
Towards Automated Fuzzing of 4G/5G Protocol
Implementations Over the Air

Matheus E. Garbelini
SUTD

Zewen Shang
SUTD

Sudipta Chattopadhyay
SUTD

Sumei Sun
I2R, A*Star

Ernest Kurniawan
I2R, A*Star

Abstract—Recent rise in the mobile network communication
vulnerabilities highlights the need for systematic security testing
frameworks for communication protocols. In this paper, we
propose a real-time framework to fully manipulate the 4G and
5G data-link and network communication to the base station
(eNB/gNB). This is for experimenting and testing the security of
data-link protocols such as Media Access Control (MAC), Radio
Link Control (RLC), Packet Data Convergence Protocol (PDCP)
and network protocols such as Radio Resource Control (RRC)
and Non-access stratum (NAS). Although we focus on the base
station, our framework is equally applicable for manipulating the
communication to the user equipment (UE). An appealing feature
of our framework is that it automatically constructs the protocol
state machine during normal communication. This allows us to
validate the response from the base station when it is subjected
to unexpected packet sequences. Our framework also exposes an
application programming interfaces (APIs) for designers to install
custom attack scenarios. We have implemented our framework
and used it to generate several (adversarial) scenarios that
include injection of malformed and out-of-order packets as well
as flooding certain packets. Our evaluation revealed crashes in
OpenAirInterface (OAI) UE and gNB, as well as in Open5GS
core network. Additionally, we guide our validation via the
automatically constructed state machine and have caught most
adversarial scenarios during our evaluation. We envision our
proposed framework to provide the foundation for automated
security testing of 4G/5G data-link protocol implementation.

I. INTRODUCTION

Mobile communications have become essential for critical
infrastructures as well as for our day-to-day life. However,
recently discovered security vulnerabilities in both 4G and
5G protocols [1], [2] undermine the trust in 4G/5G net-
works. Such vulnerabilities range from design flaws to specific
implementation issues on the firmware of modem chipsets
that are used in high-end smartphones. Due to the closed
nature of 4G/5G protocol stacks, they are not amenable to
verification and static analysis. As a consequence, to uncover
the hidden vulnerabilities in closed-source 4G/5G stacks, it
is of critical importance to build technologies and tools that
can automatically interact over-the-air (OTA) with a black-box
device under test (DUT) and systematically steer the protocol
states to potential implementation vulnerabilities.

In this paper, we propose an OTA fuzzing framework that
aims to find vulnerabilities in the implementation of 4G/5G
data-link protocols. Our framework focuses on fuzzing the up-
link communication from a UE to the mobile base station (i.e.,
eNB or gNB). Therefore, OTA fuzzing leverages control over
the MAC, RLC and PDCP layer protocols (OSI Layer 2) and
additionally RRC and NAS (OSI Layer 3) to inject arbitrarily

R
U

R
U

RRC

D
ow

nl
in

k

U
pl

in
k

PDCP

RLC
MAC

Low PHY
RF

RRC

D
ow

nl
in

k

U
pl

in
k

PDCP
RLC
MAC
PHY

RF

4G/LTE
Core Network

5G NR
Core Network

B
B

U

SDAP

High PHY

5G UE4G UE

Intercpt.
Point (iii)

Intercpt.
Point (ii)

Intercpt.
Point (i)C

U
D

U
Fig. 1. An illustration of 4G and 5G Radio Access Network (RAN) protocol
layers stack targeted by our fuzzing framework. The interception points where
the fuzzing takes control of the communication are highlighted.

malformed or incorrect sequence of packets or flooding to the
base station. This is carried out with the objective to trigger
implementation flaws. As a by-product of our framework,
we also expose a flexible application programming interface
(API) for deep packet inspection (DPI). Designers can use
such API to easily create custom 4G/5G attack scenarios
from the UE to the eNB/gNB. Additionally, such APIs allow
introducing customized fuzzing extensions or attack detection
in the MAC layer. In essence, we provide a flexible and
extensible framework for a comprehensive security evaluation
of 4G/5G enabled systems.

While designing our OTA fuzzing framework, we face
several technical challenges. Firstly, fuzzing at 4G/5G MAC
Layer (i.e., OSI Layer 2 - Data link) requires a highly efficient
algorithm to control the data-link communication. Such control
may involve mutating (i.e., fuzz) arbitrary packet fields. More-
over, detecting invalid or non-compliant responses from the
base station, during live communication for a complex protocol
like 4G/5G, requires a comprehensive fuzzing and validation
strategy. Such a strategy needs to be aware of the possi-
ble protocol state transitions during mobile communication
(i.e., downlink/uplink exchange). To resolve these challenges,

we employ an efficient fuzzing and validation methodology
guided by the protocol state machine which is also constructed
automatically during normal communication. Subsequently,
the state machine is used to guide the validation process to
indicate anomalous responses.

