
automated functionalities for a safe, more intelligent, and comfort-
able journey on the road. However, it is also essential to provide a 
high level of security in CAVs to avert infrastructure damages, hu-
man losses, and business crises and provide trustworthy services 
to the users. Thus, it is required to have an ADPS in CAVs that can 
offer effective identification and protection against attacks using 
either signature or anomaly-based solutions.

The automotive system architecture includes four stages to per-
form various activities in CAVs, i.e., (i) perception, (ii) prediction, 
(iii) planning, and (iv) decision making and control, as shown in 
Fig. 4. The first two stages are classified as data acquisition and 
modeling, whereas the third and the fourth stages are catego-
rized as action parts. The first stage is to collect meaningful data 
from the camera, RADAR, LIDAR, and V2X/IVN connections. The 
second stage performs the detection, prediction, and classification 
of objects based on the given input data. The planning stage de-
termines behavior and route direction for the classified data and 
manages the automotive system based on the available resources. 
The decision-making and control stage provides appropriate auto-
motive instructions to the system to execute them adequately and 
manage the connected system components [90].

https://www.webofscience.com/wos
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Fig. 4. The Architecture Overview of Different Automotive System Implementation 
Stages in CAVs.

CAN is very limited in protecting various system components 
due to the unavailability of sufficient security features [7], [10], 
[76]. CAVs are linked to the outside world [16], [17], [18] that al-
lows adversaries for the execution of vulnerable activities in IVN 
remotely [8]. Since CAVs have considerably less or null human 
intervention [3], the failure of IVN operations may significantly im-
pact the road infrastructures and people. Thereby, it is important 
to effectively identify possible security and privacy threats over 
the IVN that can reduce/avert damages in CAVs. Developing ap-
propriate attack prevention solutions is also necessary to protect 
the automotive systems against such threats. A limited analysis 
has been presented on different types of ADPSs for CAVs and an-
alyzed some of related research works in [1], [7], [10], [26], [29]. 
We thus discuss various ADPS methods that are useful to detect 
intrusions in CAVs and to defend the automotive systems in such 
situations. Moreover, an extensive investigation is explicitly dis-
cussed on state-of-the-art research works for each ADPS category.

4.1. Introduction and analysis to ADPS methods

Attack detection and prevention solutions are proposed to de-
tect security attacks to find vulnerabilities and protect the system 
from various attacks so that the security flaws are identified be-
fore they do real damage. In CAVs, there are mainly six types of 
ADPS categories, i.e., (i) fingerprints, (ii) parameters monitoring, 
(iii) information-theoretic, (iv) machine learning, (v) message au-
thentication, and (vi) other approaches. We explicitly describe each 
ADPS category, as they are mainly used in designing attack detec-
tion and prevention solutions for CAVs.

4.1.1. Fingerprints
A fingerprint is a group of specific and unique configuration 

information that can identify devices, just as human fingerprints 
uniquely identify people. Data analysis can be applied to datasets 
such as network traffic and device configuration to extract the 
devices’ fingerprints. In general, device fingerprinting can be classi-
fied into active or passive techniques; active techniques send spe-
cially crafted packets to probe the device, while passive techniques 
monitor the network traffic to detect patterns in the network traf-
fic. Fingerprint-based IDS performs at the physical layer of the CAN 
bus, taking advantage of differences in physical properties, such as 
manufacturing variations, cabling, and aging, which allow ECU to 
be fingerprinted [26]. The digital fingerprints of the ECUs are then 
used to uniquely identify the sender of CAN messages. When the 
IDS detects an anomaly between the observed fingerprint of a CAN 
message and the profiled fingerprint of the sender’s ECU, an alert 
is raised, and unauthorized or unknown nodes will be flagged.

As the characteristics of CAN signals are hardware-defined, the 
impersonation of CAN signals is difficult to tamper ECUs for an 
attacker without physical access. However, fingerprint-based IDS 
is ineffective against masquerade attacks [38], but this problem 
can be solved using a behavior-based IDS by analyzing the net-
work traffic to create a signature. Attackers can compromise ECUs 
and use them to send malicious messages with the same physical 
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fingerprint and remains undetected by fingerprint-based IDS. Al-
though physical properties make excellent fingerprints, they vary 
with time due to changing environmental factors, especially the 
temperature and equipment aging of equipment [34]. It will re-
duce the model’s accuracy, which means that the IDS needs to be 
constantly updated with the latest fingerprints via periodic model 
retraining. Also, fingerprint-based IDS has a high computational 
demand due to the high sampling rates required to achieve ac-
curate identification of devices by fingerprinting [35].

Driver style and behavior are affected by individual experi-
ences and habits. In contrast, CAVs’ driving behavior depends on 
the road conditions and driving model and should be less varied, 
more consistent, and more stable. Therefore, device fingerprinting 
should better identify devices due to the regularity of CAN traf-
fic patterns and higher device identification accuracy. We describe 
related fingerprint-based solutions as follows.

A Clock-based IDS (CIDS) [32] is developed to find the intervals 
of recurring in-vehicle instructional messages, and this helps to es-
timate the clock skews of ECU transmitters for ECU fingerprinting 
details. Fingerprints are then used to construct a baseline of ECUs’ 
clock behaviors using the Recursive Least Squares (RLS) algorithm. 
Based on this baseline, CIDS performs a cumulative sum analysis 
to detect masquerade, fabrication, and suspension attacks over the 
CAN protocol, enabling fast identification of IVN intrusions (at a 
low false-positive rate of 0.055%) and not missing any anomalies.

An attacker identification scheme, Viden (Voltage-based at-
tacker identification), is proposed in [33] that finds the adversary 
ECU in the IVN based on the measurement and utilization of the 
voltage. Viden first determines the genuineness of the measured 
voltage signals during the ACK learning phase by checking whether 
the origin (of these signals) is from the legal message transmit-
ter or not. The transmitter ECUs’ voltage profiles are then updated 
as fingerprints based on the construction of the voltage measure-
ments. Finally, an adversary ECU is detected in the IVN using the 
voltage profiles of an ECU. Based on the shown results on two ac-
tual vehicles and a CAN bus prototype, it is feasible to fingerprint 
ECUs through voltage measurements by Viden, thereby achieving a 
low false identification rate (of 0.2%) to detect the adversary ECU 
in the system.

VoltageIDS is proposed in [34] that aims to secure in-vehicle 
CAN through unique characteristics of CAN signals as fingerprints 
of ECUs. Taking masquerade and bus-off attacks for IVN into ac-
count, VoltageIDS is designed by observing two ECUs (one legiti-
mate and another malicious) based on the sent identical signals to 
recognize the electrical characteristics of their messages, which is 
inherently challenging for the attackers to manipulate fingerprints. 
Further, VoltageIDS can also distinguish between a bus-off attack 
and errors in the system. The elevation of VoltageIDS is performed 
through actual vehicles and a CAN bus prototype setup that con-
firms the detection of intrusions in the in-vehicle CAN networks.

Scission [35] is proposed using fingerprint details (extracted 
from CAN frames) to know the sender ECU’s identification. Im-
mutable physical characteristics from analog values are used to 
confirm the authorization of a sender ECU (to send evaluated mes-
sages), enabling to detect anomalies and the identification of com-
promised ECUs in the system. Scission’s sender identification rate 
is 99.85% on average on two series production cars and a proto-
type setup. The results show that Scission can detect ECU-based 
attacks from compromised, unmonitored, and other added devices.

CAN is enabled with limited resources, and thereby, the high 
implementation costs or infringement of backward compatibility 
inhibits the deployment of CAN protocols in IVN to execute dif-
ferent functions properly. Thus, it has been found through an 
analysis in [36] that the state-of-the-art CAN ADPSs depend on 
multiple frames that are used to identify misbehavior of a cer-
tain ECU, but these frames are susceptible to a Hill-Climbing-style 
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Table 3
Comparison of State-of-the-art Fingerprints-based ADPS for Different Attributes.

Scheme Year Objective(s) Detection of Attacks Impact on 
System/Device

False Positive 
Detection

Limitations/Scope of 
Enhancement

Cho and Shin [32] 2016 Find the intervals of recurring 
in-vehicle messages;

Masquerade, Fabrication, 
Suspension;

ECU; Low Ineffective during the injection 
of irregular messages;

Cho and Shin [33] 2017 Identify the attacker ECU; Impersonation, 
Fabrication;

ECU; Low Ineffective for passive attacks by 
compromised ECUs;

Choi et al. [34] 2018 Detect intrusions without 
involving any modifications 
in the system;

Bus-off, Masquerade; ECU, CAN; Low Possibility of potential attacks 
due to the usage of frequent 
learning to understand power 
source condition variations;

Kneib et al. [35] 2018 Identify the sender ECUs to 
assess its legality and detect 
attacks from additional and 
unmonitored devices;

Modification; ECU, CAN bus; Low Detection of compromised 
sender ECU for sent frames;

Foruhandeh et al. [36] 2019 Attack detection through a 
single frame with low 
computational and data 
acquisition costs;

Impersonation; ECU; Low Analysis of other crucial security 
threats;

Kneib et al. [8] 2020 Determine attacks (based on 
compromised ECUs) with less 
computing resources;

Impersonation; ECU; Low Management of corrupt 
electrical signals, Detect attacks 
from malicious ECU only;

Sun et al. [37] 2021 Identify security 
vulnerabilities and enhance 
the security and reliability in 
CAVs;

Replay, Impersonation; Sensors; — Management of corrupt 
electrical signals;

Bhatia et al. [38] 2021 Propose a novel masquerade 
attack and identify the source 
of messages;

Masquerade, Modification, 
Replay;

ECU; Low Identification of benign and 
malicious bimodal distributions 
of voltage samples;
attack. Therefore, real-time intrusion detection and identification 
system, SIMPLE is developed to exploit the physical layer features 
of ECUs through a single frame, and ECUs can be effectively nulli-
fied. The results of the real-time vehicle and lab experiments with 
automotive-grade CAN transceivers show that the average equal er-
ror rates in SIMPLE are around 0.8985% and 0%.

