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Abstract
In this paper we propose, design and evaluate a systematic

directed fuzzing framework to automatically discover imple-
mentation bugs in arbitrary Bluetooth Classic (BT) devices.
The core of our fuzzer is the first over-the-air approach that
takes full control of the BT controller baseband from the host.
This enables us to intercept and modify arbitrary packets,
as well as to inject packets out-of-order in lower layers of
closed-source BT stack, i.e., Link Manager Protocol (LMP)
and Baseband. To systematically guide our fuzzing process,
we propose an extensible and novel rule-based approach to
automatically construct the protocol state machine during nor-
mal over-the-air communication. In particular, by writing a
simple set of rules to identify protocol messages, we can dy-
namically construct an abstracted protocol state machine, fuzz
packets resulting from a state and validate responses from tar-
get devices. As of today, we have fuzzed 13 BT devices from
11 vendors and we have discovered a total of 18 unknown im-
plementation flaws, with 24 common vulnerability exposures
(CVEs) assigned. Furthermore, our discoveries were awarded
with six bug bounties from certain vendors. Finally, to show
the broader applicability of our framework beyond BT, we
have extended our approach to fuzz other wireless protocols,
which additionally revealed 6 unknown bugs in certain Wi-Fi
and BLE Host stacks.

1 Introduction

Bluetooth Classic (BT) is a wireless protocol that has been
in use for more than twenty years. Although BT is gradually
shifting to Bluetooth Low Energy (BLE), several IoT products,
audio devices and smartphones still support BT communica-
tion. Unfortunately, recent vulnerabilities in BT design [2, 3]
and implementation [41] highlight concrete threats that re-
main hidden from vendors in absence of rigorous testing.

In this paper, we propose a general and extensible fuzz
testing framework to test arbitrary BT protocol implemen-
tations in the wild. Figure 1 illustrates the context of our
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Figure 1: Bluetooth Classic protocol fuzzing approaches

BT fuzzer. Broadly, targets for BT stack fuzzing can be cat-
egorized into two: (i) host side of the BT stack that sits on
the host operating system (Target A), and (ii) the BT con-
troller stack that is implemented in the firmware (Target B).
Due to the imposed isolation between the host and the BT
controller (i.e., Target A and Target B), it is challenging
to fuzz the controller BT stack directly from the host. Sev-
eral fuzzing approaches [7, 20, 24], as shown by "BT Host
Fuzzing" are only capable of fuzzing Target A. Emulation-
based fuzzing [41, 58] ("BT Firmware Fuzzing" in Figure 1)
is capable of fuzzing both Target A and Target B, but it
requires reverse engineering the BT firmware and is not easily
portable to any device. Moreover, emulation of a reversed
engineered BT hardware relies on assumptions that may not
correspond to exact features or timing behaviour of the real
hardware [41].

Our proposed approach is shown via "OTA Fuzzing" (OTA
stands for over-the-air) in Figure 1. In short, our BT fuzzer
runs fuzzing campaigns directly on the host and it is capable
to fuzz both Target A and Target B without modifying the
firmware of the target device. Consequently, our BT fuzzer
can be employed out-of-the-box to fuzz any BT controller
stack. To the best of our knowledge, our approach is the first
host-side OTA fuzzer for BT Controller stack (i.e. Target B
in Figure 1). The fuzzing campaigns leverage the lowest data-
link layer, thus bypassing existing firmware debloaters [55]
that only consider the Host Controller Interface (HCI).

A key aspect of our OTA fuzzer is to keep the design gen-
eral and extensible for many stateful protocols. Recent ap-



proaches on protocol fuzzing [17, 18, 38] suffer from sev-
eral limitations to be generalizable. At one end, generational
fuzzing approaches [17, 18] manually integrate custom state
machines within the fuzzer for packet generation and muta-
tion. At the other end, mutational fuzzers [38] leverage previ-
ously stored packet sequences as seeds for new input gener-
ation and fuzzing. Generational fuzzing approaches [17, 18]
require significant work to support new protocols and is infea-
sible for complex protocols like BT which involve thousands
of state transitions. Additionally, the state machine within
such fuzzer is difficult to maintain upon new protocol features.
In contrast, mutational fuzzers avoid the effort of creating the
state machine, but are incapable to generate dynamic inputs
that rely on data available only during live communication.
For example, in BT, several packet fields in L2CAP contain
data that are dynamically generated and exchanged. A muta-
tional fuzzer relying on static seed inputs may often result in
invalid data input, thus terminating the communication.

We employ a novel dynamic state mapping strategy to
generalize OTA fuzzing. In particular, based on a few rules
constructed only once per protocol, we dynamically map ex-
changed packets to protocol states during live communication.
Then, we systematically refine the mutation probabilities as-
signed to a state for manipulating exchanged packets on-the-
fly and maximize the state machine coverage to guide the
fuzzing process. In such a fashion, we avoid manual hard-
coding of state machines, yet direct the fuzzer to maximize
coverage of protocol features captured by the state machine.
Additionally, it is applicable to closed protocol stacks and is
extensible to other protocols with a one-time effort of con-
structing the mapping rules and the fuzzing interface.

In the context of fuzzing BT stack, we present the first
technique to take full control of the communication in the BT
controller (i.e. Target B in Figure 1) from the host. While
frameworks such as InternalBlue [29] allows packet injection,
it is not able to control all the link manager procedures. To
address this challenge, we develop a novel BT fuzzing inter-
face by reverse engineering the BT stack of ESP32 [15]. This
enables us to intercept and arbitrarily modify any LMP or
Baseband packet exchanged with a target device. We note that
the commodity ESP32 hardware costs below 20 USD, thus
making our proposed fuzzer low cost and easily replicable. In
summary, we make the following contributions in the paper:

1. We present the general design of our OTA fuzzer target-
ing stateful protocol stacks (Section 3). We also present
our generic state mapping technique to dynamically cre-
ate the state machine for fuzzing (Section 4).

2. We present the design of a real-time fuzzing interface by
reverse engineering a commodity BT stack (Section 5).

3. We evaluate our fuzzer on 13 different BT devices (de-
velopment boards, modules and consumer products).
We discover 18 unknown implementation bugs, collec-

tively named BRAKTOOTH (with 24 CVEs assigned)
and six non compliances (Section 6). All bugs have been
reported to the vendors, with several already patched.
Moreover, six of the BRAKTOOTH bugs have received
bug bounty from Intel, Espressif and Xiaomi. An ex-
ploration on Bluetooth listing [46] reveals that BRAK-
TOOTH affects over 1400 product listings.

4. We compare our fuzzer with four state-of-the-art BT
fuzzers: BT Stack Smasher [5], Bluefuzz [7], IoTCube
bfuzz [24] and Toothpicker [20]. We show that our fuzzer
significantly outperforms all the competitors in terms of
finding implementation flaws (Section 6).

5. We show the extensibility of our OTA fuzzer by extend-
ing it to fuzz arbitrary Wi-Fi and BLE Host protocol
stacks. Our evaluation with eight Wi-Fi and BLE Host
stacks reveals 6 unknown implementation flaws, none
of which was discovered in comparable runs by state-of-
the-art fuzzers for Wi-Fi and BLE i.e., Greyhound [17]
and SweynTooth [18], respectively (Section 8).

2 Background and Motivation
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Figure 2: Common OSI Layers of Bluetooth Classic Stack

The BT stack employs several protocol interactions which
are scattered across OSI layers as shown in Figure 2. Notably,
there is an isolation between lower-layer protocols such as
Baseband, LMP; and higher-layer protocols such as L2CAP
and beyond [45]. While higher-layer protocols run on a host
operating system (OS), lower-layer protocols run on a sepa-
rate hardware named controller, which receives HCI packets
from the OS rather than Baseband or LMP packets.

BT main procedures are shown in Figure 3(a). Each pro-
cedure contains one or more message exchanges between
master and slave devices. Furthermore, relevant procedures
are split into inquiry, paging and connection. While inquiry
and paging are only related to BT discovery and connection
establishment between the master and the slave, the connec-
tion state involves exchanging most of layer 2 and 3 mes-
sages. After the master discovers the slave address via in-
quiry scan, the master connects to the slave via paging pro-
cedure and establishes an Asynchronous Connection Less
(ACL) connection as illustrated in Figure 3(a): (I) The master



Master Slave

Paging

(I) LMP informational requests
ACL Connection

Inquiry

Accept host connection

(II) LMP_host_connection_req

LMP_detach

(III) Role Switch

(IV) LMP Setup
 (V) pairing, authentication, encryption

Master (Attacker) Slave

LMP_features_request

LMP_features_response

LMP_setup_complete

LMP_features_req_ext

.......OpcodeTIDACL Hdr.BB
(84) Unkown PDU

Deadlock

Duplicated

Mutated

Inquiry
Paging

Optional

(a) BT Connection Procedure (b) CVE-2021-31611
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sends LMP Informational Requests, which includes mutual
exchange of device features, version and name; (II) master re-
quests LMP_host_connection_req to request communication
with slave higher-layers; (III) slave optionally performs role
switch if it needs to become the master. Finally, if the slave
accepts host connection with the master, (IV) LMP Setup
is mutually performed and (V) LMP procedures for pairing,
authentication and encryption start. The slave or master can
reject any request by sending LMP_reject and they may dis-
connect from an active connection by sending LMP_detach.