An appealing and distinguishing feature of our framework
is that it takes control of the communication for fuzzing in
real-time. As a result, our approach has full access over the
contextual information (e.g., security configurations) that are
only available during a live communication. For example,
4G/5G protocols reside in different software components as
specified in the 3GPP specification [3], [4]. Thus, our fuzzing
campaigns intercept protocol packets at different components
of the core network to have full control of the communica-
tion. In addition, protocol-specific behaviors such as integrity,
encryption and packet fragmentation are handled at different
interception points on the eNB/gNB to ensure full uplink and
downlink control. Figure 1 outlines these interception points
installed by our framework.

State-of-the-art fuzzing approaches are either not applicable
for closed source and stateful protocol stacks [5], [6], or they
may require significant manual effort to hand-code protocol
state machine and the environment within the fuzzer [7], [8].
In contrast, our approach generates protocol state machine
automatically during communication, and it is applicable to
effectively test the security of closed-source and stateful
4G/5G implementation. In summary, we make the following
contributions in this paper:

1) We present a framework to fully manipulate the lower
layers of 4G/5G protocol stack (MAC, RLC, PDCP).

2) We show that the processing time of our packet manip-
ulation outperforms state-of-the-art fuzzers [9], [10].

3) Our work exposes easy-to-use API for downlink manip-
ulation. Such API can access any 3GPP protocol from
the interception points shown in Figure 1.

4) Our approach is generic and applicable to other wireless
protocols in which low-latency is a strict requirement.

5) For both 4G and 5G, we have evaluated the frame-
work by generating several malformed, out-of-order and
flooded packets across MAC, RRC, PDCP, RLC and
NAS protocols. This revealed crashes at gNB, UE and
core network. By having these packets, we have also
comprehensively evaluated our validation process which
is guided by the automatically constructed protocol state
machine. The validation detects our generated attacks
at all layers with high accuracy and negligible false
positives.

II. FRAMEWORK OVERVIEW

In this section we present an overview of our fuzzing and
response validation framework. The framework is outlined in
Figure 2. The objective of our proposed framework is to allow
fuzzing the eNB/gNB base station down to the lower 4G/5G
MAC layer while also capturing potential attacks to the base
station launched from the UE.

Attack Model: The attacker model employed by our fuzzing
framework exposes an Adversary-Controlled uplink or down-
link channel. This translates to a malicious UE or eNB/gNB
that is capable to sniff communication or inject and replay
packets to the other party without restrictions. Such an attacker
model is commonly used in previous security analysis works
[2], [11]. Nonetheless, in our evaluation, we focus on the
attacker at the UE side, which targets the eNB/gNB. The key
components of Figure 2 are discussed in the following.

4G/5G UE

USRP B210

Validation
Extensions

Downlink

eNB/gNB
Uplink

Device Under Test (DUT)

Uplink
Validation

4G/5G Core
Network

NAS

C
User Scripts

B

4G/5G Test Case GeneratorA

UE Uplink Control

Attacker
(Malicious UE)

Replay
 Mutation

Fig. 2. An illustration of our 4G/5G RAN fuzzing framework

UE Uplink Test Case Generator (A): This component
is responsible for generating invalid uplink frames down to
the MAC layer by using off-the-shelf software defined radios
(SDR) such as USRP B210 [12]. Such invalid frames are
generated with the goal to find vulnerabilities in the eNB/gNB
stack implementation. To this end, this component emulates a
real UE using Open Air Interface stack [13] and provides an
API to create attack scenarios (i.e., test cases) targeting the
eNB/gNB.

The test cases may (i) inject malformed, (ii) send out-of-
order (i.e., re-played) or (iii) flooding uplink frames down to
the MAC layer using a SDR. The usage of this component is
two-fold. Firstly, we can use this component to recreate some
attack scenarios targeting the eNB/gNB. Secondly, we can use
this component to stress test the UE uplink response validation
component, as discussed in the following.
UE Uplink Response Validation (B): In our framework,
The validation component informs the fuzzer if the response
received from the (malicious) UE is valid according to a
protocol state machine, which is automatically generated based
on a few simple rules and by decoding the packets during
normal communication (see Section III for details). Such a
state machine informs the correct order that 4G/5G frames
should be received at the eNB/gNB node during a fuzzing
campaign. The validation stage is essential to detect attacks or
to guide a fuzzer towards triggering an implementation failure.
These failures may result in a modem firmware crash (i.e.,
Denial of Service) or security bypass vulnerability.