The existing approaches offer good results to avert possible 
security challenges in CAN, but they require high computational 
effort and sampling rates. EASI [8] is proposed by generating the 
fingerprint from a single symbol that improves the frame identi-
fication rate (of 99.98%) with less computation effort. Further, it 
is demonstrated that comprehensive signal characteristics can be 
processed for voltage-based sender identification using machine 
learning algorithms. The results show that the computational re-
quirements and the memory footprint are reduced by 142 and 168, 
respectively. Moreover, the classification problem is solved within 
100 μs with a training time of 2.61 seconds.

The exposure of various real-world attack scenarios is designed 
to spoof the AV in [37] so that it is possible to coerce the vic-
tim to make hazardous driving decisions, leading to a fatal crash. 
Based on the field experiments, the impacts of different attack sce-
narios are analyzed through a Lincoln MKZ-based AV testbed, and 
it confirms the access feasibility of the victim AV that enables the 
attacker to compromise the security and safety of the AV system. 
To address these challenges, challenge-response authentication and 
radio frequency fingerprinting schemes are developed to detect the 
above-discussed spoofing attacks, and the spoofing detection accu-
racy is achieved at a higher rate, 98.9%.

A Voltage-based IDS (VIDS) effectively detects masquerade at-
tacks that are launched based on a single attacker. The prior ap-
proaches can overcome single attacker-based masquerade attacks. 
However, a new voltage corruption strategy [38] (based on a novel 
masquerade attack, named DUET) can be performed using two 
compromised ECUs to corrupt the bus voltages recorded by the 
VIDS: it is launched in a two-stage process (i) VIDS retraining mode: 
manipulate a victim ECU’s voltage fingerprint and (ii) VIDS opera-
tion mode: impersonate the manipulated fingerprint. The execution 
of DUET shows the possibility of a novel masquerade attack in 
VIDS. To avert DUET in addition to other ECU masquerade attacks, 
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a lightweight mitigation mechanism, RAndomized Identifier De-
fense (RAID) is proposed in [38] using a unique protocol dialect 
(spoken by all ECUs on the CAN during the VIDS retraining mode). 
RAID is compatible with each ECU in frame format generation dur-
ing VIDS retraining mode and protects against the corruption of 
ECUs’ voltage fingerprints.

Table 3 shows a comparative study of state-of-the-art finger-
prints-based ADPS based on different attributes that give a better 
overview to understand the current scenario for attacks detection 
and protection using fingerprints.

4.1.2. Parameters monitoring
Parameters Monitoring-Based ADPSs detect attacks by monitor-

ing parameters at the network and message levels. It is a two-step 
process: First, baseline traffic is established to learn how the sys-
tem behaves based on the parameters and to understand the regu-
lar traffic. Monitored traffic is then compared against the baseline, 
and the IDS flags for any abnormal traffic using anomaly-based de-
tection. Some potential network-based detection sensors presented 
in [91] are frequency, formality, location, range, correlation, proto-
col, plausibility, and consistency. Among the sensors, frequency is 
commonly used because most ECUs broadcast CAN frames regu-
larly, and their transmission intervals can be easily observed [49].

Frequency-based IDSs are simple to apply and easy to analyze 
as an intrusion will disrupt the regularity of the CAN network and 
the frequency of the system [49]. Besides, Parameters Monitoring-
based IDSs have low computational requirements as they monitor 
parameters for abnormal flow or irregular traffic in the real-time 
network. However, an IDS that uses frequency as a parameter re-
lies on the cyclic nature of CAN messages and is ineffective against 
non-periodic communications such as the locking and unlocking 
of door [49]. In addition, the timing information of CAN traffic 
depends on the priority scheme of CAN, which may significantly 
change and affect the accuracy of the IDS [48]. Lastly, fingerprint-
based IDSs and parameters monitoring-based IDSs are vulnerable 
to masquerade attacks. The driving style of CAVs is determined by 
self-driving models and produces a standard network traffic pat-
tern compared to human-monitored vehicles. Disruptions to the 
regularity of the CAV’s CAN network will have a noticeable change 
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from the baseline traffic, and it can be easily detected by pa-
rameters monitoring-based IDSs. We discuss relevant parameters 
monitoring solutions as follows.

The proliferation of ECUs and a wireless connectivity feature in 
present-day vehicles enable different functions and services, but it 
also opens the possibility of different security threats in CAN. In 
[39], the bus-off attack, a new type of DoS, is proposed over the 
de facto standard IVN protocol, which exploits the error-handling 
scheme of IVNs aiming to shut down or disconnect uncompro-
mised ECUs. The execution of a bus-off attack over actual IVN 
traffic on a CAN bus prototype and two real vehicles shows that 
this attack can be launched with the objectives of making uncom-
promised ECUs into defective ECUs and/or cessation of the com-
plete automotive network. To address this challenge in IVN, a new 
defense mechanism is designed with two countermeasures as (i) 
indication of a bus-off attack: look for consecutive error frames with 
an active error flag, and (ii) confirmation of a bus-off attack: success-
ful transmission of another message with the same ID. Another 
countermeasure can also be considered consecutive errors at the 
same bit position instead of frames.

IVN is enabled with many ECUs for various functions with In-
ternet connectivity, and thereby, it has become a top-priority tar-
get point to launch automotive network system attacks. Thus, it 
is required to have compatible network mapping tools to report 
present security weaknesses and strengths of automotive networks. 
An automotive network mapping tool is developed in [40] that 
supports finding vehicle ECUs and their communications with each 
other. However, there is a significant challenge in CAN, as CAN 
messages do not include the sender’s information. Therefore, an 
automotive network mapper tool, CANvas, is designed to know 
the information of sender ECUs based on a pairwise clock offset 
tracking algorithm and finds the receiver ECUs using a forced ECU 
isolation technique. The results confirm that CANvas can precisely 
identify ECUs in the network and the senders and receivers of CAN 
messages on the open-source Arduino Due microcontroller.

A Dynamic Identifier Virtualization (VID) mechanism is devel-
oped in [41] using random number sharing and substitution table 
methods to avert the analysis of CAN logs. Generating valid mes-
sages by the adversary thus becomes more difficult that reduces 
the possibility of bogus messages over the CAN bus. Implementing 
VID on real-time vehicles provides better results and identifies the 
adversary (who attempts reverse engineering) through imposed 
time constraints.

Attackers should know the CAN message format to carry out 
suspicious activities in IVN, but this format is owned by Origi-
nal Equipment Manufacturers (OEMs) and cannot be uniform even 
in different models of the same vehicle manufacture. Thereby, it 
is required to manually reverse-engineer the message format of 
each target vehicle, leading to inappropriate and time-taking pro-
cedures. A tool, LibreCAN [42] is developed that automatically 
translates most CAN messages with the least effort for reverse-
engineering a complete CAN communication matrix for any vehi-
cle. LibreCAN is designed with a three-phase procedure in which 
the first and second phases use two algorithms (i) signal extrac-
tion and alignment and (ii) defining the cut-off point for keeping 
pertinent signals with a high correlation value. The third phase is 
executed for snippeting recorded CAN data while performing body-
related events. The achieved results through the third phase are 
highly accurate, and the second phase outcomes relatively outper-
form. In [42], they also discussed recent steps taken to avert such 
attacks in IVNs.

An attacker manipulates the transmission time of messages, 
spoofing CAN messages by adding delays and thereby averting at-
tack detection while launching cloaking attacks on the CAN bus. 
To combat this new type of masquerade attack, the execution of 
a cloaking attack is analyzed, and it is then systematically mod-
11
eled to understand its success probability on the State-Of-The-Art 
(SOTA) and Network Time Protocol (NTP) IDSs [43]. The evaluation 
of testbed setup and in an actual vehicle (i.e., UW EcoCAR) shows 
that the NTP-based IDS is especially effectual than the SOTA IDS in 
detecting masquerade attacks, and the cloaking attack is success-
ful in NTP and SOTA IDSs. Experimental results on the collected 
data from UW EcoCAR verify that the average area deviation error 
(ADE) is 3.0% for SOTA IDS and 5.7% for NTP-based IDS.

The evaluation on an actual vehicle is performed in [44] for un-
derstanding the capability of the Pearson correlation (due to pop-
ularity for data exploration) and unsupervised learning techniques, 
i.e., k-means clustering (as they do not need extended time for the 
implementation of attack detection mechanisms and may not rely 
on the context of the data.) as well as hidden Markov model (com-
monly used for better results). Vehicle’s speed and Revolutions Per 
Minute (RPM) are mainly considered as reading parameters in [44]
due to easy observation and safe injection of bogus speed/RPM 
reading messages on the CAN bus.

The possibility of physical and cyber attacks is highly increased 
in IVN due to not having security features in wireless connectiv-
ity enabled CAN. To tackle these problems, a mechanism is first 
designed to extract real-time model values by observing the be-
havior of CAN bus messages. A specification-based automotive IDS 
based on CAN timing, SAIDuCANT [45] is then developed using 
anomaly-based supervised learning techniques with the real-time 
model. Two new metrics, time to detection and false positives be-
fore the attack, are introduced to measure the performance of an 
IDS in terms of timeliness and classifier accuracy. Real-time vehicle 
implementation results of SAIDuCANT confirm the effective detec-
tion of data injection attacks with a low false-positive rate.