All the aforementioned procedures are usually expected
to be completed in a certain sequence. Since it is likely
that such expected sequence of procedures had already been
covered by compliance testing, our fuzzer aims to generate
adversely crafted packet sequence. This is challenging due
to the imposed requirements on hardware. For example, a
test engineer may need to freely inject packets at any time
during BT procedures for generating out-of-order packet se-
quences. Concretely, consider the undefined behaviour illus-
trated in Figure 3(b). First, the (malicious) master sends an
out-of-order (duplicated) LMP_setup_complete during LMP
Informational requests procedure to the slave. Next, the mas-
ter waits for a reply from the slave and sends a malformed
LMP_features_req_ext with an invalid Opcode value of 84,
instead of the original opcode 3. This triggers a deadlock on
the slave, requiring the user to manually reboot the slave.

The example depicted in Figure 3(b) requires sending to
the slave a packet from procedure (IV) into procedure (I), fol-
lowed by mutating a packet in procedure (I) (c.f., Figure 3(a)).
This, in turn, surfaces three crucial challenges for designing a
comprehensive and effective fuzzer: (a) To have full freedom
in duplicating and injecting any packet at any point during the
BT connection process, (b) to mutate any field of an arbitrary
packet and send it to a BT target in real-time, (c) to make the
packet manipulation targeted such that the fuzzer steers the
communication towards likely vulnerable scenarios.

3 Design Overview

In this section, we first discuss the key design concepts
employed in our fuzzing framework. We then provide an
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Figure 4: An Illustration of Our Fuzzing Architecture.

overview of different design elements in the framework and
justify our choices.

Design Novelty: We employ two key design concepts to gen-
eralize the fuzzing of stateful communication protocols: 1)
Rule-based state mapping, and 2) dynamic fuzzing. Concep-
tually, the rules are provided by the designer to locate the
type field within an exchanged packet. This is fundamentally
different from writing an extensive set of rules (i.e., gram-
mars) to generate packets for communication. Indeed, by
allowing the target devices to communicate normally, we can
intercept each exchanged packet and extract the type of the
packet via the provided rules. This is then used to construct
the normal flow of packet exchanges in the form of a state
machine where each state is uniquely mapped to a packet type.
During fuzzing, any exchanged packet is mapped on-the-fly
to its respective state in this state machine for computing
state/transitions coverage.

Concurrently, we employ dynamic fuzzing that eliminates
the need to integrate custom packet generation and handling
within the fuzzer. In other words, we simply intercept any ex-
changed packet and manipulate or inject packets as guided by
the fuzzing process. This allows our fuzzing to account for all
contextual information available only during communication,
thus providing flexibility in reaching the deep states in the
protocol implementation for fuzzing. Additionally, it makes
our design lightweight and extensible to other stateful proto-
cols with only a one-time effort per protocol on constructing
the state mapping rules.

In the following, we discuss the key elements in our design
and provide rationale behind our design choices.

Rule-based State Mapping and Fuzzing: Our proposed
fuzzing architecture (see Figure 4) automatically generates
the state machine from a few simple rules (“Mapping Rules"
in Figure 4). In particular, the rules are used to map an ex-
changed packet to a particular state (“State Mapper" in Fig-
ure 4). As an example, by using just eight (8) rules, we con-
struct a BT state machine with a hundred of states and over
thousand transitions. We note that it is practically infeasible
to manually construct such state machines like certain exist-
ing protocol fuzzers [4, 11, 17, 36]. An alternative approach
is to use active automata learning to learn the behavior of



black-box systems. However, as expected and discussed in a
recent approach [37], such learning requires significant time
due to many queries to target devices. For example, even to
learn a BLE state machine of around ten states, it might take
an hour [37]. In contrast, we develop a lightweight approach
that only requires a one-time effort from the designer to un-
derstand the protocol packet structure and devise the rules.
Once the rules are devised, we can automatically construct the
state machine for any device implementing the protocol and
by mapping the states from a normal communication. We also
show that such a rule-based approach is generic by employing
it to diverse protocols i.e., BT, BLE (Host) and Wi-Fi.
Decoupling Packet Generation from Fuzzing: In our
fuzzing architecture, we facilitate automated fuzzing during
live communication between the target device and an arbitrary
third-party stack (“Protocol Stack" in Figure 4). This is fun-
damentally different from conventional fuzzers that need to
model the entire environment for communication (e.g., packet
generation and handling) [4, 17, 36]. Our design facilitates
fuzzing arbitrarily complex protocol stacks without model-
ing complex protocol characteristics within the fuzzer. While
mutation-based fuzzing approaches [38] also fuzz packet se-
quences without packet generation effort, such approaches
are not effective for complex protocols like Bluetooth Classic.
This is because BT involves dynamic protocols e.g., L2CAP
where certain contextual information (e.g., channel config-
uration) is only available during communication and used
within generated packets. Thus, mutating packet sequences
with static seed inputs (i.e., packet sequences stored from
previous communications) will often terminate the communi-
cation due to the lack of contextual information in the packets.
This results in ineffective fuzzing. Moreover, our decoupled
design allows us to easily account for protocol changes, as
such changes can be introduced to the third-party stack and
thus reflect in the live communication for subsequent fuzzing.

Thus, our OTA fuzzer can be employed out of the box even
if amendments are added to the target protocol. In contrast,
when the packet generation is handled within the fuzzer [4,
17,36], it is highly likely to require modification that accounts
for new protocol features.
Generic and Efficient Packet Decoding: Unlike several pro-
tocol fuzzers [4, 18, 38, 40], the design of our OTA fuzzer
avoids manual construction of packet decoders. Instead, we
leverage on the rich body of packet decoders available in the
community supported Wireshark project [35], which includes
both wired and wireless protocols. Moreover, as Wireshark is
actively maintained, it also includes protocols that are early
in adoption such as 5G-NR [52] and BLE Audio [51]. In our
OTA fuzzer, we directly expose all the decoders of Wireshark
supported protocols to the fuzzing interface (“Fuzzing Inter-
face" in Figure 4), allowing highly efficient packet handling
and mutations. More importantly, our fuzzer eliminates the
need for constructing packet decoders for a significant number
(over 1000) of protocols already supported by Wireshark [53].

Feedback and Monitoring: Our approach involves target
health monitoring (“Monitor" in Figure 4), which faces unique
challenges to detect crashes for certain devices e.g., BT sound
devices (see Section 4). Additionally, our approach aims to
maximize the transition coverage of the reference state ma-
chine constructed via state mapping (“Optimizer" in Figure 4).
To this end, it uses particle swarm optimization (PSO) to re-
fine the probabilities for mutating packet fields and leverages
the number of transition in the state machine as a cost func-
tion for PSO. We employ PSO due to its applicability in
stochastic optimization scenarios in which the cost function
may depict some randomness given the same decision vectors.
This property translates well for our use in wireless fuzzing
as communication over-the-air is imperfect and adds inter-
ferences that cause certain unpredictable behavior or delays
during communication with the target. Such strategy was also
used successfully in previous fuzzing works [17, 28]. How-
ever, to maneuver the cost function value of PSO within our
framework involves additional challenges. This is because the
packet generation is not controlled by our fuzzer. In particular,
to compute the value of the cost function within PSO, we
leverage our state mapper (see Figure 4) to return the state
label of an exchanged packet on-the-fly. This is then used to
update the state transition coverage.

In contrast, when the packet generation is completely con-
trolled within the fuzzer [17], the computation of coverage is
trivially attributed to the control flow hard-coded in the fuzzer
state machine. Nonetheless, such coverage computation heav-
ily depends on the nature of the state machine integrated
within the fuzzer. This, in turn, makes the approach poten-
tially challenging to extend and generalize for OTA fuzzing.

4 Methodology

The fuzzing process: Figure 5 captures some scenarios en-
countered during the fuzzing process. To start, we generate
a reference state machine model Mre f (Figure 5(b)) from a
few simple rules (see Section 4.1 for details). The OTA fuzzer
intercepts all transmitted packets from the protocol stack (see
Figure 4). Subsequently, these packets might be mutated (Fig-
ure 5(c)) or duplicated (Figure 5(d)) while sending them to
the target device. For all the exchanged packets, either from
target device or protocol stack, the state mapper is invoked to
map a packet to a particular state in Mre f (Figures 5(b)-(d)).
This, in turn, is used to monitor the current state of the pro-
tocol and to compute the transitions covered via the fuzzing
process. Additionally, the state mapping is crucial to validate
target response. For example, if the current state is S and the
target response is mapped to state S′, then we validate this
response if and only if S′ is the destination of any outgoing
transitions from S. In the next section, we discuss our state
mapping process in detail.
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is the packet sent from the protocol stack whereas R is the response received from the target wireless device.

Algorithm 1 get_state_label Procedure

1: Input: Packet P, Rules Mu : {⟨Φi,F i⟩ | i ∈ [1,N]}
2: Output: State label generated for packet P
3: Parse packet P to get layers(P)
4: Let F [L] be the set of packet fields for L ∈ layers(P)
5: for each L ∈ layers(P) do
6: ▷ initialise state layer and type
7: state.layer := state.type := empty; i := 1
8: ▷ continue the mapping for P until a state label is found
9: repeat

10: ▷ check whether the layer matches with the next rule
11: if L satisfies Φi then
12: ▷ record matching layer and field names
13: state.layer := L.name; Fmap := F [L]∩F i

14: for each f ∈ Fmap do
15: v := value of field f in packet P
16: state.type := concat(state.type, lookup[v])
17: end for
18: end if
19: Θ := (state.layer = empty ∨ state.type = empty)
20: i := i+1
21: until ((Θ = f alse)∨ (i > N))
22: ▷ create the state label if a match was found
23: if (state.layer ̸= empty ∧ state.type ̸= empty) then
24: state.name := state.dir ⊕ state.layer ⊕ state.type
25: return state.name
26: end if
27: end for

4.1 Protocol State Mapping
The state mapper shown (see Figure 4) dynamically generates
the state machine Mre f to capture the protocol between the
devices. This can be performed either in real-time during the
communication (c.f., Figure 5 (b)) or via previously stored
capture files. We note that our state mapper constructs Mre f
by inspecting exchanged packets and mapping each packet
type to a unique state in Mre f . The exchanged packets depend
only on the protocol and not on any device specific states.
Thus, as long as the target device implements the considered
protocol, we can always map an arbitrary packet P, exchanged
from any target device, to a state in Mre f .