In short, currently we consider the following scenarios when
validating UE responses. This is generally applicable to both
4G and 5G, amongst other wireless protocols:

1) Unresponsiveness: UE stops responding for an unusual
amount of time or indefinitely due to a modem hang.

2) State Machine Corruption: UE responds with an out-
of-order frame which should not occur during normal
communication with eNB/gNB. This indicates that the
UE protocol states were affected during the fuzzing.

eNB/gNB Attack Detection Extensions (C): This component
extends our framework by providing a DPI API to user-
provided scripts which run during uplink reception. Therefore,
such scripts can create rules to identify possible attacks to the
eNB/gNB down to network layer 2 (i.e., MAC). Hence, this
allows the eNB/gNB designer to disconnect a potentially ma-
licious UE from the RAN. Currently, our framework include
sample scripts to detect MAC flooding attacks, reception of
out-of-order attacks and malformed uplink frames that can
contain invalid fields in multiple RAN protocol layers such
as MAC, RLC, PDCP, RRC and NAS. Such extensibility
can enable future development of real-time intrusion detection
systems at the data-link between UE and eNB/gNB.

III. DESIGN

In this section, we describe the workflow of our framework
(see Figure 3) and detail on how downlink and uplink packets,
which are generated at the eNB/gNB or UE, are intercepted
and handled. We illustrate this in the context of fuzzing and
layer 2 (L2) test case generation. The workflow is illustrated
in Figure 3 and highlights the downlink and uplink handling
whenever the UE connects to eNB/gNB.

Report Attack
Type

OAI 5G UE

D
ow

nl
in

k

U
pl

in
k

gNB/eNB

4G/5G Core
4G/5G Fuzzing Framework Design

State
Machine

L2 Uplink
Validation

MonitorReplay

Mutation

Launch Attacks
Traces

Mapping Rules Capture File
(.pcapng)

Interception
Points

Test
Cases

Current
State

Fuzzing
Actions

P

Fig. 3. Design of our 4G/5G Fuzzing Framework for L2 packet interception

Latency Requirements: Recall that downlink and uplink
packets are blocked and forwarded to our framework via
interception points (see Figure 1). These interception points
yield control over L2 packets which are decoded or generated
at the eNB/gNB. With such an interception-based approach,
it is crucial to not block MAC frames for more than the
time of downlink/uplink transmission slot. Otherwise, real-time
communication fails and packets cannot be delivered over the
air. The time of the slot transmission (i.e., numerology) is
configured at the eNB/gNB, and it can vary between 6.25us
and 1ms [14]. Our interception strategy leverages shared

memory to minimize the inter-process-communication (IPC)
time between eNB/gNB/UE and the fuzzer.

Nevertheless, it is worth mentioning that 4G/5G numerology
is adjustable and the throughput is not relevant to a fuzzer.
This is because our framework targets finding bugs and
improving OTA testability. Therefore, our fuzzing architecture
only considers eNB/gNB transmission slot configuration that
are above 250us to ensure real-time communication. This is
sufficient for fuzzing MAC or upper layer frames.

Interception Points: As previously shown in Figure 1, three
interception points have been implemented in our framework:
(i) After MAC, (ii) before RLC and (iii) at the PDCP layer.
These are not only used to control MAC packets, but also
packets that are yet-to-be fragmented by the RLC layer.
More specifically, we intercept before and after packets are
encrypted or applied integrity protection at the PDCP layer.
The rationale of these interception points is two-fold. Firstly,
we ensure that any field manipulation will be received at
the base station without being dropped due to encryption
problems. Secondly, we aim to have complete control of
fragmented packets. The interception point at the PDCP layer
allows our framework to modify both the PDCP payload and
RLC fragments of the packet.

State Mapper: Such component informs the protocol state
of eNB/gNB/UE in real-time and it is essential for validating
potential problems with the DUT during a fuzzing campaign.
The state machine is also used to detect potential attacks at
the eNB/gNB. This is accomplished by checking whether the
received packets at the eNB/gNB are in line with the state
machine.

Due to the complexity of 3GPP protocols, instead of gener-
ating the state machine manually, we use a lightweight method
to learn the protocol state machine with the following inputs:
(i) a set of Mapping Rules which indicates the way to identify
a state for an arbitrary protocol and (ii) the capture traces
(i.e., pcap file) of the communication that serves as reference
of correct sequences during learning. Then, after a learning
process, the State Mapper outputs the reference sequence of
packets (i.e, state transitions) between the eNB/gNB and UE.
This is to identify whether a given packet P is expected to be
received at certain state label S during live communication.