Human interaction modules are installed in CAVs for different 
functions, e.g., vehicle voice control systems, but the Automatic 
Speech Recognition (ASR) module may not detect accurate/cor-
rect voice commands or may proceed further through forged voice 
inputs, thereby leading to unexpected consequences. It is a con-
siderable challenge to protect ASR systems from adversarial voice 
inputs in a hostile driving environment for driverless vehicles [46]. 
To address this problem, a three steps-based secure in-vehicle ASR 
mechanism, SIEVE [46] is developed that effectually identifies voice 
inputs given by the driver, passengers, or electronic speakers. SIEVE 
first does filtering of voice commands to distinguish the case of 
receiving the same signal multiple times in a short period from 
various sources, and it is done through autocorrelation analysis to 
find out the overlap of signals. In the second step, SIEVE checks 
whether a single-source voice input is from electronic speakers or 
humans based on a dual-domain identification technique through 
frequency domain-based acoustic characteristic, i.e., low-frequency 
energy attenuation. However, adversaries may attempt modulated 
voice inputs to disturb the ASR module. SIEVE uses time-domain 
parameters to detect non-human voice inputs effectively to de-
tect modulated voice commands. The third step differentiates voice 
inputs whether given by the driver or the passengers, as it is 
required to prioritize the driver’s voice command over the passen-
gers for the smooth moving of a car. For this, SIEVE is developed by 
leveraging the directions of voice sources by calculating the time 
difference of arrivals on a pair of close-coupled microphones. Also, 
a spectrum-based detection technique is developed for better voice 
distinction between the driver and passengers.

Localization of spiteful nodes during the node replacement/in-
stallation process is a remarkable challenge in CAN-based com-
munication mechanisms, and the existing schemes are vulnerable 
to this issue [47]. New intrusion detection and localization sys-
tem, TIDAL-CAN [47] is proposed by monitoring the propagation 
time of physical signals in which the time differences during signal 
propagation are calculated from the transmission point to the bus 
end. Furthermore, this variance is used as a location-based charac-
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teristic of the sender node to find malicious node installation/re-
placement and compromised nodes. The implementation results 
are mainly measured on the testbed setup by taking differential 
propagation delays into account, and they confirm that TIDAL-CAN 
can perform correct node classification without false positives even 
in attacks execution by compromised nodes. TIDAL-CAN can also 
identify transmitter nodes based on the attack method.

Conventional IDS methods are designed using time and fre-
quency threshold values, and thereby they may result in higher 
false alert rates [49]. A wavelet-based IDS, WINDS [49] is designed 
through continuous wavelet transform to get the exact location 
of frequency components over the time axis, leveraging to de-
tect anomalies on the CAN bus. The analysis is then performed 
based on the scale domain to capture long-time and immediate 
short-time duration attacks. WINDS was evaluated on two datasets 
(generated through three commercial vehicles). The implementa-
tion results show that WINDS can achieve the higher attack detec-
tion rate even if an attack is immediately launched on the system.

Timing parameters of CAN frames can be used to create a se-
cure channel that satisfies authentication, directly averting the re-
quirement of cryptographic mechanisms in resource-constrained 
IVN for data transmission. However, this method can achieve a 
limited security level; thus, an adversary can launch different at-
tacks on the CAN bus. In [50], an improved protocol is proposed 
through optimization algorithms (binary symmetric, randomized, 
greedy, and greatest common divisor) to schedule CAN frames 
cyclically and establish a covert channel for CAN traffic. Moreover, 
the proposed protocol can achieve higher data rates relatively on 
the covert channel due to the optimization of CAN traffic, enabling 
a 24-bit security level with six frames. The effective results can be 
achieved based on the proposed algorithms, i.e., a minimum inter-
frame distance of 500 μs and an expected arrival time in the range 
of ± 5 μs.

When a CAN identifier (ID) sequence is configured through the 
IDs of CAN signals based on their order of occurrence, it will have 
a definite pattern. However, it is hard to identify the change in 
the corresponding pattern with a minimal number of attack IDs in 
a CAN ID sequence. In such cases, conventional IDSs are not effec-
tive. In [51], an IDS is developed using two bidirectional Generative 
Pre-trained Transformer (GPT) networks to get past and future CAN 
IDs. To reduce the Negative Log-Likelihood (NLL) value of the bidi-
rectional GPT network, the proposed mechanism was inculcated 
for a typical ID sequence to detect an intrusion when the NLL value 
for a CAN ID sequence is larger than a pre-specified threshold.

Determining spoofing messages is a significant challenge due to 
the lack of sender identification and authentication in CAN. Thus, 
a delay-time-based technique, Divider, is previously proposed to 
find the sender ECU over the CAN bus. However, it is an inef-
fective solution while having ECUs with similar variations due to 
coarse time-resolution in Divider’s measurement clock, making it 
challenging to distinguish ECUs. Moreover, another problem is the 
adaptability of a delay-time drift, caused by the temperature drift 
at the ambient buses [52]. To deal with these challenges, a sender 
identification mechanism, PLI-TDC [52] is developed using a super 
fine delay-time based Physical-Layer Identification (PLI) with Time-
to-Digital Converter (TDC). PLI-TDC accurately identifies launched 
attacks on unmonitored and compromised ECUs. An accuracy rate 
of PLI-TDC is effective on a CAN bus prototype (of 99.67%) and in a 
real vehicle (of 97.04%), whereas a mean accuracy can be achieved 
around 99% in PLI-TDC.

While considering the number of transferred messages and the 
importance of on-time message delivery in IVN, CAN-FD is better 
to satisfy high bandwidth and low latency requirements. However, 
CAN-FD is susceptible to masquerade attacks due to the unavail-
ability of authentication protocols and adequate defense measures. 
In [53], a dual-pointer solution, forward-backward exploration is 
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proposed based on three methods, i.e., combination enumeration, 
forward exploration, and backward exploration for secure trans-
fer of independent CAN-FD messages in IVN. In this solution, the 
Message Authentication Code (MAC) size of each message is dy-
namically balanced through dual-pointer movement rules until the 
total payload no longer increases, providing enhanced security by 
increasing the total MAC size of CAN messages, and the forward-
backward exploration achieves better time efficiency by completing 
the exploration process. Thereby, this solution can be applied for 
trustworthy CAN-FD message transmission in IVN.

Table 4 displays a comparison outline of state-of-the-art param-
eters monitoring-based ADPS based on different attributes, making 
it easier to understand the security severity in CAVs through pa-
rameters detail.

4.1.3. Information-theoretic
Information theory is the mathematical treatment of the con-

cepts, parameters, and rules governing the transmission of mes-
sages through communication systems. Entropy is a crucial mea-
sure in information theory, which relates to the measure of disor-
der and the uncertainty associated with a random variable. IDS has 
applied entropy to detect threats based on anomalous patterns in 
the network. Entropy-based anomaly detection algorithms charac-
terize the expected behavior of a set of data based on their level 
of statistical entropy [54]. The two key underlying assumptions of 
entropy-based anomaly detection are that the entropy of messages 
generated by the information source exhibits stable statistical char-
acteristics and the anomalies introduce significant deviations in the 
statistical characteristics of the entropy. Traffic in IVN is mainly 
cyclic, and the information entropy is low and stable [55], [56], 
making entropy-based anomaly detection suitable.

Since Information-Theoretic-based IDSs depend on the data in-
formation and flow, they are independent of CAN messages’ con-
tent. Hence, it can be applied to any traffic, even proprietary mes-
sages. However, they are ineffective against attacks that target the 
content of CAN messages, i.e., masquerade attacks. The main lim-
itation of Information-Theoretic-based IDSs that it is ineffective 
against low-volume attacks, in which the attackers inject only a 
few packets per second and avoid increasing the entropy of the 
system [55]. Entropy-based IDS is ineffective against CAN messages 
with high entropy even during normal operations. Due to CAVs’ 
consistent driving style, the IVN traffic of CAVs should have lower 
randomness and higher entropy stability than that of human in-
tervention vehicles. Disruptions to the IVN traffic’s entropy should 
be more noticeable and significantly increase the system’s entropy. 
We describe information-theoretic-Based solutions as follows.

To detect the feasibility of modification and replay attacks in 
CAN, an IDS solution in [57] is designed using Bloom filters (con-
sidering its efficient time memory trade-off) that verifies frame pe-
riodicity through message identifiers and contents of the data field. 
Thus, it effectively detects modified frames by testing the frame’s 
content. In contrast, duplicate frames are identified through an IDS 
even an attacker attempts to replay frames in the optimal time 
frame. This work mainly shows the possibility of using Bloom fil-
ters in developing CAN-based IDSs to achieve better results in de-
tecting intrusions in the system.

The issues of random cable connectivity for a short duration 
and the Intermittent Connection (IC) fault are directly linked to 
the system performance. Therefore, the possibility of system-level 
failures and system performance degradation can be increased if 
these problems are not addressed effectively in CAN. Thus, it is es-
sential to precisely detect and localize the IC fault for better health 
management of CAN-based network systems. To address this prob-
lem, a systematic and practical IC fault diagnosis framework [58]
is developed for CAN-based on the collected error event pairs from 
the data link layer. The scheme extracts the positive and negative 
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Table 4
Comparison of State-of-the-art Parameters Monitoring-based Systems in Different Attributes.