Mapping Rules: The core of state mapping is to create a

state label for any packet exchanged during communication.
This is accomplished via a set of rules Mu: a list of N pairs
⟨Φi,F i⟩ for i ∈ [1,N]. Φi denotes a condition (e.g., name of a
layer) to identify the protocol layer (say L), whereas F i cap-
tures the names of fields that identify the packet type within
L. Figure 6 shows two such rules in Mu: the first rule captures
the protocol layer name (i.e., layer.name) as L2CAP and the
packet type in L2CAP is identified in field F1 ≡ l2cap.code.
Similarly, the second rule captures the protocol layer LMP and
target fields {lmp.eop, lmp.opcode}. We argue that such a
set of rules is easy to construct for well-defined protocols
(we needed only eight rules for BT) and that our mapping ap-
proach avoids manual construction of protocol state machines
for fuzzing. Additionally, the mapping rules are significantly
more lightweight as compared to typical grammar rules used
for generating packets in model-based fuzzers [14]. In partic-
ular, the state machine generated by leveraging the mapping
rules facilitate state monitoring and coverage computation to
guide the fuzzing process. Such a state machine is not used
for generating packets within our fuzzer. For reference, the
mapping rules for BT, Wi-Fi and BLE Host Protocols are
included in the Appendix.

State Mapping Process: The state mapper (Algorithm 1)
creates a state label for any exchanged packet P. Then, a
transition between states s and s′ is created in Mre f when
s and s′ correspond to consecutive packets. The state label
contains the direction of the packet (i.e., TX for transmitted
and RX for received), the name of the layer (e.g., LMP) and
the type of the packet (e.g., Features Req.). To create the
state label, we first dissect the packet P in real-time and obtain
its inherent layers and fields (see Lines 3-4 in Algorithm 1).
Subsequently, we navigate through all layers of packet P (i.e.,
layers(P)) to identify the layer name in the set of rules Mu
(see Lines 5-13 in Algorithm 1). Once the layer is identified,
we extract the values from the relevant fields in the layer to
obtain the type of packet P (see Lines 13-15 Algorithm 1).
Finally, the packet type is also used to generate the state label
(Line 16 in Algorithm 1). We note that lookup dictionaries
map the field value to a name e.g., the value 0x04 for the
field lmp.opcode is mapped to type "Features Res." (see
Figure 6).



Although Mre f might be incomplete in nature, we argue
that it is sufficient for effective fuzzing. Moreover, our state
mapping architecture allows us to augment or modify the state
mapping rules on-the-fly. This allows identification of new
packet types as the protocol evolves, thus providing flexibility
to the designer for selectively fuzzing protocol layers.
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4.2 Fuzzing and Optimization
As discussed in Section 3, we expose Wireshark protocol
decoders to the fuzzer. In the following, we discuss how such
is leveraged for packet mutation and duplication (Figure 5).

Mutation: Since a packet structure contains many fields,
choosing what to mutate at which state is critical to diversify
the fuzzing process. Consider an intercepted packet P and
the mapped protocol state for packet P is S. Packet P can be
mutated only if S ∈ Mre f (protocol state machine). We capture
the mutation probability at state S via Yi(S) in the i-th fuzzing
iteration. Yi(S) contains a layer mutation probability for each
layer in P and a field mutation probability for all the fields in
P. Therefore, |Yi(S)|= NL(P)+1 where NL(P) is the number
of layers in packet P. The initial mutation probabilities at
state S i.e., Y1(S) are randomly assigned. Figure 7 illustrates
how the mutation is applied for two different packets P1 and
P2, which have a number of layers. Firstly, a Decoding Tree is
generated for each packet and fed to the State Mapper, which
outputs states S for P1 and S′ for P2. Then, such states are sep-
arately associated to mutation probabilities Y1(S) and Y1(S′)
respectively. We observe that pr1

l probability is assigned for
mutating the Baseband (BB) layer, whereas the ACL Header
is mutated with probability pr2

l . Then, for each packet type,
all the fields e.g., LT_ADDRESS, Type, receive the same prob-
ability pr f for mutation. Finally, the fuzzer iterates over all
layers and if a layer Li hits its chance pri

l , each field of layer
Li is mutated with a probability pr f .

In subsequent fuzzing iterations, we systematically refine
the mutation probabilities to guide the fuzzing process via
Mre f . To this end, we use an objective function to quantify the

effectiveness of Yi =
⋃

S∈Mre f
Yi(S) in terms of the coverage of

Mre f . Therefore, by maximally covering the number of transi-
tions in Mre f , we aim to maximize the number of anomalies
found. Given this intuition, we use the number of newly cov-
ered transitions in Mre f as the objective function. We note
that computing this coverage information requires repeated
invocation of our state mapping algorithm (Algorithm 1).

We apply particle swarm optimization (PSO) to refine Yi
after each fuzzing iteration. Our choice of PSO is motivated
by its effectiveness in a wireless environment that involves
non-linear and stochastic behaviour [17, 39]. Intuitively, PSO
optimizes the value of our objective function via iteratively
modifying the positions of particles in the swarm. In our
fuzzer, the position of a particle is the chosen probabilities Yi
in a given fuzzing iteration. Furthermore, each particle in a
swarm is associated with a different set of mutation probabili-
ties to apply PSO in our context.
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Figure 7: An illustration of mutation probabilities distributed
across layers and fields of the dissected packet decoding tree.

Mutation Operators: The mutation operator is applied ac-
cording to the type of the chosen field and it avoids mutating
in valid ranges (normally certification covers it), resulting in
packets ideally being rejected or timed out.

Integer fields are mutated with a random value, but since a
field may not be byte-aligned, its value is overwritten accord-
ing to a bit-mask and its bit-length; Bitfield types are toggled
using XOR operation and byte arrays (i.e., strings) receive a
random byte value at a random position in the array.

Duplication: As shown in Figure 5(d), our fuzzer duplicates
packets to send them at inappropriate times. The duplica-
tion revolves around two parameters: The chance rsel for a
packet P to be duplicated (rsel ∈ [0,1]) and the time t (in mil-
liseconds) for which the packet is kept in a queue Qs before
transmitting P out-of-order. The time t is chosen randomly
between [1,DT ]. Adjusting rsel and DT influences when the
fuzzer sends out-of-order packets to the target. A high value
for DT allows the fuzzer to send out-of-order packets more
scattered across deeper states. In contrast, a higher rsel may
create flooding situations, which might prevent the fuzzer to
reach deeper states. The implication of choosing these param-
eters is discussed in our empirical evaluation (Section 6).



Target Monitoring: Monitoring a target device over-the-air
is not as direct as compared to monitoring classic program
crashes. Whenever a BT system-on-chip (SoC) crashes, its
internal watchdog timer detects unresponsiveness and hard
resets the SoC. We employ several schemes to listen for mes-
sages indicative of crash & restart, across different types of
BT devices (see "Monitor" in Figure 4).

For BT development boards or modules, the Target Mon-
itor collects startup messages through their exposed Serial
Port via USB cable. Similarly, Android smartphones require
ADB connection to collect crash messages from system logs
via USB. Furthermore, SSH allows collecting error messages
from the kernel ring buffer via Ethernet or Loopback. Finally,
the Microphone can be used to identify whether a BT sound
device plays a startup sound above a user-defined volume
threshold. Considering that such sound is usually played only
when the device is manually powered on, the event of re-
peated startup sounds indicates a crash. Figure 8 outlines the
different external connections and techniques to monitor each
target type. We note that in cases when the watchdog timer
fails to detect SoC hangs, we employ a global timer to detect
reconnection timeout (and hence a possible deadlock).

USB

Ethernet 

Startup Sound
Vol. Threshold Microphone

SSH (dmesg)

Serial Port
ADB (logcat)

Monitors
Dev. Boards 
or Android

Targets

Laptop  
(Linux)

BT Sound 
Device

External Connections
"Startup / Error Message"

"Startup / Error Message"
or Loopback

Figure 8: An illustration of different BT Target Monitors.

4.3 Exploitation via Dissection Hooks
Once the fuzzer gets a vulnerability (crash or deadlock) or
non-compliance, the user can replicate the scenario via our
exploitation framework. This is done using TX/RX dissection
hooks to inject or mutate packets during communication.

For example, test cases for CVE-2021-31611 (see Fig-
ure 3(b)), which would otherwise require reverse engineering
to create, are now created by simply manipulating packets via
our exploitation framework (see Figure 9).

Specifically, Figure 9 highlights intercepting packets
and checking whether they match LMP_features_req or
LMP_features_req_ext by using the Wireshark filters.
Then the packet LMP_setup_complete is injected after
LMP_features_req and LMP_features_req_ext is mu-
tated by modifying the raw packet contents (i.e., pkt_buf).

5 Achieving Real-Time Fuzzing Interface

Due to the lack of open-source Bluetooth Classic controller
implementations, it is challenging to circumvent the HCI bar-
rier such that the layer 2 (see Figure 2) is fully controlled by

Figure 9: CVE-2021-31611 exploit via TX dissection hook.

the host. Moreover, since the Baseband packets are sent in
a time window multiple of 625us [45], handling Baseband
in the host is not straightforward as the OS scheduler cannot
normally operate in such a strict timing constraint.