As exemplified in Figure 4, every packet intercepted at the
interception points is parsed and assigned a unique state label
S. Therefore, S is generated from the concatenation of certain
packet information such as direction P .dir (TX for Downlink
or RX for Uplink), packet type P .type and the protocol layer
name L.name . To this end, the Mapping Rules Mu contains
a set of rules that tells the State Mapper on how to obtain
the correct information during packet decoding. This is then
used to generate a state label S that corresponds to a unique
packet P . Therefore, a different packet P ′ would consequently
generate different state label S′.

The high-level steps to generate S are described in pro-
cedure state mapping of Algorithm 1. More importantly, in
Line 13, a lookup table converts the raw value of a packet

Algorithm 1 state_mapping Procedure
1: Input: Packet P , Mapping Rules Mu

2: Output: State label S generated for packet P
3:
4: Decode packet P to get P.layers and P.fields
5: for each L ∈ P.layers do
6: . Check if the packet layer L match a rule in Mu

7: for each R ∈Mu do
8: if L satisfies R.filter then
9: . Check if any field f is found within R.type fields

10: for each f ∈ P.fields do
11: if f ∈ R.type fields then
12: v := value of field f in packet P
13: P.type := lookup[v]
14: goto Line 20
15: end if
16: end for
17: end if
18: end for
19: . Label the state when matched with the rules
20: if (L 6= empty ∧ P.type 6= empty) then
21: . Create the state label S
22: S := P.dir ⊕ L.name ⊕ P.type
23: return S
24: end if
25: end for

field f , matched with rule R.type fields, to a type string.
Then S is generated by a string concatenation in Line 22.

This approach is used to validate intercepted packets. For
example, consider that packet P ′ is received during live
communication when the current state label is S. If none of
the outgoing transitions of S leads to S′, then we consider
packet P ′ as an anomaly. Otherwise, the state machine moves
to state label S′ and the packet is considered valid.
Mapping Rules Mu: The Mapping Rules consists of a set
of rules for each relevant 3GPP protocol layer (see Figure 5).
As previously discussed, this set of rules is fed to the State
Mapper for use during validation or fuzzing tasks.

As illustrated in Figure 5, the property ”Filter” filters a
protocol by its layer name (c.f., R.filter of Algorithm 1) and
the property ”StateNameField” identifies each type-field of the
protocol layer that can be used to map a packet to a protocol
state (c.f., R.type fields of Algorithm 1). Such rules follow
the PCAP filtering syntax, which is used in the Wireshark
packet analyzer program.

We note that while PDCP has only one field that identifies
its type, MAC, RLC and NAS can be identified by multiple
fields depending on the communication context. This is useful
for detecting replayed packets. In our evaluation, by using 6
rules, we had generated a state machine for 4G with 20 states
(86 transitions) and another with 14 states (74 transitions) for
5G.
L2 Uplink Validation: The L2 uplink validation targets
detection of three main attack types: sending malformed, out-
of-order packets and flooding attack. The validation process
is outlined in Algorithm 2. As shown in Algorithm 2, after a
packet P is received (Line 9 to Line 13), we check the validity
of the packet by calling the function expected. We note that the

label of the packet is computed on-the-fly via the state mapper
discussed in the previous section. Concurrently, the expected
function abstracts the details of state machine and informs
the validation process if the packet P belongs to any of the
outgoing transitions of the current state (i.e., current state).
If the received packet is not expected, then it is considered
an out-of-order attack. Regardless of the packet’s validity, the
packet summary is appended to a predefined list Plabels for
later analysis. Specifically, after the timer times out, the list is
analyzed (Line 14 and Line 22), and if there exists more than
τ instances of a packet, then the validation process detects a
flooding attack. In our evaluation we set τ to be 10. Finally,
in Line 9-10, the validation detects a malformed packet if any
decoding error occurs at the interception points (see Figure 1).

Fuzzing and Test cases: As captured in Figure 3, our
framework exposes an API to manipulate the downlink/uplink
payloads between UE and eNB/gNB. Such manipulation (i.e.,
fuzzing actions) consists of either mutating protocol fields
or replaying packets during uplink/downlink communication.
Using this feature, our framework sets up the workflow for
4G/5G fuzzer for both eNB/gNB and UE and it is able
to launch layer 2 attacks. Such attacks are initiated by the
component Test Cases (see Figure 3) which runs user provided
scripts. Particularly, this component serves as a baseline for our
framework evaluation, as the component can be used to create
over-the-air attacks from the UE to eNB/gNB and vice-versa.