Scheme Year Objective(s) Detection of 
Attacks

Impact on 
System/Device

False Positive 
Detection

Limitations/Scope of Enhancement

Cho et al. [39] 2016 Expose possible vulnerabilities 
based on a bus-off attack in IVN 
and propose a scheme to detect and 
protect this attack;

Bus-off, 
Injection;

ECU, CAN bus; Low Detection of other important 
security threats;

Kulandaivel et al. [40] 2019 Develop a network mapping tool to 
identify the senders and receivers of 
messages;

Modification, 
Bus-off, 
Fabrication;

ECU; Low Identification of itentions of 
transferred messages;

Sun et al. [41] 2019 Make CAN logs complex to avoid 
generation of valid messages 
illegally;

Injection, 
Replay;

CAN bus; — Requirement of high computational 
resources, Less complexity in the 
data field of messages to;

Pese et al. [42] 2019 Develop a message format 
translation tool of most CAN 
messages with minimal effort to 
exploit vulnerabilities faster;

— CAN 
messages;

Average Require involvement of vehicle 
OEMs to mutually agree on specific 
attributes;

Ying et al. [43] 2019 Detect masquerade and time-based 
attacks;

Replay, 
Masquerade;

CAN; Low More noise in the IDS for messages;

Othmane et al. [44] 2020 Identification of injection attacks in 
the given vehicle status, i.e., “under 
attack” or “no attack”;

Injection, 
Modification;

CAN bus; Average Not conclusive results for in-motion 
vehicle messages;

Olufowobi et al. [45] 2020 Detect threats using real-time 
schedulability response time 
analysis;

Injection, 
Impersonation, 
Replay;

ECU, CAN bus; Low Ineffective in attacks classification;

Wang et al. [46] 2020 Detect vulnerabilities in the ASR 
module and provide protection 
against such threats;

Impersonation, 
Replay;

ASR module; Low Better results in different scenarios, 
i.e., input methods, accuracy in 
noisy environment, and overlapping 
input commands;

Murvay et al. [47] 2020 Estimation the relative location of a 
transmitter node on the CAN bus;

Bus-off, 
Replay, 
Modification;

CAN; Low in specific 
conditions

Better results in different 
circumstances;

Bozdal et al. [49] 2021 Identify the behavior change 
location in the CAN traffic;

Impersonation, 
Replay, 
Bus-off;

CAN bus; Low in certain 
conditions

Effective when message frequency is 
used in the attack scenario;

Groza et al. [50] 2021 Design efficient attacks detection 
and authentication scheme using 
optimization algorithms;

Replay, 
Bus-off;

ECU, CAN bus; Low Detection of other important 
security threats;

Nam et al. [51] 2021 Detect security threats using past 
and future CAN IDs for better attack 
pattern identification;

Replay, 
Injection;

CAN bus; Low Ineffective to detect manipulated 
messages, sent by compromised 
ECUs;

Ohira et al. [52] 2021 Improve the identification accuracy 
of message senders using super fine 
delay-time with time-to-digital 
converter method;

Imperson-
ation;

ECU; Low Detection of other important 
security threats;

Xie at al. [53] 2021 Detection of masquerade attacks in 
real-time transmitted CAN-FD 
messages;

Masquerade; CAN bus; — Need more computational resources;
information from these error event pairs to combine them for di-
agnosing the IC faults. The results of the proposed framework in 
[58] can be used as insights into the characteristics of IC faults for 
quick diagnosing during different circumstances that provide bet-
ter system maintenance, improving the system reliability.

Considering only color/textural information of images is valu-
able for semantic reasoning. However, combining semantic infor-
mation and depth information of images can substantially en-
hance scene parsing performance, especially in wrongly catego-
rized based on only Red Green Blue (RGB) features. Therefore, the 
Built-in Depth-Semantic Coupled Encoding (BDSCE) [59] module 
is proposed by integrating RGB and depth features that present 
important depth-discriminative features selectively. The BDSCE is 
congruent with existing CNN-based mechanisms and can offer bet-
ter scene parsing results to address misclassification. The Depth-
Semantic Coupled Encoding Network (CEncNet) framework is de-
veloped using the BDSCE module to extend the conventional 
deep scene parsing. The implementation results on the datasets, 
Cityscape [60] and KITTI Vision Benchmark Suite [61], confirm that 
CEncNet achieves better performance than the traditional mecha-
nisms. The extensive experiments also show the effectuality of the 
BDSCE module for vehicle detection and road segmentation in city 
areas.
13
Extensibility plays a significant factor in the automotive net-
work, as it is developed based on the Electrical/Electronic (E/E) 
architectures. However, this optimization objective should be ex-
tensively considered in the design of IVN for the implementation 
of new functionality or modification in the existing functional-
ity. To consider this problem in IVN, a new extensibility model 
[62] is developed for CAN using the Mixed-Integer Linear Program-
ming (MILP) algorithm for mid-sized signal sets and the simulated 
annealing-based heuristic algorithm for industry-sized signal sets. 
Moreover, the corresponding extensibility metric for CAN-FD is de-
signed. The results (extensive implementations through synthetic 
signal sets) show the effectiveness of the proposed approaches in 
[62].

A comparative description of state-of-the-art information theo-
retic-based ADPS is given in Table 5 that makes it easier to un-
derstand the importance and effectiveness of using information-
theoretic approaches in CAVs.

4.1.4. Machine learning
Machine Learning (ML)-based IDSs have been deployed exten-

sively in network security due to their ability to detect unknown 
attacks via anomaly detection through Artificial Intelligence (AI). 
The learning process starts by analyzing provided data set to iden-
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Table 5
Comparison of State-of-the-art Information Theoretic-based Systems in Different Attributes.

Scheme Year Objective(s) Detection of 
Attacks

Impact on 
System/Device

False Positive 
Detection

Limitations/Scope of 
Enhancement

Groza and Murvay [57] 2018 Effective detection of replay or 
modification attacks;

Replay, 
Modification;

CAN bus; Average Requirement of advanced security 
features for threats protection;

Zhang et al. [58] 2019 Effective detection and accurate 
localization of the intermittent 
connection (IC) fault;

— CAN; — Requirement of a better method 
to satisfy the objective in a 
complex network;

Liu et al. [59] 2020 Enhance scene parsing performance 
results especially for clear depth 
distinction and misclassified 
through RGB-only features;

— CAN; — Advancement of performance 
results;

Xie et al. [62] 2021 Provide signal packing in the 
context of extensibility for CAN-FD;

— Network bandwidth 
utilization;

— Improvement in performance 
results;
tify patterns, learn automatically using mathematical models, and 
extract useful information to make better predictions. Machine 
learning can be classified mainly into supervised and unsupervised 
machine learning. Unsupervised learning algorithms can under-
stand and model the typical profiles of the network and report 
anomalies without any labeled data set [7]. On the other hand, su-
pervised learning algorithms learn from labeled training data and 
predict future events based on the past.

Most machine learning-Based IVN IDSs can be classified into 
the machine learning techniques applied; traditional machine 
learning and deep learning. Traditional machine learning tech-
niques, including Support Vector Machine (SVM), Decision Tree 
(DT), Random Forest (RF), and Multi-Layer Perceptron (MLP), can 
be applied to IVN IDSs for understanding the pattern of CAN net-
work data to learn the expected behavior of the system [71]. 
Deep learning techniques use artificial or deep neural networks, 
algorithms inspired by the human brain. It works by repeatedly 
learning, understanding, and tweaking the model to achieve the 
best outcome, similar to how a human would conclude. A multi-
layered structure of algorithms is applied to identify patterns and 
classify different types of information. The individual layer of the 
neural networks acts as a filter that increases the likelihood of de-
tecting and predicting a correct outcome [63].

The main advantage of ML-based IVN IDSs is their strength in 
detecting unknown attacks by reviewing large volumes of data and 
discovering trends and patterns that would not be apparent to 
humans. Furthermore, the model continuously improves accuracy 
and efficiency as more data is fed into the model. Deep learning 
also avoids the complex feature extraction step compared to tra-
ditional ML. The main disadvantage of ML-based IVN IDSs is the 
high computational requirement compared to the previous cate-
gories of IDSs [71]. In addition, a large data set is required to 
train the model and valuable data set is rare, especially those with 
attacks or abnormal traffic. The ensemble method is a technique 
that combines several base models in order to produce one opti-
mal predictive model. It has been shown to achieve the desired 
accuracy and robustness [65] and to overcome the limitation of 
machine learning techniques.

Compared to a typical vehicle, CAV relies on multiple sensors, 
including cameras, radars, and LIDARs. These CAV sensors and ECUs 
produce large quantities of highly relevant data for analysis with 
machine learning techniques. It also helps to enhance the accuracy 
and performance of the existing training models. In addition, data 
could be collected remotely for CAVs, which increases the ease of 
data collection and the volume of available training data. Related 
machine learning-based solutions are discussed as follows.

The number of CAVs will increase in the near future, and it is 
vital to detect abnormalities and discern their sources to provide a 
seamless experience for driverless vehicles in real-time. Therefore, 
anomaly detection and identification techniques are developed by 
effectively integrating a Convolutional Neural Network (CNN) and 
14
Kalman Filtering (KF) to find CAV systems’ abnormal activities. CNN 
is first applied to time-series data (acquired from various sensors), 
and images are then generated from real-time raw sensor data to 
classify them as abnormal. After that, a general framework is pro-
posed using CNN and KF with a χ2-detector (named CNN-KF) to 
detect anomalies in CAVs. The experimental results of proposed 
approaches (only CNN, only KF, and CNN-KF) are evaluated based 
on accuracy, sensitivity, precision, and F1 score. CNN-KF frame-
work collectively outperforms in these performance parameters for 
anomaly detection and identification [64].

For a compelling and comfortable journey, CAN is used in au-
tomotive systems (e.g., CAVs) to execute different functions with-
out/less human interaction. However, such automated systems are 
vulnerable to known and unidentified security threats, so it is 
necessary to detect such intrusions early to avert infrastructure 
damage and loss of human life on the road. A Dynamic Ensemble 
Selection System (DESS) [65] is developed for anomaly detection 
in which the system includes two-class and one-class classifiers 
to identify fault types (from the training data set) and unknown 
fault types. Moreover, the network features are extracted from the 
physical-layer information, and the base classifiers are then trained 
based on these network features. The implementation was carried 
out on the dataset, and the analysis confirms that anomaly detec-
tion robustness and adequate accuracy can be achieved through 
DESS than other methods, even in different fault types.