We have the following options to address this challenge: (1)
Implementing a BT controller from scratch; (2) using existing
frameworks for BT firmware patching [29], or (3) designing
a patched firmware to enable Baseband manipulation from
the host using popular and low-cost IoT SoC. Option (1) is
extremely labour intensive to implement due to the complexity
of Baseband and LMP handling [45, p. 150]. Furthermore,
there is no wireless SoC that openly exposes documentation
of its Bluetooth Classic radio registers. Concurrently, option
(2) does not offer much flexibility in host-side fuzzing as
discussed next (Section 5.1). In contrast, we choose option
(3), as it allows us to create a patched firmware only once and
(re)use this out-of-the-box for fuzzing arbitrary Bluetooth
classic devices.

Next, we highlight limitations of option (2) i.e., the state-of-
art BT sniffing and injection (InternalBlue [29]) and discuss
the conceptual differences that enable our fuzzing interface to
overcome such shortcomings, while still keeping our approach
generically applicable to fuzz other wireless protocols.

5.1 Comparison with InternalBlue

Figure 10 showcases how each approach manipulates or in-
jects BT packets based on where the packet hook is located.
Our BT fuzzing interface (Figure 10 (a)) manipulates packets
in the host TX Hook via Hold / Release operations. In contrast,
Internalblue (Figure 10 (b)) uploads and runs specific assem-
bly patches (ASM Hook) in the controller firmware before
any packet injection or manipulation can be done. The latter
approach, while flexible for BT patching experimentation,
introduces the following shortcomings for OTA fuzzing:

(I) Hook Location: InternalBlue packet hook runs in the con-
troller firmware and requires a new patch to be applied before
a BT exchange happens. For an ongoing BT exchange, such an
approach only allows fixed packet manipulation, whereas our
OTA fuzzer demands arbitrary packet manipulations to diver-
sify the fuzzing process. Additionally, integration of fuzzing
components and protocol decoding inside the firmware only
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Figure 10: Packet Hook strategy employed by our BT Fuzzing
Interface and InternalBlue framework. R/I: Release/Inject.

results in a loss of generality of our OTA fuzzer design. This is
due to the requirement of custom patches for the InternalBlue
target firmware. Instead, we leverage Hold/Release operations
for fuzzing, which can be employed beyond BT.

(II) Packet Sniffing/Injection: InternalBlue only exposes LMP
layer sniffing or injection to the user due to its reliance on
Broadcom Diagnostics protocol. Moreover, such protocol
only injects packets after stable BT connection, which un-
dermines fuzzing attempts to inject packets during early BT
procedures (see Figure 3(a)). This limitation is also discussed
earlier [33]. To overcome this, we design a custom, yet simple
protocol that encapsulates all layers, starting from Baseband.

(III) Hardware Limitations: InternalBlue target platforms do
not support high-speed USB, which is critical for a low round
trip time (RTT in Figure 10) between host and BT controller.
Therefore, we shift to a platform such as ESP32-WROVER
that allows manipulation of packets with RT T < 625us.

We note that authors of InternalBlue recently had replicated
a specific BRAKTOOTH flaw (i.e., V14 in Table 2). While
doing so, it was mentioned that InternalBlue was not stable
to reproduce exploits that target the Baseband layer, as the
framework cannot easily modify Baseband headers [42].

We now describe how we design a patched firmware using
ESP32 IoT SoC to manipulate or inject Baseband packets.

5.2 Espressif Bluetooth Internals
We reverse engineer relevant parts of Espressif’s ESP32 pro-
prietary BT library libbtdm_app.a to investigate how BT pack-
ets are transmitted (TX) and received (RX). This is with the
objective to modify TX/RX data/control flow to facilitate
fuzzing from the host. ESP32 BT library is closed source and
it is available in Espressif IoT Development Framework (ESP-
IDF) [15]. Nonetheless, ESP-IDF exposes partial BT symbols
in the compiled BT sample code image (i.e., the user code)
and also provides a partial ELF image of ESP32 ROM for de-
bugging purposes. Thus, importing both images into Ghidra
9.1.2 [1] with a third-party Tensilica Xtensa CPU plug-in [13],
allows us to investigate Baseband packet handling.

Espressif Patches: ESP32 ROM needed to be patched to
solve issues with Wi-Fi coexistence, new BT features and
vulnerabilities. Therefore, Espressif BT controller is split be-
tween ROM and the static library libbtdm_app.a. Such library
is linked to the user application, which runs in flash memory.

As illustrated in Figure 11, the ESP-IDF applies a number
of runtime patches during BT initialization by redirecting
some ROM functions to libbtdm_app.a. This is silently ac-
complished by config_funcs_reset, which overwrites global
pointers that are originally mapped to ROM during boot.
However, certain fixes, which need to be introduced inside
ROM functions, do not have a corresponding pointer. Ad-
dresses of such functions are intercepted at runtime in the
BT frame interrupt function r_ld_fm_frame_isr. This is then
replaced with function wrappers containing tiny fixes (i.e.,
ld_inq_frm_cbk_wrapper). When a simple fix is not pos-
sible, certain functions are completely reimplemented in
libbtdm_app.a, such as ld_acl_frm_isr. Next, we describe our
modifications to the ESP-IDF BT library that enable fuzzing
from the host.

BT
Scheduler

...

ld_acl_frm_isr

r_ld_fm_frame_isr

ESP32 ROM Symbols libbtdm_app.a Symbols

Schedule Task
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Figure 11: ESP-IDF runtime patching to fix ROM functions.

5.3 Patching from Inside and Outside
We design a mixed patching framework (Figure 12) for ESP32.
It introduces custom function hooks in a user code that in-
tercept or inject ACL/LMP packets on either ROM or any
ESP32 proprietary library at runtime.

Since the static library libbtdm.a is independent from the
user code (i.e. firmware.c in Figure 12) before the link-
ing process, it is not reasonable to patch the library from
outside before linking. This is because the call instruction
call8, as used by the BT library, is relative to the program
counter, but the address of our desired hook function in the
user code is not known until linking. Specifically, we intro-
duce our BTPatcher to ESP-IDF build pipeline. We patch the
generated firmware ELF by overwriting specific user-defined
symbol addresses with a call to custom hook in the user code
(i.e. firmware.c in Figure 12). For instance, the interception
hook r_ld_acl_data_tx+609 (see Figure 12) is placed at
offset 609 relative to the function r_ld_acl_data_tx and
the hook is used to redirect the control flow to a custom func-
tion in firmware.c. Such a custom function, in turn, is used
to intercept L2CAP packets, including its Baseband headers.

CompilerLinker

BTPatcher.py

firmware.c

rompatcher.h
rompatcher.S

btlib.h

libbtdm_app.a

firmware.elf

xtensa-objcopy firmware.bin
Patched BT Firmware

Interception Hooks

r_ld_acl_data_tx+609 
r_ld_frame_isr+70 
r_ld_frame_isr+318 ....

Figure 12: Workflow of BRAKTOOTH patching framework.

Our approach in Figure 12 significantly reduces time to test
hooks, as opposed to manually applying patches via Ghidra.



Using BTPatcher.py, we introduce hooks to relevant libbtdm.a
functions such as r_ld_frame_isr and r_ld_acl_data_tx
to capture the reception of LMP/L2CAP packets and inter-
cept the transmission of L2CAP packets, respectively. How-
ever, to intercept most LMP packets, it is necessary to patch
r_ld_acl_lmp_tx located in ROM. We patch this function
at runtime (i.e., from inside) via the pointer redirection strat-
egy discussed in Section 5.2. The redirected functions then
implement Baseband interception for host-side mutation.

The remaining Baseband packets are handled entirely in
ROM functions that do not have a global pointer, such as
paging and enquiry related functions. For these functions, we
create a rompatcher which installs ROM hooks via Xtensa
breakpoint registers IBREAK0-1. This, in turn, enables our
hooks to be called upon any ROM address, and hence enables
interception of packets that are only generated in ROM.

5.4 Fuzzing Interface Firmware Design
Our BT fuzzing interface provides the following set of fea-
tures (exposed via USB) to the host-side fuzzer:
TX Hold/Release: Allows the host to mutate Baseband TX
packets in real-time before over-the-air transmission. Accord-
ing to Core Specifications [45], the time gap between each
packet exchange is always multiple of 625us. Therefore, in
the worst-case, the interception hook needs to forward a BT
packet to the host and receive it back before a channel hop in
625us. Such low-latency is achieved by enabling the "0ms"
latency mode of FT2232H USB Driver [16], which pools
messages from the host USB port every 125us. This is the
equivalent to forcing the host to busy-wait on the USB port
and achieves an average RTT of 281us (see Figure 13).

150 200 250 300 350 400 450 500

192 us 281 us

Kernel 5.10
Max: 1341 us
Min: 192
Mean: 281

Kernel 5.10 RT
Max: 1315 us
Min: 172
Mean: 276

Figure 13: Histogram of Interception Round Trip Time (us)
for Linux Kernel variants on AMD 3900X 2.6Ghz.

TX Injector: This allows the host to inject Baseband pack-
ets after the BT paging procedure (See Figure 3(a)). This is
essential for the duplication component to work.
RX/TX Bypass: Effectively "blinds" ESP32 BT stack from
receiving or transmitting LMP packets after the paging proce-
dure. Combined with TX Injector, the host can inject packets
on every BT transmission slot (i.e. every 1.25ms), facilitating
flooding attacks such as AU Rand Flooding (see Section 6).
ROM Patcher: Installs ROM hooks at run-time from the
firmware (i.e., user code) as discussed in Section 5.3.