IV. EVALUATION

Implementation and Setup Our framework is implemented
in C++ (7879 LoC). This includes modifications to Wireshark
that improve decoding speed for 4G/5G protocols and expose
additional information for ASN.1 decoded fields. Additionally,
we develop patches for OpenAirInterface5G stack to enable
the interception points as discussed in Section III. To generate

Algorithm 2 get_attack_type Procedure
1: Input: Packet label P , Flooding threshold τ
2: Output: Attack Type
3: . global list Plabels

4: . global timer T
5: . global function expected
6:
7: Plabels ← Plabels ∪ {P}
8: . Check for malformed or out-of-order packets
9: if decoding error detected then

10: Output: Packet malformed
11: else if ¬expected(current state, P) then
12: Output: Out-of-order attack
13: end if
14: if T.times out() then
15: . Restart timer
16: T.restart()
17: . Check if frequency of labels in Plabels exceeds τ
18: if max(histogram(Plabels)) > τ then
19: Output: Flooding attack
20: end if
21: Plabels ← ∅
22: end if

P2

0x00 - Status PDU.
0x88 - Data PDU.

0x03 - Features Req.
0x04 - Features Res.

...

RLC Packet

....0x00MAC
Type

rlc.type
rrc.message

...

rlc.type

...

Lookup Dictionaries

Packet Decoding

....0x12
Message

rrc.message

RRC Packet

Rules File

Decoding Tree

RX ⊕ RRC ⊕ Reconf. Complete S'

TX ⊕ RLC ⊕ Status PDU S

dir⊕layer⊕type

State Mapper
Packet Labeling

P1

To / From
Other States

...

Mapped States Mref

....RLCMAC

Uplink Packet

Downlink Packet

TX / RRC / Connection Reconf.

TX / RLC / STATUS PDU

TX / RLC / Data PDU

RX / RRC / Reconf. Complete

TX / RRC / securityModeCommand

TX / RRC / securityModeComplete

P' -> S ->

S'

C
U

D
U

Intercpt.
Point (iii)

Intercpt.
Point (ii)

Intercpt.
Point (i)

4G / 5G Stack

RRC

PDCP

RLC

MAC

SDAP

High PHY

Fig. 4. Overview of State Mapping Generation

Fig. 5. Mapping Rules for 5G MAC, RLC, PDCP, RRC and NAS

reference traces of valid 4G and 5G communication for the
State Mapper (Section III), we connect the UE modems Telit
910EU-V2 (4G) and Quectel RM500Q-GL (5G) to OAI eNB
and gNB respectively.

Although our framework supports running OAI stack with
real hardware using USRP B210 for over-the-air communi-
cation, we set up our evaluation to run in RF simulation
mode to ensure reproducibility of the results. We observed
that interference may introduce random disconnections or
unexpected responses during communication. Such ”random”
issues that appear with real UE hardware are expected to be

reduced as 4G/5G OAI stack evolves.

Positive Tests: We start testing positive scenarios on a real
Quectel RM500Q 5G modem, which results in the L2 Up-
link Validation detecting 232 valid packets out of 243 total
exchanged packets. This means that the base reference model
employed by the State Mapper indicates 5% false positive rate.

Negative Tests: Initially, we start Open5GS as the Core
Network and set up the OAI UE to launch attacks against
OAI eNB and gNB via the Test Case Generator as shown
in Figure 2. Next, multiple scenarios are evaluated based on
this setup to target different 4G/5G protocol layers and fields
during UE to eNB/gNB communication. As shown in Tables I
and II, we employ negative tests for representative fields
in the MAC, RLC, PDCP, RRC and NAS layers. Such tests
may either send malformed packets by randomly mutating a
specific field, flooding specific packets or inject an out-of-order
packet (replayed) to the eNB/gNB. Finally, we also created
flooding attacks by consecutively sending certain packets to
the eNB/gNB. In the third column of Table I and II, we
indicate whether the L2 Uplink Validator detected the negative
scenario launched from the UE. The column ”Any Conse-
quence?” informs if a crash happens to the eNB/gNB, UE
or core network stacks during the negative tests’ evaluation.