Different types of sensors in modern vehicles collect data from 
a vehicle and nearby objects to provide meaningful information 
to the vehicular communication system, enabling it to make bet-
ter decisions while moving. However, this collected data from 
sensors are susceptible to different inconsistencies (caused by er-
rors, cyberattacks, and/or faults), and thereby, the direct usage of 
sensor-generated data may lead to accidents on the road [66]. A 
Multi-Stage Attention scheme with a Long Short-Term Memory-
based CNN (MSALSTM-CNN) [66] is developed to detect anoma-
lies from sensor-generated data, helping to avoid fatal casualties 
by CAVs. In MSALSTM-CNN, multi-source sensor readings are first 
classified as either ordinary or abnormal data, and it then con-
centrates on different values of streaming readings to understand 
their importance. A weight-adjusted fine-tuned ensemble, WAVED, 
is also proposed through the optimal weight vector of classifiers to 
set a unique voting weight to anticipate each classifier and iden-
tify anomalous actions. The experimental results demonstrate that 
the MSALSTM-CNN can achieve a better anomaly detection rate 
in the case of single and mixed anomaly types. Thus, fatal ca-
sualties (caused due to anomalous data) can be reduced through 
MSALSTM-CNN.

A communication network in CAVs is vulnerable due to the un-
availability of security features in CAN and connectivity with the 
outside network for meaningful data exchanges, resulting in differ-
ent types of suspicious activities. To deal with such a situation, a 
deep learning-based IDS is designed in [67] to find out malicious 
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network activities from IVN, V2V, and V2I networks of autonomous 
vehicles. A Long-Short Term Memory (LSTM) autoencoder algo-
rithm is developed using deep learning architecture to detect in-
trusive incidents from the gateways of AVs. On the UNSW-NB15 
dataset [68], the proposed IDS can achieve 98% accuracy in detect-
ing different types of attacks, whereas 99% accuracy is achieved on 
the database of car hacking for in-vehicle communications.

IVN is susceptible to various network-based attacks due to the 
lack of security features in CAN and V2X connectivity with asso-
ciated ECUs through the gateway ECU. Therefore, a CAN Bus mes-
sage Attack Detection Framework (CAN-ADF) [69] is proposed to 
generate abnormality, detect anomalies, and validate the system 
performance for the CAN bus architecture. A rule-based method 
is designed from different network traffic characteristics and Re-
current Neural Networks (RNNs) for anomaly detection. A large 
number of CAN packets are collected from different vehicles to 
analyze the performance of CAN-ADF, showing an average accu-
racy of 99.45%. A visualization tool is designed to monitor the CAN 
bus traffic status, and it displays found attacks in the IVN system. 
CAN-ADF can be combined with other attack detection methods to 
identify a range of anomalies effectively.

The automotive system should have a trustworthy environment 
for reliable communications, as information plays a significant role 
in CAVs. In [70], a graph-based four-stage IDS is proposed to detect 
various attacks in CAN in which a graph-based technique first finds 
abnormal patterns in the dataset. After that, the median test and 
chi-squared methods are applied to differentiate the two data dis-
tributions. The experiments exhibit that the misclassification rate 
is comparatively low for the proposed IDS in [70], i.e., 4.76% for 
replay, 5.26% for DoS, and 10% for fuzzy attacks detection. All 
spoofing attacks can accurately be detected through the proposed 
method in [70], and it can achieve better accuracy up to 13.73%.

To deal with the problem of unavailability of sender informa-
tion (in sent messages over the CAN bus), an IDS is developed 
using various machine learning approaches, i.e., Support Vector 
Machine (SVM), Decision Tree (DT), Random Forest (RF), and Multi-
Layer Perceptron (MLP) for CAN [71]. The proposed IDS is applied 
to the KIA Soul car dataset to detect intrusions and the type of 
attacks based on a set of classifiers. The implementation results 
state that the RF classifier can achieve better results than DT, SVM, 
Recurrent Neural Network (RNN), Hierarchical Temporal Memory 
(HTM), and Hidden Markov Model (HMM) classifiers in the same 
context. Moreover, the precision result of SVM, MLP, RF, and DT is 
superior to HMM and RNN, but it is moderately poor than HTM.

In [72], a Histogram-based Intrusion Detection and Filtering 
(HIDF) mechanism is developed by combining a window-based IDS 
and filtering approach to identify intrusions based on windows and 
do the filtration of regular CAN packets from an attack window. An 
intrusion detection model is first developed using histograms of 
CAN traffic to understand a distinctive structure for different CAN 
traffic classes. Furthermore, a one-class SVM attack model is devel-
oped using regular CAN traffic and implemented with four attack 
variants, i.e., Gear, RPM, Fuzzy, and DoS. The experimental results 
based on two datasets demonstrate that the HIDF can accurately 
classify through a window, and the filtering system is capable of 
filtering out standard packets from abnormal windows with more 
than 95% correctness.

CAVs are configured with multiple sensors to collect relevant 
data and use it as inputs in various vehicle driving decisions. Thus, 
it is vital to ensure the reliability of such sensory information for 
errorless execution of different operations in CAVs. A Perception 
Error Attack (PEA) can fail sensors to perceive the surrounding 
driving environment accurately, and thereby, captured data may 
be faulty, leading to unexpected consequences. To address this is-
sue, a countermeasure approach is proposed, LIDAR and Image data 
Fusion for detecting perception Errors (LIFE) [73] that identifies 
15
PEAs by evaluating the data consistency between LIDAR and cam-
era image through object matching and corresponding point tech-
niques. Thus, LIFE can detect various sensory data anomalies, i.e., 
LIDAR spoofing, camera blinding, false positives/negatives during 
object identification, LIDAR/camera rotation error, and LIDAR sat-
uration/distance measurement error. Since anomalies are detected 
through LIFE, they can be forwarded to the driving system to make 
appropriate decisions. The evaluation results on the KITTI dataset 
show that LIFE provides average performance. However, LIFE can 
be improved for better performance results, i.e., reduce the number 
of false alarm instances for high intrusion detection efficiency and 
minimize the requirement of additional settings in existing CAVs.

To protect against maleficent packet attacks in CAVs, it is re-
quired to find anomalies effectively; otherwise, the automated sys-
tem may lead to unexpected situations, resulting in risky commute 
and infrastructure damages. Thus, an event-triggered interval-
based mechanism is proposed using machine learning to identify 
abnormalities and detect attacks in IVN [74]. Four attack scenarios 
are first defined based on CAN messages to understand normal and 
malicious driving data in the context of IVN. The event-triggered 
interval of CAN identities is then analyzed and measured in their 
statistical instants by considering the fixed time window. The re-
sults of the experiment over actual driving data demonstrate that 
the proposed method in [74] can quickly identify anomalies and 
achieve better performance in attack type identification, time, and 
anomaly detection.

Table 6 shows an analogical study of state-of-the-art machine 
learning-based ADPS. It compares recent ADPS solutions to know 
their efficacy in various attributes.

4.1.5. Message authentication
Message authentication is used widely in information security 

to ensure that data integrity and authenticity are preserved while 
in transit and allow the receiver to verify the source of mes-
sages. Common message authentication mechanisms include MACs, 
Authenticated Encryption (AE), and digital signatures. CAN does 
not have a built-in authentication process, making it vulnerable 
to masquerade attacks. However, the deployment of cryptographic 
methods is complex due to the CAN protocol’s low throughput and 
limited bandwidth. Researchers have looked into several ways, in-
cluding message authentication and covert channels, to meet the 
specific deployment criteria in IVNs.

The most important benefit of message authentication is the 
protection against masquerade attacks, as CAN is a broadcast pro-
tocol without authentication. However, most message authentica-
tion solutions require modifications of the CAN protocol or the 
introduction of additional information on the CAN frame. In addi-
tion, generating MACs and checksums increases the computational 
workload of the already resource-constrained ECUs. As compared 
to IDSs, message authentication is harder to deploy on existing ve-
hicles as it requires either the manipulation of the CAN hardware 
or the addition of new hardware such as key server and Trusted 
Platform Module (TPM). We discuss relevant message authentica-
tion mechanisms as follows.

CAN control messages are crucial in IVN, but the sender infor-
mation is unavailable in CAN messages, leading to denial of service, 
impersonation, and data alteration challenges. A security protocol 
is proposed in [16] to deal with such challenges using authenti-
cation and data encryption mechanisms. The proposed scheme is 
designed with a MAC (to remedy the fixed data payload size of 
CAN data frames) and key management approach to provide se-
cure exchanges between in-vehicle ECUs and external devices. The 
experimental results based on a manufactured ECU demonstrate 
the possibility of an attack over wireless connectivity through a 
malicious smartphone app. Performance analysis shows that the 
proposed protocol in [16] takes less computational resources, but 
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Table 6
Comparison of State-of-the-art Machine Learning-based Systems in Various Features.

Scheme Year Objective(s) Detection of Attacks Impact on 
System/Device

False Positive 
Detection

Limitations/Scope of 
Enhancement

VanWyk et al. [64] 2019 Detection of abnormalities and 
source identification of attackers;

Injection and 
impersonation attacks;

Sensors Low Provided results in certain 
conditions;

Yang et al. [65] 2019 Identify abnormality in advance 
and develop an accurate and 
stable anomaly detector;

Delayed operations; CAN communi-
cations;

Average Detection of transient faults;

Javed et al. [66] 2020 On-time detection of anomalies 
in CAVs;

System damage; Automotive 
system;

Low Requirement of the prediction 
votes above 50%

Ashraf et al. [67] 2020 Discover susceptible actions over 
IVN, V2V, and V2I networks;

DoS, replay, and 
impersonation attacks;

V2X and IVN 
connectivity;

Low Require to improve an IDS for 
accurate attacks categorization;

Tariq et al. [69] 2020 Detect CAN bus attacks; Replay, injection, and 
bus-off attacks;

CAN bus; Low Able to detect specific attacks;

Islam et al. [70] 2020 Detect attacks in CAN; Replay, impersonation, 
injection, and bus-off 
attacks;

CAN; Low Possibility to reduce the 
misclassification of attacks;

Moulahi et al. [71] 2021 Comparative study of machine 
learning approaches for attacks 
detection;

Replay, injection, and 
impersonation attacks;

CAN; — High computational resources 
and enough data;

Derhab et al. [72] 2021 Find intrusions by assembling 
the CAN packets into windows 
to classify the traffic;

Impersonation, replay, and 
injection attacks;

CAN; Low More efficient and lightweight 
IDS;

Liu et al. [73] 2021 Protect CAVs against perception 
error attacks;

Impersonation and 
injection attacks;

Sensors; Low Need to improve for 
optimization results;

Han et al. [74] 2021 Detection and identification of 
anomalies through the periodic 
event-triggered interval;

Modification, replay, 
injection, bus-off attacks;

ECU, CAN bus; Low Required to design a method for 
better intrusion detection time;
it is susceptible to encryption key compromising, authentication 
attacks, and session key leakage.