6 Evaluation

Implementation: The fuzzer is split in two codebases: (I) The
fuzzer software running on the host is mostly written in C++
with few lines of Python (16431 lines of code (LOC)) and
(II) the BT fuzzer interface, discussed in Section 5.4, is writ-
ten in C for ESP32 (3094 LOC). Moreover, the BTPatcher
discussed in Section 5.3 has 371 LOC. Our state mapper
and fuzzing was built around Wireshark 3.3.0 Epan library
and Graphviz++ [27]. The Wireshark plug-in that enables
decoding of Baseband packets is based on the InternalBlue
Broadcom decoder [10]. Specifically, we extended such de-
coder to support custom ESP32 BT metadata and additional
packet headers that were missing from the original project.
The optimizer uses the generational PSO implementation [12]
from PyGMO library with the default pygmo.pso_gen opti-
mization parameters. Finally, we slightly modify Bluekitchen
sample program sdp_rfcomm_query to start layer four (4)
communication whenever the fuzzer starts a new iteration.
Evaluation Setup: Table 1 outlines all devices that we have
tested. Each device can either be a BT development kit or an
end product such as a laptop, smartphone, wireless speaker,
etc. While products have a BT SoC pre-programmed for the
product’s application, development boards require an initial
firmware to start. The latter is accomplished by programming
a sample code provided by the SoC Software Development Kit
(SDK). Since our fuzzer targets the BT stack, a vulnerability
in such indicates that other devices relying on the same BT
stack are also potentially vulnerable due to the shared code
base of the SDK.

Since we need to have a reference model for the fuzzing,
we let the state mapper (Section 4.1) learn the reference
model by running Bluekitchen BT stack sample program
sdp_rfcomm_query with each target device for about 1h. The
final protocol model Mre f is the combined reference model of
each individual device. This ensures that we can use a single
model for different devices during the fuzzing campaign.

We now answer the following research questions (RQs):
RQ1: How effective is our fuzzer in terms of generating
error-prone inputs? A summary of our evaluation appears in
Table 2. In each row, we use the prefix V to identify a vulner-
ability and A to indicate a non-compliance (i.e., faulty target
responses) that deviates from the Core Specifications [45].
Moreover, Table 2 outlines the respective CVEs, affected de-
vices, protocol layers and the violated compliance. Overall,
we discovered 18 unknown implementation bugs and coordi-
nated a 90-day disclosure period with all vendors.

BRAKTOOTH flaws trigger (I) crashes and (II) deadlocks.
Crashes generally trigger fatal assertion, segmentation faults
due to buffer or heap overflow within the SoC firmware. Dead-
locks, in contrast, lead the target to a condition in which no
further BT communication is possible. This may happen due
to the paging scan being forcibly disabled (V17), state ma-
chine corruption on V7 or entirely disabling BT functionality



Table 1: Devices used for evaluation. The sample code is
provided by vendor to test the development board. This is not
applicable (N.A) on products running a fixed application.

BT SoC Vendor BT SoC Dev. Kit / Product Sample Code Monitor
Bluetooth 5.2
Intel AX200 Laptop Forge15-R N.A SSH
Qualcomm WCN399X Xioami Pocophone F1 N.A ADB
Bluetooth 5.1
Texas Instruments CC2564C CC256XCQFN-EM SPPDMMultiDemo Serial
Bluetooth 5.0
Cypress CYW20735B1 CYW920735Q60EVB-01 rfcomm_serial_port Serial
Bluetrum Technology AB5301A AB32VG1 Default Serial
Zhuhai Jieli Technology AC6925C XY-WRBT Module N.A Mic.
Actions Technology ATS281X Xiaomi MDZ-36-DB N.A Mic.
Bluetooth 4.2
Zhuhai Jieli Technology AC6905X BT Audio Receiver N.A Mic.
Espressif Systems ESP32 ESP-WROVER-KIT bt_spp_acceptor Serial
Bluetooth 4.1
Harman International JX25X JBL TUNE500BT N.A Mic.
Bluetooth 4.0
Qualcomm CSR 8811 Laird DVK-BT900-SA vspspp.server.at Serial
Beken BK3260N HC-05 V1.0.2 Serial
Bluetooth 3.0 + HS
Silabs WT32i DKWT32I-A ai-6.3.0-1149 Serial

via remote code execution (RCE) on V1. Our results affect
popular BT vendors (i.e., Intel, Qualcomm, Cypress, Texas
Instruments) and relatively less known (i.e., Bluetrum, Jieli,
Harman), which are still employed in many consumers prod-
ucts such as BT speakers, keyboards, toys, etc.

V1 affects ESP32, which is used in many products ranging
from consumer electronics to industrial equipments such as
programmable logic controllers (PLCs). Hence, the impact
is significant, as the attacker only requires knowledge of the
target BDAddress to launch the attack. Indeed, all the vul-
nerabilities V1-V18 can be triggered without any previous
pairing or authentication. Moreover, the impact of V1-V18
reaches beyond the devices listed in Table 2, since any other
BT product employing an affected SoC is also vulnerable.

Multiple LMP flooding attacks (e.g., V5, V13) and V16
were found in SoCs from different vendors including majors
e.g., Intel and Qualcomm. This indicates the lack of flexible
tools for over-the-air testing even in 2022. Besides, the Core
Specifications only allows a limited "LMP test mode" [45] that
prevents the SoC from operating in many LMP procedures.

RQ2: How efficient is our fuzzer? Each fuzzing iteration
results in a reconnection between the host and target, thus effi-
ciency depends on how often the target starts the paging pro-
cedure (c.f., Figure 3) with the master. The time to reconnect
can be decreased in Linux and in some development boards,
but BT products do not offer such options. Table 4 showcases
the total time to evaluate 1000 iterations for each target. In
general, all development boards except for DVK-BT900-SA
and DKWT32I-A depicted lower time to complete 1000 itera-
tions than BT Products or Modules such as JBLTUNE500BT
and XY-WRBT, respectively. Nevertheless, the time to find
the first vulnerability (i.e., crash or deadlock) was generally
within 10-30 minutes with few exceptions such as Pocophone
F1 and JBLTUNE500BT, which did not encounter crash or
deadlock within 1000 iterations. Despite this, most devices
had A2 (c.f., Table 2) triggered within few minutes.

The column "Model Coverage" in Table 4 captures the num-

ber of unique valid transitions in Mre f (i.e., the protocol state
machine) that are traversed by the respective target device
during the fuzzing process. We note that each BT vendor im-
plements BT devices differently and the vendor may choose
scenarios that do not trigger all 1106 possible transitions in
Mre f . In particular, target devices that perform role switch
with the master yield more transitions in Mre f . For example,
XY-WRBT and BT Audio Receiver explored fewer transitions
due to the lack of role switch and overall LMP exchanges as
compared to the other devices e.g., Pocophone F1.
RQ3: How do the different design choices contribute to
the effectiveness of our fuzzer? To evaluate this, we first
create three variants of the fuzzer that disables part of its com-
ponents: (I) Only Duplication is enabled (c.f., Figure 4). This
means that only out-of-order packets are sent to the target. (II)
Packet Mutation without optimization or duplication. Thus,
packets do not reach the target out-of-order and mutation
probabilities are not refined. (III) We enable both Mutation
and Optimization, but Duplication is disabled.

Figure 14 depicts the total number of unique crashes
or deadlocks obtained during 1000 fuzzing iterations with
ESP32 as the target. We choose ESP32 for this experiment as
it yields higher number of crashes and deadlocks. The labels
"Duplication", "Mutation" and "Evolution" refer to variants
(I), (II) and (III) respectively. The last label "All" is the fuzzer
with all components enabled. The results yield the following
observations: The Duplication returned crashes due to V5,
V4 being triggered after paging procedure (c.f., Figure 3).
However, such a variant could not find V1, V2 which require
packet mutation. Likewise, Mutation and Evolution could only
find V1, V2 due to V5 and V4 requiring packet duplication to
be triggered. Moreover, it was notable that Evolution was able
to trigger V1, V2 before variant Mutation due to its better ex-
ploration of the target. Nevertheless, in 1000 iterations, only
the variant All triggered each of ESP32 vulnerabilities V1-V5.
However, the variant All usually takes more time to trigger
issues in deeper states (i.e., bounding) since duplication and
mutation are competing during the fuzzing session.

Table 5 evaluates the Duplication variant of the fuzzer with
respect to the tunable parameters rsel (selection probability)
and DT (time to schedule). We note that for a higher proba-
bility rsel = 0.3 and low DT = 100ms, the highest number of
crashes were detected due to LMP flooding (V5). However,
when decreasing rsel to 0.1 and increasing DT to 6000ms,
crashes are triggered less frequently, as out-of-order packets
are delivered into deeper states. This contributes to the highest
number of average transitions and reduces flooding behaviour.
We chose rsel = 0.1,DT = 6000ms to evaluate other devices,
as such configuration is less aggressive in terms of flooding
and hence it does not overshadow the mutation component.
RQ4: How effective is our fuzzer compared to existing
BT fuzzers? We compare our fuzzer against state-of-the-art
tools that most closely match the objective of our fuzzer i.e.,
bfuzz [24], BT Stack Smasher [5], Bluefuzz [7], and Tooth-



Table 2: Summary of unknown implementation bugs and other anomalies found (Vx: Vulnerability, Ax: Non-compliance).