Our validation detects the majority of the scenarios listed in
Tables I and II. More interestingly, mutating 4G MAC fields
such as ”mac-lte.sch.extended” and ”mac-lte.control.bsr”
causes the OAI eNB to either crash or hang. Similarly,
the 5G OAI gNB crashes upon receiving an invalid ”mac-
nr.dlsch.lcid” field as depicted in Table II. Furthermore, the
Core Network (Open5GS) has crashed in one instance due to
a malformed RRC field ”ulInformationTranser element”. In
summary, both eNB and gNb are susceptible to DoS attacks
in the MAC layer due to improperly handling the reception of
malformed or replayed packets. On the other hand, only the
gNB is vulnerable to a certain flooded packet.

Nonetheless, our validation misses the detection of certain
attacks. Firstly, after we mutate specific fields such as ”mac-

TABLE I
NEGATIVE TEST CASES AND THEIR IMPACT FOR OAI LTE eNB

Protocol Malformed Packet Fields Detected? Any Consequence?
MAC ”mac-lte.sch.extended” 3 OAI eNB Crashes
MAC ”mac-lte.ulsch.lcid” 3
MAC ”mac-lte.control.power-headroom.level” 3
MAC ”mac-lte.control.bsr” 7 OAI eNB Hangs
MAC ”mac-lte.sch.length” 3
RLC ”rlc-lte.am.header” 3
RLC ”rlc-lte.am.fixed.sn” 7
RRC ”lte-rrc.rat Type” 3
RRC ”lte-rrc.accessStratumRelease” 3
PDCP ”pdcp-lte.reserved” 3
Protocol Replay Scenario (Message, State)
MAC (Short/Long BSR, Msg3) 3
MAC (Power Headroom, Msg3) 3
RRC (RRCConnectionReestablishment, Msg3) 3 OAI eNB Crashed
RRC (RRCConnectionRequest, After Msg3) 3
RRC (RRCConnectionResumeRequest, After Msg3) 3
RLC (RLC Fragment, After Msg3) 3
Protocol Flooding Packet Type 3
MAC Short BSR 7
MAC Long BSR 7
MAC Power Headroom 3
RRC RRCConnectionReestablishment 3
RRC RRCConnectionRequest 3
RRC RRCConnectionResumeRequest 3
RLC RLC Fragment 3 OAI eNB Hangs

TABLE II
NEGATIVE TEST CASES AND THEIR IMPACT ON OAI 5G gNB

Protocol Malformed Packet Fields Detected? Any Consequence?
PDCP ”pdcp-nr.reserved” 3
PDCP ”pdcp-nr.direction” 3
RLC ”rlc-nr.am.dc” 3
RLC ”rlc-nr.seqnum-length” 7
RRC ”nr-rrc.dedicatedNAS Message” 3
RRC ulInformationTransfer element” 3 Open5GS Crashed
MAC ”mac-nr.dlsch.lcid” 3 OAI gNB Crashed
MAC ”mac-nr.subheader.sdu-length” N.A OAI 5G UE Crashed
NAS ”nas 5g.mm.suci.msin” 3
NAS ”nas 5gs.mm.elem.id” 3
Protocol Replay Scenario (Message, State)
RRC (RRCSetupComplete, Msg3) 3 OAI gNB Crashed
RRC (RRCSetupComplete, Connected) 3
RRC (CapabilityInformation, RRCSetupComplete) 3
RLC (Fragment, RRCSetupComplete) 3
RLC (Control Status ACK, RRCSetupComplete) 3
NAS (Auth. Response, RRCSetupComplete) 7
NAS (Auth. Response, SecurityModeComplete) 3
MAC (Short/Long BSR, Msg3) 3 UE cannot reconnect
Protocol Flooding Packet Type 3
RRC RRCSetupRequest 3 OAI gNB Crashed
RRC RRCSetupComplete 3
RRC UE Capability Information 3
NAS Authentication Response 3
NAS Security Mode Complete 3
NAS PDU Session Establishment Req. 3
MAC Short BSR 7
MAC Long BSR 7
MAC Power Headroom 3
RLC Control Status PDU 3

nr.subheader.sdu-length”, the UE crashes before the packets
reach the gNB. Secondly, fields such as ”rlc-nr.seqnum-
length” may be malformed in a given context even if the value
of such field falls in a valid range. Since our implementation
does not analyse the context (e.g., previous packets) for
malformed detection, we may miss attacks that manipulate
”rlc-nr.seqnum-length” or ”mac-lte.control.bs”.