A compromised Compact Disk (CD) player can execute crucial 
operations, i.e., accelerate in CAVs. A LIghtwEight Authentication 
scheme for CAN, LEIA [75] is proposed to verify ECUs and protect 
them from compromised vehicle components. LEIA runs under the 
exact time and bandwidth constraints of automotive applications, 
and it is designed using unidirectional authentication in which a 
method of signaling technique is applied with the session key to 
check whether any of the subscribed ECUs follows the synchro-
nization/authentication process or not. Security analysis of LEIA 
confirms the protection against chosen-plaintext attacks.

Present-day automobile systems are susceptible to various se-
curity threats, compromising vehicle travelers’ physical safety. A 
new ECU architecture is proposed in [76] for automotive cyber-
physical systems to satisfy security and performance attributes 
effectively. It is implemented on the Xilinx Automotive Spartan-6 
field-programmable gate array and NXP iMX6Q SABRE automotive 
board. The results confirm lower computation time and response 
time in [76].

Sharing a secret key in CAN is a challenging task due to the 
broadcast nature of the CAN bus architecture. A protocol suite [77]
is suggested for the secure exchange of keys over the CAN bus, and 
it is a combination of time-triggered mini-max and randomized 
delay key negotiation, which allows piggybacking frames with the 
keys’ portions for secure computation of a session key. Moreover, 
CAN frames can be sent through the Diffie-Hellman (DH) version 
of the Encrypted Key Exchange (EKE) and Simple Password Expo-
nential Key Exchange (SPEKE) protocols. The implementation was 
carried out on high-end controllers over Infineon Aurix cores (i.e., 
TC297 and TC277), and the outcome achieves reasonable results 
based on simple bus-based key negotiation and EKE/SPEKE-DH key 
sharing approaches.

A keyless entry system is more convenient for CAV users, but it 
is susceptible to signal-relaying and network range attacks, making 
it difficult to distinguish an authorized door unlock request from 
a spiteful signal. An RF-fingerprinting technique, HOld the DOoR 
(HODOR) [78] is proposed to identify attacks in the keyless entry 
systems. HODOR is developed as a sub-authentication mechanism 
based on ultra-high frequency band RF signals to implement on ex-
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isting authentication processes (of keyless entry systems) without 
any modifications. The implementation results show that HODOR 
provides satisfactory results as the average false positive rate of 
0.27% and the false-negative rate of 0% while considering the de-
tection of simulated attacks. HODOR achieves the false-positive 
rate of 1.32% to detect legal key determination under the non-line-
of-sight conditions.

CAN communications are unprotected in IVN, leading vehicles 
towards adversarial activities based on wired/wireless attacks. An 
efficient authentication protocol suite is proposed in [79] to pro-
vide a secure connection for transmitting remote frame requests 
and updating session keys between in-vehicle ECUs and external 
devices through entity authentication and key management using 
ECC. The proposed protocol in [79] achieves better security and 
performance results than [16], but it is vulnerable to encryption 
key compromising and authentication attacks.

Modern cars are configured with different ECUs, including 
safety-critical, and the possibility of remote access is demonstrated 
to perform malicious activities in the CAN, allowing an attacker to 
control a vehicle. The existing message authentication protocols 
for CAN are either vulnerable to masquerade attacks or require 
hardware modification to protect against such attacks. A new Mu-
tual AUTHentication scheme, MAuth-CAN [80] is proposed using 
a unique session authentication key (computed through its seed 
value of an ECU) for each ECU to resist masquerade and bus-off 
attacks. The performance of MAuth-CAN was evaluated over em-
bedded devices and using the CANoe software tool for simulation, 
and it is noticed that it relatively takes more computation time. 
However, it is required to reduce the computation time during the 
authentication process, as CAN is used in CAVs and other safety-
critical applications.

A significant problem of session key agreement over AUTo-
motive Open System ARchitecture (AUTOSAR) compliance is not 
resolved effectively, even though various message authentication 
protocols are proposed for CAN communications. An AUTOSAR-
compliant key management architecture is proposed in [81] by 
considering practical requirements for the automotive system. Fur-
ther, a baseline Session Key Distribution protoCol (SKDC) is de-
signed to provide various security functionalities, and a new Secret 
Sharing key Transfer (SSKT) protocol is proposed to achieve better 
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communication efficiency results. The implementation of Arduino 
IDE and the CAN Bus Shield library confirms that SSKT provides 
better computation and communication results.

CAN FD is advantageous for data transmission in IVN because 
of its bit-rate capacity (of 8 Mbps) and payload size (of 64 bytes). 
However, it is vulnerable to masquerade attacks due to the unavail-
ability of adequate authentication protocols. In [82], a two-stage 
scheme is proposed with two algorithms for security improve-
ments for CAN FD communications. The first stage is performed 
to get the lower bound of an in-vehicle application by omitting 
most sequences through a quick sequence abandoning algorithm. 
The laxity interval values are obtained from the lower bound to the 
deadline. In the second stage, the round accumulation algorithm is 
executed to enhance the security using MACs to CAN FD messages. 
The performance analysis results show that the proposed scheme 
is suitable for enhancing IVN communications security.

In CAVs, it is necessary to protect the TIS, ECUs, and OBD-II 
ports against message spoofing attacks due to their importance in 
IVN. A CAN bus authentication scheme is proposed in [83] that 
uses message physical layer features, i.e., message arrival intervals 
and signal voltages, applying a reinforcement learning approach 
to select the authentication mode and parameter. The proposed 
scheme achieves better authentication accuracy without modifying 
the CAN bus protocol’s ECU parts. Moreover, a deep learning-based 
authentication scheme is proposed using a hierarchical structure 
and two deep neural networks, reducing the exploration time and 
compressing the high-dimensional state space with fully exploiting 
physical layer features. Thus, it provides superior authentication ef-
ficiency over the CAN bus, as it is verified through a test-bed setup 
with embedded devices.

Recent security experiments demonstrated the possibility of il-
legal access to car functionalities and vehicle theft, making modern 
vehicles vulnerable in different ways. To deal with these chal-
lenges, secure access and feature activation scheme is proposed 
in [84] based on TPM 2.0 (acting as a trust anchor in a vehicle), 
and thereby, it provides a fine-granular authorization mechanism. 
Moreover, this proposed system can protect against potential secu-
rity attacks in automotive scenarios. The experimental results on 
Raspberry Pi show that it can achieve good performance results, 
but it could be improved for better performance efficiency to en-
able superior performance in automotive systems.

The secure exchange of cryptographic keys between ECUs is a 
significant challenge for secure IVN communications. In [85], au-
thors evaluated the key exchange protocol based on a standard-
ized National Institute of Standards and Technology (NIST) elliptic 
curve and FourQ curve of the Diffie-Hellman. The implementation 
results of these protocols over Infineon and ARM core processor 
platforms show effective performance for CAN and CAN FD. It is 
also noticed that the computation time is more crucial than band-
width, as the execution time of the elliptic curve is relatively high.

Attackers can launch masquerade, suspension, and injection 
attacks on the CAN bus due to the lack of appropriate built-
in authentication and encryption mechanisms, resulting in life-
damaging consequences. A Transmitter Authentication scheme in 
CAN (TACAN) is proposed in [86] to offer secure authentication be-
tween deployed ECUs over the CAN bus architecture through three 
different covert channels (inter-arrival time-based, least significant 
bit-based, and hybrid). Further, TACAN can be implemented with-
out CAN protocol modifications and communication overheads. The 
extensive experimental results on Chevrolet Camaro 2016 and Toy-
ota Camry 2010 datasets demonstrate that TACAN effectively de-
tects CAN bus attacks and achieves better results when evaluating 
bit error and throughput performance parameters.

Table 7 presents a comparative study of state-of-the-art mes-
sage authentication-based ADPS. This table gives a better overview 
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of relevant ADPS solutions to understand their efficacy in various 
features.

4.1.6. Other approaches
Some other approaches are helpful in detecting various security 

attacks and providing protection against them.
Anti Analysis: Attestation is the mechanism in which software ver-
ifies the authenticity and integrity of the hardware and software of 
a device. In today’s CAVs, ECUs use flash memory that allows au-
thorized entities to update or flash a new version of the firmware. 
Although firmware updates, especially common in CAVs, fix known 
bugs and security holes in the software, it increases the attack 
surface. Therefore, knowing when the system’s integrity has been 
compromised is crucial, which can be achieved by using crypto-
graphically secure techniques such as firmware attestation, MAC, 
and hash-value authentication. The firmware attestation scheme is 
a challenge and response type of protocol. Two main entities are 
involved in the attestation process, a challenger (the attester) and 
a respondent (the ECU being attested) [92].