Anomalies CVE ID(s) Device(s) State(s) Target Layer(s) Impact Type Compliance Violated
V1 Feature Pages Execution CVE-2021-28139 ESP-WROVER-KIT Feature Exchange LMP RCE [V.1] Part E, Sec. 2.7
V2 Invalid Public Key CVE-2021-28138 ESP-WROVER-KIT Bounding LMP Crash [V.2] Part C, Sec. 5.1
V3 Feature Req. Ping-Pong CVE-2021-28137 ESP-WROVER-KIT Feature Exchange LMP Crash [V.1] Part E, Sec. 2.7
V4 Duplicated IOCAP CVE-2021-28136 ESP-WROVER-KIT Bounding LMP Crash [V.2] Part C, Sec. 4.2.7.1

V5 Feature Resp. Flooding
CVE-2021-28135
CVE-2021-28155
CVE-2021-31717

ESP-WROVER-KIT
JBL TUNE500BT
Xiaomi MDZ-36-DB

After Paging LMP Crash [V.1] Part E, Sec. 2.7

V6 LMP Auto Rate Overflow
CVE-2021-31609
CVE-2021-31612

DKWT32I-A
BT Audio Receiver Data Rate Change Baseband Crash [V.2] Part B, Sec. 6.6.2

V7 LMP 2-DH1 Overflow CVE-2021-35093 DVK-BT900-SA After EDR Change Baseband Deadlock [V.2] Part C, Sec. 2.3
V8 LMP DM1 Overflow CVE-2021-34150 AB32VG1 Many Baseband Deadlock [V.2] Part B, Sec. 6.5.4.1

V9 Truncated LMP Accepted CVE-2021-31613
BT Audio Receiver
XY-WRBT Module Many LMP Crash [V.2] Part C, Sec. 5.1

V10 Invalid Setup Complete CVE-2021-31611
BT Audio Receiver
XY-WRBT Module Feature Exchange LMP Deadlock [V.1] Part E, Sec. 2.7

V11 Host Conn. Flooding CVE-2021-31785 Xiaomi MDZ-36-DB Host Connection LMP Deadlock [V.1] Part E, Sec. 2.7
V12 Same Host Connection CVE-2021-31786 Xiaomi MDZ-36-DB Host Connection LMP Deadlock [V.1] Part E, Sec. 2.7

V13 AU Rand Flooding
CVE-2021-31610
CVE-2021-34149
CVE-2021-34146

AB32VG1
CC256XCQFN-EM
CYW920735Q60EVB

After Paging LMP
Crash

Deadlock [V.1] Part E, Sec. 2.7

V14 Invalid Max Slot Type CVE-2021-34145 CYW920735Q60EVB After Setup Complete Baseband Crash [V.1] Part E, Sec. 2.7
V15 Max Slot Length Overflow CVE-2021-34148 CYW920735Q60EVB After Setup Complete Baseband Crash [V.1] Part E, Sec. 2.7

V16 Invalid Timing Accuracy
CVE-2021-34147
CVE-2021-30348
CVE-2021-33139

CYW920735Q60EVB
Pocophone F1
Intel AX200

Timing Accuracy LMP, Baseband Crash [V.1] Part E, Sec. 2.7

V17 Paging Scan Deadlock CVE-2021-33155 Intel AX200 After Host Connection LMP, Baseband Deadlock [V.1] Part E, Sec. 2.7
V18 SDP Element Size Overflow Pending Beken BK3260N SDP Exchanges SDP Deadlock [V.2] Part C, Sec. 4.2.5.2
A1 Accepts Lower LMP Length N.A All, except ESP32 Many Baseband Non-Compliance [V.2] Part C, Sec. 5.1
A2 Accepts Higher LMP Length N.A All tested devices Many Baseband Non-Compliance [V.2] Part C, Sec. 5.1
A3 Multiple Encryption Start N.A Xiaomi MDZ-36-DB After Encryption Start LMP Non-Compliance [V.2] Part C, Sec. 4.2.5.3
A4 Ignore Role Switch Reject N.A Pocophone F1 Role Switch LMP Non-Compliance [V.2] Part C, Sec. 4.4.2

A5 Invalid Response N.A
Intel AX200
DVK-BT900-SA Feature Exchange LMP Non-Compliance [V.2] Part C, Sec. 4.3.4

A6 Ignore Encryption Stop N.A CYW920735Q60EVB After Encryption Start LMP Non-Compliance [V.2] Part C, Sec. 4.2.5.4

Table 3: Vulnerabilities: SDK/Firmware versions of vendors

SoC or Module Vendor BT SoC Firmware or SDK Ver. Vuln. / Non-compl.

Intel AX200
Linux - iwlwifi-cc-46.3
Windows - 22.40.0 V16-17 / A1-2

Texas Instruments CC2541C cc256xc_bt_sp_v1.4 V13 / A1-2
Cypress CYW20735B1 WICED SDK 2.9.0 V13-16 / A2,A6
Bluetrum Technology AB32VG1 1.0.5 V8,V13 / A1-2
Zhuhai Jieli Technology AC6925C N.A V9-10 / A1-2
Zhuhai Jieli Technology AC6905X N.A V6,V9-10 / A1-2
Actions Technology ATS281X N.A V5,V11-12 / A1-2
Qualcomm WCN399X crbtfw21.tlv, patch 0x0002 V16 / A1-2,A4
Espressif Systems ESP32 esp-idf-4.4 V1-V5 / A1
Harman International JX25X N.A V5 / A1-2
Laird Connectivity BT900 (CSR8811) v9.1.12.14 V7 / A1-2
Silabs WT32i iWRAP 6.3.0 build 1149 V6 / A1-2
Beken HC-05 (BK3260N) V1.0.2 V18 / A1-3

picker [20]. These tools target BT higher layers e.g., L2CAP,
SDP, while only bfuzz supports multiple BT protocols.

For a fair comparison, we run all fuzzing tools for three
hours (unless the fuzzer terminates before). Table 6 shows the
number of non-compliances (Ax) and crashes (Vx) triggered
by each fuzzing tool. It also lists the products or SoCs that
exhibit at least one crash on the rightmost columns. The com-
petitor tools discovered new crashes on a few devices such
as ESP32, MDZ-36-DB, JBL TUNE500BT and AB32VG1.
These crashes were found either in L2CAP or RFCOMM layer.
In contrast to these tools, our fuzzer enables full control to
fuzz the LMP and Baseband layers, and hence we discovered
critical vulnerabilities in such layers (see Table 2). Although
bfuzz performed the fastest L2CAP fuzzing (130 packets/sec-

Table 4: Timing of 1000 fuzzing iterations for each device.

Dev. Kit / Product Total Time 1st Vulnerability 1st Non-compl. Model Coverage
Laptop Forge15-R ~3 h. 27 min. 5 min. 243 (21.9%)
Pocophone F1 2 h. 48 min. >~2 h. 48 min. 6 min. 258 (23.3%)
CC256XCQFN-EM 3 h. 46 min. 2h. 34 min. 9 min. 105 (9.5%)
CYW920735Q60 3 h. 19 min. 12 min. 20 min. 197 (17.8%)
AB32VG1 3 h. 08 min. 11 min. 7 min. 140 (12.7%)
XY-WRBT Module 4 h. 12 min. 35 min. 29 min. 94 (8.5%)
BT Audio Receiver 3 h. 48 min. 26 min. 11 min. 99 (8.9%)
MDZ-36-DB 4 h. 27 min. 6 min. 1 min. 150 (13.5%)
ESP-WROVER-KIT ~3 h. 10 min. 42 min. 244 (22.1%)
JBL TUNE500BT ~5 h. >~5h. 26 min. 153 (13.8%)
DVK-BT900-SA 3 h. 50 min. ~1 h. 26 min. 119 (10.7%)
DKWT32I-A ~4 h. 13 min. 8 min. 143 (12.9%)
HC-05 (BK3260N) ~5 h. 1 h. 12 min. 1 min. 95 (8.6%)

ond), it must keep a database with up to date test cases and
does not reach LMP or Baseband layers. In contrast, our fuzz
tests are generated automatically via the approach illustrated
in Section 4 and we do not need to maintain any database.

Overall the competitor tools can only detect a few crashes
as compared to our fuzzer and they are incapable of finding
layer two and layer three vulnerabilities such as V1-V17 or
non-compliances A1-A6 (cf. Table 2). Our fuzzer has supe-
rior performance for two reasons: first, our fuzzer intercepts
ESP32 BT stack for fuzzing during early LMP procedures.
Secondly, the competitor tools neither send duplicated packets
nor do they optimize the mutation probabilities.

Finally, we compare how the time of training the reference
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Figure 14: Unique crashes/deadlocks w.r.t ESP32 fuzzing
iterations. Parameters: rsel = 0.1 DT = 6000

Table 5: Evaluation summary w.r.t. different rsel and DT .
# Crash (# Average Transitions) during 200 Iterations

rsel DT = 100ms DT = 1000ms DT = 6000ms
0.1 12 (116±74) 6 (113±82) 7(107±81)
0.2 14 (118±57) 10 (108±75) 7(110±84)
0.3 15(107±57) 18(115±64) 13(145±74)

model Mre f affects the fuzzing process. We generated five
reference models {Mi

re f | i ∈ {1,15,30,45,60}} by running
the state mapper against ESP32 for one, 15, 30, 45 and 60 min-
utes, respectively. We then employ Mi

re f in a fuzzing session
(i.e., 1000 iterations). Figure 15(a) showcases the number
of ESP32 vulnerabilities per model over a fuzzing and Fig-
ure 15(b) depicts the number of states, anomalies (A) and
coverage (C:%) of each model during their fuzzing session.