Performance: The performance of our framework is mea-
sured from the time a packet is intercepted and processed
until the packet is released back to the eNB/gNB. The time
measurements are shown as a boxplot in Figure 6. Overall,
the interception time of our framework makes it suitable for
real-time L2 fuzzing in 4G/5G networks. The maximum RTT
of 40us is well below the latency requirements specified by
the numerology parameter at the eNB/gNB. Moreover, the

decoding speed significantly outperforms recent work [10] that
depicts decoding timings between 1− 3ms.

PDCP DL PDCP UL MAC DL MAC UL
0

10

20

30

40

50

In
te

rc
ep

tio
n

RT
T

(u
s)

Fig. 6. Downlink/Uplink Interception time for MAC and PDCP. Worst-Case
Outlier RTT=200us.

V. RELATED WORK

In the last few years, researchers have found a number
of design flaws in the 3GPP specification [15], [16]. In
contrast to these works, we propose a framework to facilitate
automated fuzzing at the implementation level. Current works
on discovering implementation level vulnerabilities [2], [17]
involve extensive manual effort [17] or the availability of
commercial logs [2]. In contrast to these works, our approach
constructs the protocol stack machine automatically from a few
simple rules. This, in turn, significantly automates the fuzzing
framework and packet validation process.

Our approach is inherently more flexible than emulation
based fuzzing [18], which requires expert knowledge of the UE
hardware architecture. Other notable works include adversarial
model testing [19] or mutation and generation based fuzzing
of RRC messages [10]. In addition, generation based fuzzing
for only the 4G MAC has been covered earlier [20]. In contrast
to these works, our approach is the first to cover the gap on
fuzzing 4G and 5G layer 2 protocols as a whole (i.e., PDCP,
RLC and MAC) for security testing a black-box UE. Moreover,
earlier works do not consider testing encrypted or integrity-
protected PDCP packets or downlink RLC fragments.

Alternative approaches such as 5GReasoner [15] aims to
discover the vulnerabilities in 5G protocol by modeling the
protocol behavior and using verification tools. Such an ap-
proach does not target vulnerabilities in real implementation
of 5G stack (e.g., 5G UE). In contrast, our proposed framework
targets implementation level vulnerabilities.

Recent works have advanced the state of over-the-air fuzzing
for BLE [21] and Wi-Fi [22]. However, such works do not
consider fuzzing fragmented, encrypted and integrity protected
packets separately. Instead, such behavior is abstracted during
fuzzing. Hence, our work is conceptually different from these
works targeting other wireless protocols. Our approach gen-
eralizes the state-of-the-art OTA fuzzing for complex 3GPP
related protocols [23] by handling fragmentation, encryption
and integrity in separate protocol layers as shown in Figure 1.

VI. DISCUSSION

In this paper, we propose a framework to facilitate auto-
mated security testing of 4G/5G systems. Compared to existing

works, our proposed framework brings two concrete advan-
tages: (i), our approach is capable to intercept, modify and
replay arbitrary packets in both layer 2 and layer 3 communi-
cation in real-time. This allows designer to comprehensively
stress test different layers. (ii) our framework provides capa-
bilities to automatically validate received packets at the gNB.
Such a validation is guided by a protocol state machine, which,
in turn is learned automatically during normal communication.
Consequently, our validation avoids hand-coding of expected
responses in communication, thus significantly reducing the
manual effort for 4G/5G testing. With low latency fuzzing
and automated validation, we hope to significantly improve
the state-of-the-art for automated security testing in 4G/5G
enabled systems and beyond.

Although our framework is capable to fuzz arbitrary (e.g.,
commercial) 4G/5G UEs, we acknowledge that more testing
and experiments are required for finding new UE vulnerabil-
ities. Nevertheless, our current evaluation demonstrates that
the fuzzing framework is capable to trigger crashes in a real
base station i.e., OpenAirInterface eNB/gNB. Moreover, our
validation process detects the presence or absence of a variety
of attacks (e.g., malformed packets, out-of-order packets and
flooding) with reasonable accuracy. This provides a platform
not only for us to improve our fuzzing algorithms, but also
for the community to extend the framework along different
dimensions of security through mobile data-link evaluation.

In the future, we plan to improve our fuzzing algorithms,
specifically we aim to direct the search process of our fuzzing
via efficient heuristics. Such a direction can be formulated as
an optimization problem e.g., maximization of protocol state
transitions to improve the coverage of protocol states.

Our framework is available open-source upon request.

Acknowledgment: We thank the anonymous reviewers for
their insightful comments. This work is partially supported
by the Singapore International Graduate Award (SINGA) and
NRF National Satellite of Excellence in Trustworthy Soft-
ware Systems (Project no. NSOE-TSS2021-01 and NSOE-
TSS2020-03).