The most important feature of anti-analysis-based ADPS is the 
integrity of the firmware, which allows each ECU to learn about the 
security stance of other ECUs in the vehicle. Furthermore, a decen-
tralized attestation process is more robust and can independently 
attest to the state of the whole vehicle. However, anti-analysis-
based IDS is ineffective against attacks on the program without 
affecting the state of the firmware. It includes attacks in the cur-
rent memory program and on the trusted hardware, affecting the 
attestation process’s trustability.
Post Protection: Firmware Over-The-Air (FOTA) update is the pro-
cess of distributing new firmware via the wireless medium (i.e., 
Wi-Fi and cellular network) to update the application that runs on 
top of the operating system. The updates usually come with soft-
ware fixes, new features, and enhancements for the vehicles. This 
process updates the whole software stack and replaces the operat-
ing system and application. FOTA is especially critical for CAVs, as 
they are constantly connected to the external networks and need 
to be updated fast to deal with new threats and environments 
regularly. A secure firmware over-the-air update can prevent the 
firmware from compromising [10].
Fuzzing: Fuzzing is a security testing technique that attempts to 
find software bugs by injecting randomly generated valid and in-
valid inputs into a program. A fuzzer software is usually used to 
automatically create a set of test values. A normal program would 
expect to receive structured inputs, and fuzzing stress tests the ap-
plication to create unexpected behavior or crashes. CAN can expose 
unknown vulnerabilities in the ECU software while fuzzing is ap-
plied on CAN traffic [93].

Fuzzing on ECUs is more challenging due to car manufacturers’ 
different proprietary CAN databases. The CAN database is specified 
in the Database Container (DBC) format file, a text file containing 
information for decoding raw CAN bus data to “physical values.” 
While black-box methods such as brute-force and random search 
can work without the CAN database, they are inefficient due to 
the infinite number of possible inputs. Fuzzing detects loopholes in 
software reliably without false positives, increasing the robustness 
of car software. With the advent of CAVs, fuzzing will be more im-
portant as more software is deployed and the connected vehicles 
suffer similar security vulnerabilities to other computer-based net-
work systems. In addition, fuzzing can help discover vehicle system 
functions that car manufacturers may not know [94].

Fig. 5 displays potential adversarial activities (at the first level) 
that can be carried out to damage CAVs. Various attack detection 
and prevention categories are linked to specific malicious exploits 
that help to understand their effectiveness in identifying intrusions 
and prevent against them. Different autonomous vehicle compo-
nents are presented under each ADPS category to protect them 
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Table 7
Comparison of State-of-the-art Message Authentication-based Protocols among Different Attributes.

Scheme Year Objective(s) Protection for 
Attacks

Impact on 
System/Device

Computational 
Resource 
Requirement

Limitations/Scope of 
Enhancement

Woo et al. [16] 2014 Provide protection against 
long-range wireless attacks;

Replay, Injection; ECUs; High; Weak against authentication 
attacks;

Radu and Garcia [75] 2016 To provide mutual 
authentication between ECUs

Modification, 
Impersonation, 
Chosen message, 
Injection;

ECUs, CAN bus; — Require to analyze 
performance results in 
addition to security analysis;

Poudel and Munir [76] 2018 Design an ECU architecture by 
integrating security and 
dependability attributes with 
low computational resources 
overhead;

Injection, 
Eavesdropping;

ECUs; Low Secure storage/genera-
tion/distribution of keys, 
authentication of ECUs, and 
privacy regulations;

Groza et al. [77] 2019 Provide secure key exchanges 
between two CAN components;

Impersonation; ECUs, CAN; Average Not enough security strength 
to resist current cyberattacks;

Joo et al. [78] 2020 Attacks detection on keyless 
entry systems, exploiting the 
RF-fingerprint technique;

Relay, Injection; Keyless entry 
systems;

Average Identification of a variety of 
security threats in keyless 
entry systems;

Palaniswamy et al. [79] 2020 Provide secure key computations 
and update for IVN operations;

Impersonation, 
replay, and 
man-in-the-middle;

ECUs, CAN; Average Session key availability to 
compromised ECUs;

Jo et al. [80] 2020 Provide authentication protocol 
to resist masquerade attacks 
without utilizing fully network 
capacity and requiring hardware 
changes

Masquerade, 
Bus-off, Replay, 
Fabrication;

CAN; Average Require to improve 
performance in different 
parameters, i.e., the waiting 
time;

Xiao et al. [81] 2020 Effective session key 
establishment and secure 
distribution;

Impersonation, 
Replay;

CAN/CAN-FD 
bus;

Average Possibility to minimize the 
resource requirement;

Xie et al. [82] 2020 Enhancement of security in 
CAN-FD;

Masquerade; CAN; Low New designs for non-parallel 
IVN applications with 
security enhancements;

Xiao et al. [83] 2021 Enhance authentication accuracy 
without changing the CAN bus 
protocol or the ECUs and 
requiring knowledge of the 
spoofing model;

Impersonation, 
Replay, Bus-off, 
Man-in-the-middle;

ECUs, CAN bus; — Need to improve 
performance results and 
provide protection for the 
monitor and ECUs;

Plappert et al. [84] 2021 Provide a secure access and 
feature activation system to 
protect potential security 
threats;

Injection, 
Modification, 
Replay, 
Eavesdropping, 
Man-in-the-middle;

Trusted Trusted 
Module (TPM);

Average Possibility to minimize the 
overhead and improve TPM 
2.0-inherent policy;

Musuroi et al. [85] 2021 To securely exchange 
cryptographic keys between 
ECUs with fast computations;

Impersonation, 
Replay;

CAN bus; Average; Require to give attention on 
the group key exchange 
method for high performance 
results;

Ying et al. [86] 2021 Provides secure authentication 
for connected ECUs over CAN;

Injection, 
Impersonation;

ECUs, CAN; Average; Possibility to improve 
performance results for quick 
and better protection against 
attacks;

Fig. 5. Correlation of Different ADPS Methods with Various Affecting IVN Components.
18
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from system damage. This graphical presentation gives a better 
understanding of the linkage among adversary interests, ADPS, 
and relevant vehicle components. This, in turn, helps researchers 
in developing effective security solutions. Researchers have de-
veloped various security solutions using different ADPS categories 
to improve the automotive system’s strengths against vulnerable 
activities. However, technological development imposes advanced 
threats on the automotive systems, leading to new security and 
performance challenges.

5. Research directions for CAVs

Modern vehicles are connected with external interfaces, several 
software modules, and many ECUs via OBD-II. That exposes CAVs 
to malicious activities with conventional and new security threats. 
The market for CAVs is rapidly increasing to provide more ad-
vanced transportation services and comfortable journeys. Hence, it 
has become essential to detect security vulnerabilities and faults in 
CAVs; otherwise, it can create chaos on the road, causing undesired 
consequences, human life risk, or infrastructure damage. Besides, 
there are other approaches (i.e., keyless entry system, telematics, 
DSRC/Bluetooth/LTE/Wi-Fi technologies, and Global Positioning Sys-
tem) through which adversaries can target the automotive system 
for susceptible activities in CAVs. The keyless entry system has re-
ceived the highest attention from adversaries for malicious actions 
by performing signal relay attacks. We, therefore, discuss key re-
search problems and open challenges for ADPS of CAVs.

5.1. Systematic fuzz testing methodologies

Datasets with normal and attack scenarios are commonly used 
to identify security threats and validate novel attack detection 
techniques. However, limited research works are available on the 
collection and validation of the attacks data [7]. Such realistic 
datasets are valuable assets to the research community to con-
tinuously improve the resilience of security assessment solutions 
for CAVs and accurately measure the performance of attack detec-
tion strategies. Since the market of CAVs is increasing rapidly to 
enable society with advanced transportation services and applica-
tions, there is an immediate need to develop systematic fuzzing-
based security testing techniques. Such fuzz testing methodologies 
may facilitate continuous testing for a variety of attacks to real-
ize the resilience of CAV systems and evaluate the effectiveness 
of attack detection and prevention approaches in a real-time envi-
ronment based on different performance measurement parameters, 
e.g., accuracy, timing, sensitivity, etc. Moreover, the progress in 
fuzzing methodologies has opened new avenues to discover un-
foreseen (zero-day) attacks on CAVs. Such is crucial to fine-tune 
the automotive security systems before deployment.

Fuzzing approaches can be classified into Blackbox, Greybox, 
and Whitebox. It is not feasible to use any form of Greybox fuzzing 
approaches [95], as such approaches require instrumenting the 
ECU code. Whitebox approaches, e.g., symbolic execution [96] is 
also not applicable for fuzzing commercial ECUs, as commercial 
ECUs are closed source. Existing Blackbox fuzzing approaches [97], 
[98] are unlikely to be effective, as such techniques (i) do not 
learn from previous fuzzing campaigns, or (ii) are limited in terms 
of structured input generation, and these are important aspects 
for effective protocol fuzzing. Systematic Blackbox fuzzing, which 
will generate structured inputs according to the targeted protocol 
and learn from the fuzzing campaigns to automatically evolve the 
fuzzing process, is likely to be effective and practical for fuzzing 
components of CAVs. This can be accomplished by maximizing the 
explored protocol features to uncover new vulnerabilities.
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5.2. Device-based novel attack detection mechanisms

CAV relies on a large number of multiple sensors, including 
cameras, radars, and LIDARs, enabling more accurate data results 
for worry-free journeys. However, these sensors enable adversaries 
for additional attack surfaces to launch sensor-based attacks (such 
as spoofing, eavesdropping, and jamming) on the vehicle’s self-
driving automated control system [27]. Such additional attack sur-
faces may lead to information leakage, false sensory data injection, 
DoS, and transmission of malicious commands in the IVN [99]. 
Since CAVs are highly mobile nodes and gather data from various 
sensors to perform different operations with limited resources, de-
tecting malicious or faulty sensor nodes is challenging. Advanced 
attack detection systems that combine groundbreaking techniques 
(such as sensor fusion and machine learning with the abundance 
of information generated by CAVs) should be developed to detect 
sensor-based attacks effectively.