In general, the more the time a model is trained, the more
the states and transitions it includes, which contributes to
finding vulnerabilities in less frequent states. However, Fig-
ure 15(a) highlights that even a model trained for 1 min discov-
ers higher vulnerabilities (#Crash + #Deadlock) in a fuzzing
session than a more complete model (e.g., M60

re f ). This means
that a model employing more states than necessary to find cer-
tain vulnerable states, can lead the fuzzer to take more time to
reach a higher number of vulnerabilities (e.g., M45

re f ). Nonethe-
less, such a model can explore more states for fuzzing.

The number of vulnerable states ("Crash" States) are shown
in Figure 15(b). Notably, most of the mapped states are as-
signed to LMP, which grows from 62 in M1

re f to 87 in M60
re f .

While M1
re f finds ten "Crash" States, it yields higher coverage

(C : 86%) and number of anomalies (A : 62) at the end of the
fuzzing session due to its smaller number of states. On the
contrary, M60

re f results in less coverage (C : 64.6%), but it can
guide the fuzzer to explore more states and transitions.

For reference, our full BT model resulted in a coverage of
22.1% for ESP32 and it has the following number of states:
LMP (125), L2CAP (16), SDP (5), RFCOMM (9). For sim-
plicity, such reference model is illustrated in Figure 16 with a
few transitions between certain LMP and L2CAP states.

7 Attacks Exploiting BRAKTOOTH

BRAKTOOTH presents a set of implementation bugs previ-
ously unknown to BT vendors. While BRAKTOOTH does not
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Figure 15: Evaluation of different state machine models.
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    "Filter": "btlmp",
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        "btbrlmp.eop",
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    ]
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State Mapping Rules

Figure 16: An illustration of a simplified BT state machine
and corresponding state mapping rules for LMP and L2CAP.

present a novel class of security vulnerabilities, patching the
affected devices is crucial to avoid BT exploitation in the wild.
Broadly, BRAKTOOTH captures two classes of vulnerabilities:
1) crashes, and 2) deadlocks. While crashes may trigger fatal
assertion, heap overflows or segmentation faults, deadlocks
typically involve a power cycle to continue normal BT op-
eration. In the following, we discuss a representative set of
vulnerabilities captured by BRAKTOOTH and outline how
such vulnerabilities were exploited to launch remote code
execution or denial-of-service (DoS) attacks.

(1) Remote Code Execution in IoTs: The most critical vul-
nerability (V1 Feature Pages Execution) found by our fuzzer
affects ESP32 SoC, which is used in many Wi-Fi and Blue-
tooth IoT appliances such as Industry Automation, Smart
Home and Fitness. The attack is illustrated in Figure 17. A
lack of out-of-bounds check in ESP32 BT Library allows the
reception of a mutated LMP_feature_response_ext. This re-
sults in injection of eight bytes of arbitrary data outside the
bounds of Extended Feature Page Table ("E. Features Table"
in Figure 17). An attacker, which knows the firmware layout



Table 6: A Comparison among different fuzzing tools.

Comparison Vulnerabilities / Non-compliances
# Tools (# Fuzzing Strategy) Fuzzable Layer(s) ESP32 MDZ. JBL. AB32VG1 Others
bfuzz (IotCube)
(Random + Test Database)

L2CAP/SDP/RFCOMM 3/0 1/0 1/0 1/0 0/0

Stack Smasher (Random) L2CAP 0/0 0/0 0/0 0/0 0/0
Bluefuzz (Random) RFCOMM 0/0 0/0 0/0 0/0 1/0
ToothPicker (Random) L2CAP 0/0 0/0 1/0 0/0 0/0

Our Fuzzer (Evolutionary)
BB/LMP/L2CAP/SDP/
RFCOMM

4/2 3/3 1/2 2/2 8/4

of target device, can write a known function address (JMP
Addr.) to the offset pointed by Features Page ("Feat. Page" in
the LMP_feature_response_ext packet) field. It turns out that
the BT Library stores some callback pointers within the out-
of-bounds Features Page offset and such a callback is even-
tually invoked during the BT connection. While exploiting
this vulnerability, we forced ESP32 into erasing its NVRAM
data (normally written during product manufacturing) by set-
ting JMP Addr. to the address of nvs_flash_erase, which is
always included in ESP32 firmware. Similarly, disabling BT
or BLE can be done via esp_bt_controller_disable and Wi-Fi
via disable_wifi_agc. Additionally, general-purpose input/out-
put (GPIO) can be controlled if the attacker knows addresses
to functions controlling actuators attached to ESP32.

BB ACL  
Hdr.

Feat. Page Max Page E. Features

IoT (ESP32) Firmware

62 (bad) 02 JMP Addr.

User Data (NVRAM)
BLE / Wi-Fi

Actuator (GPIO)

LMP Packet - LMP_feature_response_ext

BD/EDR BT Library

E. Features Table
0x01 
0x02

0x62

Page 1. 
Page 2.

BT Callbacks

Out-of-bounds Features Write

JMP Addr.

Erase

Disable

ON/OFF

Air Interface

ESP32

Figure 17: An Illustration of CVE-2021-28138.

(2) DoS in Laptops & Smartphones:
We discuss two sample DoS attacks discovered by our

fuzzer on laptops and smartphones. These attacks were
launched on laptops employing Intel AX200 SoCs and smart-
phones employing Qualcomm WCN399X SoC family, among
many others [34]. Due to the amount of smartphones and
laptops vulnerable to such attacks, and the common use of
BT connectivity during video conference calls and music
streaming, updating the affected devices is essential.

The first DoS (V16 Invalid Timing Accuracy) is due to
a failure in the SoC to validate timer resources upon re-
ceiving an invalid LMP_timing_accuracy_response from
a BT slave. As shown in Figure 18 (a), the attacker per-
forms a loop of connection and injection of the malformed
LMP_timing_acc_response (i.e., wrong type and opcode
fields) until the target SoC gets unstable. These steps are
repeated with a different BT address (i.e., BDAddress) until
the SoC is exhausted from accepting new connections. This
triggers a firmware crash in Qualcomm WCN3990 and Infi-

Crash or DoS
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Retry Attack

Lo
op
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Figure 18: An Illustration of Invalid Timing Accuracy and
Paging Scan Dealock attacks.

neon CYW20735B1 SoCs, or it leads the Intel AX200 SoC
to disconnect other BT devices currently connected to AX200.
In reality, users with the affected Qualcomm Android phones
or Intel Laptops connected to BT Headsets experience audio
to be continuously "cut" during the attack. This also results in
firmware crashes and restart of the BT Service in WCN3990
and CYW20735B1.

The second DoS (V17 Paging Scan Deadlock) affects only
devices using Intel AX200 and it is triggered when an over-
sized LMP_timing_accuracy_request (>17 bytes) is sent to
AX200 slave over multiple reconnections, as illustrated in Fig-
ure 18 (b). Interestingly, during a reconnection, AX200 sends
invalid response (LMP_version_res) upon receiving a feature
request from the attacker. This depicts anomaly A5 as listed in
Table 2. Eventually, after a number of attacks, AX200 disables
its paging procedure (cf., Figure 3) and the target is unable to
initiate multiple BT connections. Thus, scanning from AX200
works, but other devices cannot initiate connection to AX200.
This behavior can be used to trick a user to connect to the
attacker’s BT hardware with a spoofed BDAddress instead of
the legitimate device since paging scan is disabled. During
the attacks, firmware crashes may be sporadically triggered
on AX200, but no specific scenario was found to reliably trig-
ger such crashes all the time. Ultimately, the user needs to
manually re-enable BT to restore functionality.

(3) Freezing Audio Products: Many vulnerabilities were dis-
covered while testing our fuzzer with a BT Speaker (Xiaomi
MDZ-36-DB), BT Headphone (JBL TUNE 500BT) and BT
Audio Modules (XY-WRBT and BT Audio Receiver). The
discovered vulnerabilities arise from target’s firmware fail-
ure when the attacker (i) sends certain truncated packets with
LMP length field set to one (V9: Truncated LMP Accepted) as
shown in Figure 19(a) or oversized packets with LMP length
field greater than 17 (V6: LMP Auto Rate Overflow), (ii) start-



ing procedures out-of-order (V10: Invalid Setup Complete) as
highlighted in Figure 3(b) and finally by (iii) flooding LMP
packets (V5: Feature Response Flooding) at every 1.25ms BT
transmission slot as illustrated in Figure 19(b).

The vulnerabilities can "freeze" Xiaomi MDZ-36-DB and
completely shutdown JBL TUNE 500BT. This requires the
user to manually turn on the unresponsive devices. Since
both devices accept multiple BT connections, an attack can
be triggered while the user is playing some music. As an
exception, XY-WRBT and BT Audio Receiver accept only one
connection, which avoids an attack to be launched during an
active BT connection with the user. Nevertheless, different
products employing the same SoC may enable multiple BT
connections depending on the product requirements.

Master (Attacker) Slave
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Crash

Duplicated

Paging Procedure

Duplicated
LMP_features_res

Duplicated
LMP_features_res

1.25ms
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Figure 19: An Illustration of Truncated LMP Accepted and
Feature Repsonse Flooding attacks

8 Fuzzing Other Wireless Protocols

The fuzzing architecture (Figure 4) can be applied to other
wireless protocols beyond BT by altering some of its compo-
nents. To exemplify such extensibility, we modify the com-
ponents Protocol Stack, Mapping Rules and Fuzzing
Interface to support a subset of (i) Wi-Fi Access Point
(AP), and (ii) Bluetooth Low Energy (BLE) Host protocols.