REFERENCES

[1] A. Shaik, R. Borgaonkar, S. Park, and J.-P. Seifert, “New vulnerabilities
in 4G and 5G cellular access network protocols: Exposing device
capabilities,” in Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks, ser. WiSec ’19. New York,
NY, USA: Association for Computing Machinery, May 2019, pp. 221–
231.

[2] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the Untouchables:
Dynamic Security Analysis of the LTE Control Plane,” in 2019 IEEE
Symposium on Security and Privacy (SP), May 2019, pp. 1153–1168.

[3] S. Kanchi, S. Sandilya, D. Bhosale, A. Pitkar, and M. Gondhalekar,
“Overview of LTE-A technology,” in 2013 IEEE Global High Tech
Congress on Electronics, Nov. 2013, pp. 195–200.

[4] F. Mademann, “The 5G system architecture,” Journal of ICT Standard-
ization, pp. 77–86, 2018.

[5] M. Zalewski, “American fuzzy lop,” https://github.com/google/AFL,
April 2017.

[6] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNet: a greybox
fuzzer for network protocols,” in 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification (ICST). IEEE,
2020, pp. 460–465.

[7] M. E. Garbelini, C. Wang, and S. Chattopadhyay, “Greyhound: Directed
greybox wi-fi fuzzing,” IEEE Transactions on Dependable and Secure
Computing, 2020.

[8] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and
E. Kurniawan, “Sweyntooth: Unleashing mayhem over bluetooth low
energy,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, Jul. 2020, pp. 911–925. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/garbelini

[9] S. Potnuru, “Fuzzing Radio Resource Control messages in 5G and LTE
systems: To test telecommunication systems with ASN. 1 grammar rules
based adaptive fuzzer,” 2021.

[10] S. Potnuru and P. K. Nakarmi, “Berserker: ASN.1-based Fuzzing of
Radio Resource Control Protocol for 4G and 5G,” in 2021 17th Inter-
national Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), Oct. 2021, pp. 295–300.

[11] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5greasoner: A property-directed security and privacy analysis frame-
work for 5g cellular network protocol,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, Eds. ACM, 2019, pp. 669–684.

[12] E. Research, “USRP B210 USB Software Defined Radio (SDR),”
https://www.ettus.com/all-products/ub210-kit/, 2019.

[13] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “OpenAirInterface: A Flexible Platform for 5G Research,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 33–38, Oct. 2014.

[14] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei,
“5G new radio: Waveform, frame structure, multiple access, and initial
access,” IEEE communications magazine, vol. 55, no. 6, pp. 64–71,
2017.

[15] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5GReasoner: A Property-Directed Security and Privacy Analysis
Framework for 5G Cellular Network Protocol,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Se-
curity, ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, Nov. 2019, pp. 669–684.

[16] M. J. Lanoue, J. B. Michael, and C. A. Bollmann, “Spoofed Networks:
Exploitation of GNSS Security Vulnerability in 4G and 5G Mobile Net-
works,” in 2021 International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS), Jul. 2021, pp.
1–8.

[17] C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “DoLTEst:
In-depth Downlink Negative Testing Framework for LTE Devices,” in
USENIX Security Symposium, 2022.

[18] D. Maier, L. Seidel, and S. Park, “BaseSAFE: Baseband sanitized
fuzzing through emulation,” in Proceedings of the 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, ser. WiSec
’20. New York, NY, USA: Association for Computing Machinery, Jul.
2020, pp. 122–132.

[19] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “LTEInspector:
A systematic approach for adversarial testing of 4G LTE,” in Network
and Distributed Systems Security (NDSS) Symposium 2018, 2018.

[20] A. Pestrea, “Fuzz testing on eNodeB over the air interface: Using fuzz
testing as a means of testing security,” 2021.

[21] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurni-
awan, “SweynTooth: Unleashing Mayhem over Bluetooth Low Energy,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020,
pp. 911–925.

[22] M. E. Garbelini, C. Wang, and S. Chattopadhyay, “Greyhound: Directed
greybox wi-fi fuzzing,” IEEE Transactions on Dependable and Secure
Computing, 2020.

[23] A. A. Atayero, M. K. Luka, M. K. Orya, and J. O. Iruemi, “3GPP long
term evolution: Architecture, protocols and interfaces,” International
Journal of Information and Communication Technology Research, vol. 1,
no. 7, pp. 306–310, 2011.

https://github.com/google/AFL
https://www.usenix.org/conference/atc20/presentation/garbelini

	Introduction
	Framework Overview
	Design
	Evaluation
	Related Work
	Discussion
	References