5.3. Compromised ECU identification

Current security solutions can provide a specific level of se-
curity robustness over the CAN bus architecture to protect from 
forgery attacks (that are launched to disrupt the communication 
channel or automotive data). Available solutions are limited in 
scope (for data protection and communication channel) and can 
withstand specific security attacks only. Thus, it is difficult to iden-
tify susceptible activities when a compromised part (i.e., ECU) 
launches attacks on the CAN bus architecture. To find the source of 
attacks, protocols based on electrical signal characteristics of ECUs 
are proposed [8], [33], [34], [42], [46]. Such solutions may not re-
alize whether the source is already compromised or not due to 
the change in IVN environmental circumstances. ECUs can be com-
promised in two ways: (i) exposed ECU is mounted, and (ii) ECU 
is compromised after the installation. Zero-trust-based multi-factor 
authentication protocols should be implemented by involving mul-
tiple entities during the deployment of ECUs to avert the first 
possibility of ECU compromising. For effective attack identification 
from compromised ECUs, lightweight security protocols should be 
developed to protect the system from compromised ECUs quickly.

5.4. Lightweight security protocols for IVN

CAN is not enabled with an in-built authentication and en-
cryption mechanism to protect from forgery attacks over the CAN 
bus architecture. Therefore, researchers have focused on addressing 
the issue of forged communications by developing cryptographic-
based security solutions. Hardware-based cryptography methods 
can improve the security level to meet the real-time needs of 
CAVs. However, the high implementation cost, the compatibility 
with the existing infrastructure, and system modifications are im-
portant challenges in satisfying security requirements. Software-
based cryptography methods can be applied and do not require 
changes in the CAN bus architecture. However, the computation 
and communication overhead on the payload increase the require-
ment of additional computing capabilities on resource-constrained 
automotive systems, leading to a time-consuming process [7], [8], 
[16], [79]. Researchers have developed various security schemes 
to provide security using different cryptographic primitives, but 
most of them require more computation cost and communication 
overhead. To reduce the network delay in ITS applications and ser-
vices, it is required to upgrade the vehicular network with the 
latest communication technology. 6G-enabled vehicular networks 
can offer better network connectivity to minimize the communica-
tion latency, but the system consumes more energy in performing 
computing and communication operations [101], [102]. Therefore, 
the key challenge is to design lightweight security protocols for 
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CAN-based communications with low latency. This is to perform 
necessary operations quickly with limited computing power and 
provide an adequate level of security to protect the automated sys-
tem from various security attacks.

5.5. Malware code resilient CAVs

CAVs are configured with IoT and embedded devices to ex-
ecute in-vehicle and outside network operations to make better 
decisions. These devices are very limited in security features to 
avert various threats [103], and thereby they are the major tar-
gets of adversaries to launch traditional and new security attacks 
through malware codes [104]. Since ECUs are connected to exter-
nal sources through a gateway, real-time malware scanning can 
be applied at the gateway. However, the need for excessive com-
puting power is raised for a gateway, which might not detect all 
malware codes with its limited on-board resources. Furthermore, 
it is tough to identify malware amongst the high number of asso-
ciated ECUs in CAVs [105], [106]. Thus, it opens an opportunity for 
adversaries to send malicious payloads (through SQL injection vul-
nerability) to perform susceptible activities over the IVN, leading 
the automotive system to unanticipated situations and severe con-
sequences. Hence, it is adequate to design the automotive system 
with malware code detection and protection to reduce the impact 
of security exposures and vulnerabilities.

5.6. Control-oriented techniques for 6G-enabled infrastructure

CAVs communicate and transfer high-cost computations to the 
infrastructure through V2X communication technology for rich 
data inputs and minimizing the requirement of computational 
resources at the CAV level, thus improving the effectiveness of 
CAVs with more accurate operations. Integrating 6G communica-
tion technology with the vehicular network for high throughput, 
better decision-making abilities, and reduced latency is necessary 
to exchange various computations productively and their outcomes 
between the infrastructure and vehicles [102]. Vehicular infrastruc-
ture is susceptible to cyber threats, including malware, weak access 
control, and limited security features over the firmware process 
[107]. Blockchain, molecular/Terahertz/quantum/Visible light com-
munications, and AI technologies are important in 6G communica-
tions. However, they are vulnerable to malicious behavior, access 
control/authentication/integrity attacks, eavesdropping, and data 
transmission exposure, creating security and privacy issues [108]. 
Thus, an adversary can launch replay, bogus message, modifica-
tion, blackhole, and wormhole attacks in the IVN. Thus, automated 
driving system operations are significantly impacted, disrupting the 
overall performance of a platoon of CAVs. To improve the safety 
and security of autonomous driving systems, advanced and robust 
vehicular control frameworks should be developed to withstand 
traditional and new cyberattacks [7]. Current research has mainly 
focused on the prevention and defense techniques for CAVs, but it 
is also required to emphasize control and recovery strategies that 
can support damaged infrastructure (i.e., RSUs and cloud servers) 
to recover from unexpected incidents effectively and security vul-
nerabilities [109]. CAVs automatically execute various vehicle op-
erations (considering the available information (from in-vehicle 
components) or obtained data from the infrastructure) without (or 
minor) human intervention while on the move. It is thereby nec-
essary to quickly restore the system from damaged conditions and 
perform different operations by following legal system procedures. 
Control-oriented techniques manage the automated control and re-
covery from attacks that can reduce the damage level in CAVs. 
Hence, the research area of control-oriented techniques should be 
explored to create effective resilient and recovery strategies that 
can mitigate such network attacks in the IVN.
20
5.7. Recognition of adversarial AI attacks

Researchers suggested various machine learning-based models 
to detect security attacks in CAVs, and these models mainly work 
based on the collected data through installed devices. However, 
there are demonstrations that if pixel values of an input image 
are altered, then the model can produce erroneous results, and 
the understanding of images is successful under certain condi-
tions only [110], [111]. Besides, various mechanisms are trained 
to understand “patches”, and they can be imposed on an object to 
mislead detectors and classifiers [112], [113], [114], [115]. In such 
cases, the trained model cannot detect objects even though they 
are available on the way to CAVs, or they can come closer to CAVs 
[116]. Thus, an attacker may cause significant damage by launching 
adversarial attacks on reinforcement learning mechanisms. There-
fore, it is essential to develop reliable machine learning-based at-
tack detection systems for CAVs.

5.8. Trustworthy fog-enabled vehicular networks

Autonomous vehicles produce around 20 GB of data per hour, 
and they are required to collect, analyze, process, and aggregate 
the gathered data before using relevant information in vehicular 
applications and services that may delay emergency and naviga-
tion services [117]. The concept of vehicular fog computing was 
introduced to reduce the computational overhead at resource-
constrained devices (i.e., vehicles) by executing high-cost opera-
tions at fog devices (i.e., edge servers and/or RSUs). In this, ve-
hicles collect relevant data from sensors (installed in a vehicle) 
and transfer gathered data to the fog devices for data analysis (to 
provide better ITS services to vehicle travelers). Fog devices can 
then deliver such information to CAVs, which can be used to make 
timely, on-road decisions [118], [119]. Though fog-enabled vehicu-
lar frameworks minimize the computational resource requirements 
at CAVs, there are still significant security and privacy challenges: 
trustworthiness of delivered data (from vehicles to fog devices), 
secure data transfer, off-loading of tasks, and on-time informa-
tion availability (to CAVs) in highly mobile environments [120], 
[121], [122]. Connected vehicle technology is focused to enable 
CAVs safer, faster, and more efficient, but the availability of erro-
neous information to CAVs may lead to accidental consequences 
[123], [124], [125]. Therefore, developing reliable and efficient at-
tack detection and prevention mechanisms for fog-based vehicular 
networks is vital.

5.9. Dependable digital twin-based automated driving systems

Digital Twin (DT) is one of the most cutting-edge technologies 
of Industry 4.0 that is developed as a virtual representation of 
physical entities with simulation proficiency to predict and opti-
mize states, functionality, and configurations. DT synchronizes the 
mapping with the physical object that is useful in real-time moni-
toring, object management, data analytics, maintenance strategies, 
and risk estimation [126]. Therefore, the integration of DT with 
CAVs is worthwhile to identify potential issues in automotive driv-
ing systems, get real-time feedback on automated operations, con-
trol vehicles in uncertain situations, and realize performance im-
provements [127], [128], which is beneficial in the development 
of accurate attacks detection and prevention systems for CAVs. As 
DT modeling depends on the data (received from the synchro-
nized physical object over V2X connectivity), it is important to 
securely and efficiently deliver data between digital and physical 
spaces [129]. However, providing security over V2X technology is 
challenging due to the shared communication link [104]. Besides, 
the communication delay is a vital factor for DT-enabled CAVs as 
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Fig. 6. The Outline of Important Research Directions for CAVs with Potential Features.
the unavailability of necessary data on-time can put CAVs in un-
expected situations, creating user and road safety issues [130]. It 
is essential to develop dependable DT-based mechanisms for CAVs 
for effective services on the road.

Fig. 6 shows a graphical presentation of important security and 
privacy research directions in connected and automated driving 
systems. As these research gaps are crucial in the development of 
reliable CAVs for the benefit of society, it is required to focus on 
these challenges to enable vehicle travelers with safe, secure, and 
intelligent vehicles in the near future. Fig. 6 also displays that de-
veloping adequate solutions for these research problems can offer 
various features to improve the states, operations, and functional-
ity of CAVs.

6. Conclusions

This survey article gives an overview of CAVs in different as-
pects. Considering the significance, important applications, and 
mobility nature of CAVs, we have discussed vital security and pri-
vacy properties as well as performance evaluation parameters to 
understand their importance in CAVs. Moreover, a variety of at-
tacks are briefly explained, and their possible countermeasures are 
discussed. Such potential attacks significantly impact the automo-
tive system of CAVs and can produce unexpected consequences. 
We have extensively reviewed different categories of ADPS and 
have systematically studied recent IVN solutions to classify them 
under the category of attack detection and protection. To quickly 
provide in-depth knowledge about the current research status on 
ADPS approaches, we present a comparative summary of relevant 
methods under each category by providing their key contributions, 
features, and scope for enhancement. We hope this survey will 
provide a strong base to study recent ADPS solutions and research 
directions for new and more appropriate techniques to achieve 
better security and performance efficiency.
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