To support the extensions mentioned in the preceding para-
graph, we made the following changes: firstly, the Protocol
Stack component was entirely switched to hostapd to support
(i). In contrast, the Protocol Stack for (ii) reused the stack
employed in our main BT Classic work (i.e., Bluekitchen)
since it supports BLE host protocols. Secondly, the Mapping
Rules (see Section 4.1) were formulated according to the
protocols layer of (i) and (ii), resulting in four and five rules
assigned to extensions (i) and (ii), respectively. Lastly, the
Fuzzing Interface for extension (i) was enabled by im-
plementing Hold/Inject TX block in the Realtek RT8XXAU
Wi-Fi USB driver. Concurrently, adding Hold/Inject TX to ex-
tension (ii) simply required creating an HCI pseudoterminal
between the Bluekitchen stack and the rest of the framework.

The summary of extensions, vulnerabilities, model states/-
transitions and coverage (for 1000 iterations) are depicted in
Table 7. Overall, since the reference model for each extension

Table 7: Summary of unknown flaws found by extension.
#S/#T captures #States/#Transitions in reference models.

Extension Stack #S/#T Target Coverage Vulnerability CVE (New)

BLE
Host Bluekitchen 62/139

ESP32 75.4% Null Dereference CVE-2022-26604
Telink TLSR8258 71.1% Re-Advertisement DoS CVE-2022-26602
NXP KW41Z 81.0% – –
TI CC2540 67.5% – –

Wi-Fi
AP Hostapd 33/100

ESP32 63.5% EAP Heap Overflow CVE-2022-26603
Association Deadlock CVE-2022-26600

ESP8266 70.8% Association Crash CVE-2022-26601
Rasp. Pi 3 B 57.8% Probe Resp. Deadlock CVE-2022-26599
One Plus 5T 84.1% – –

is simpler (has lower number of states and transitions) than
the BT model, the coverage obtained for each tested target
was relatively higher. Notably, our extension allowed us to
find six unknown implementation bugs in popular IoT devices
such as ESP32/8266 and Raspberry Pi 3. This highlights the
feasibility to extend our framework to other wireless proto-
cols. Furthermore, we compared our fuzzing extensions with
model-based fuzzers for BLE [18] and Wi-Fi AP [17]. To
this end, we run our fuzzer and all competitors for the same
amount of time (max. six hours). The competitors did not
discover the implementation bugs reported in Table 7 for the
same targets. This is because the packet generation models
of these competitors have not evolved as compared to a full
stack, therefore missing certain fuzzing scenarios. In contrast,
the state machine in our framework, although incomplete, is
constructed via mapping packets from normal communication.
Thus, potentially such a mapping strategy evolves the state
machine closer to a full stack as compared to a hard-coded
state machine within a generational fuzzer [17, 18].

9 Related Work

Bluetooth vulnerabilities such as Blueborne [43], KNOB [3],
BIAS [2] and BleedingBit [44] may allow unauthorized re-
mote access or launch remote code execution. These works
require extensive manual effort (e.g., reverse engineering and
code inspection). A recent work BLESA [54] discovers a vul-
nerability in BLE specification via formal analysis. In contrast
to these works, our fuzzer finds security issues directly in the
implementation by learning the protocol states automatically.

Classic greybox fuzzing [6, 23, 25, 26, 28, 49] faces signifi-
cant challenges in testing wireless targets: firstly, most grey-
box fuzzers instrument code to optimize code coverage. Such
is not possible for commercial and closed wireless stacks. Sec-
ondly, classic greybox fuzzers aim to generate a single input
leading to crashes. For wireless protocols, often a sequence of
packets with strict timing constraints triggers crashes. Thirdly,
it is beyond the capability of conventional fuzzers to break the
isolation between the host and BT controller (see Section 5)
for effective fuzzing. In summary, extending a classic greybox
fuzzer e.g. AFL [56] for OTA fuzzing is non-trivial and even
a lose adoption will be insufficient to detect non-compliances
(see Table 2). Moreover, due to code instrumentation, this
extension is inappropriate for fuzzing closed protocol stacks.



Prior works on host-side BT fuzzing [5, 7, 20, 24] are un-
able to fully break the isolation between the host and the BT
controller. We show many link manager vulnerabilities that
these works fail to discover. InternalBlue [29] allows LMP in-
jection, but such only works after the connection is set up [33]
and accessibility to Baseband fields is limited for fuzzing. In
contrast, our fuzzer works during the connection process and
it allows arbitrary packet duplication and manipulation.

Emulation based fuzzing [41, 57, 58] involves extensive
reverse engineering of the firmware (if available at the first
place) to obtain coverage information. For example, Franken-
stein [41] works with specific Cypress/Broadcom hardware
and it requires additional engineering effort to adopt for other
devices. Moreover, Frankenstein did not find vulnerabilities
V3-V6 on CYW20735B1 SoC. Finally, emulation may lead
to inaccurate fuzzing results, as the fuzzing is not run in situ.

A recent work on BLE firmware static analysis [50] does
not focus on packet handling vulnerabilities. OTA fuzzing for
BLE and Wi-Fi [17, 18] involve manual construction of the
respective protocol state machines for packet generation and
handling. Thus, these works are not extensible to complex
protocols e.g., BT. In contrast, apart from enabling a novel BT
fuzzing interface, our approach is generic and extensible for
fuzzing other wireless protocols, as showcased in Section 8.

Works on static analysis and verification [21, 31, 32, 48] do
not generate packets to trigger vulnerabilities in real devices.
Additionally, none of these works targets BT. Works on testing
text structured protocols [4, 19, 36] e.g. ftp, http, are not
directly applicable for wireless fuzzing. Other works targeting
network protocols [8,22,47] either require access to the source
code [47] or lack test generation and fuzzing [8, 22]. Another
approach discovers memory corruptions on IoT devices [9]
via mobile apps. Our fuzzer does not rely on mobile apps as
it targets the data link layer instead of the application layer.

In summary, we develop a generic wireless fuzzing ap-
proach and instantiate the fuzzer for three different protocols.
Additionally, we present the first comprehensive approach to
fully control the BT link manager from the host.

10 Discussion and Conclusion

Limitations: Our OTA fuzzer does not map device specific
states and may also miss fuzzing certain states if such states
are not mapped during reference model generation. Addition-
ally, even though our BT fuzzing approach is generalizable to
fuzz all BT layers, we prioritize malformed packet generations
in LMP that contains many states. As a result, our fuzzer may
repeatedly reconnect with the target when the target becomes
unresponsive, resulting in slow progress reaching higher BT
layers and discover bugs in such layers. In terms of manual
effort, our fuzzing architecture involves the construction of
the mapping rules and the fuzzing interface once per target
protocol. Furthermore, even though our health monitoring

process allows us to validate responses from a comprehensive
set of wireless devices, there might be additional monitoring
methods needed for other devices. Finally, our fuzzer does
not automatically discover the precise attack vector of a vul-
nerability upon triggering a firmware crash or deadlock in the
target. This limitation is widely common to any OTA fuzzer
since it does not have access to the target’s memory content
during the fuzzing session.
Impact: In this paper, we have proposed a general wireless
protocol fuzzing architecture and the instantiation of this ar-
chitecture allows us to fuzz arbitrary devices implementing
any of the three wireless protocols: Bluetooth Classic (BT),
Wi-Fi and BLE Host. This opens up significant opportunities
and flexibilities to test wireless stacks at low cost. Addition-
ally, as evident from the effectiveness of our OTA fuzzer
extension to Wi-Fi and BLE Host, our fuzzing architecture
can be used by the community as a platform to contribute
and extend for other protocols not considered in this paper.
Apart from uncovering 24 unknown bugs that affect several
thousands of wireless devices, our tool has been used by the
community. Notably, Samsung and Mediatek have indepen-
dently used our exploits to discover multiple vulnerabilities
in their SoCs leading to additional CVE assignments [30].
Availability: Our fuzzer and exploits are publicly available:
https://github.com/Matheus-Garbelini/braktooth_esp32_
bluetooth_classic_attacks. Source code is freely available for
academic research upon request to braktooth@gmail.com.
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Appendix

State Mapping Rules
In this section, we provide the mapping rules used within
our fuzzer. Specifically, Figure 20, Figure 21 and Figure 22
capture the state mapping rules for BT, BLE (Host) and Wi-Fi
protocols, respectively.

            "Mapping": [ 
               { 
                    "LayerName": "SDP", 
                    "StateNameField": "btsdp.pdu", 
               }, 
               { 
                    "LayerName": "A2DP", 
                    "StateNameField": "bta2dp.codec", 
               }, 
               { 
                    "LayerName": "AVRCP", 
                    "StateNameField": "btavrcp.notification.event_id", 
               }, 
               { 
                    "LayerName": "RFCOMM", 
                    "StateNameField": "btrfcomm.frame_type", 
               }, 
               { 
                    "LayerName": "L2CAP", 
                    "StateNameField": "btl2cap.cmd_code", 
               }, 
               { 
                    "LayerName": "LMP_accepted", 
                    "StateNameField": "btbrlmp.opinre", 
               }, 
               { 
                    "LayerName": "LMP", 
                    "StateNameField": [ 
                        "btbrlmp.eop", 
                        "btbrlmp.op" 
                    ], 
               }, 
               { 
                    "LayerName": "Baseband", 
                    "StateNameField": "btbbd.type", 
               } 
            ], 

Figure 20: BT State Mapping Rules in JSON format

            "Mapping": [ 
               { 
                   "LayerName": "GATT", 
                   "StateNameField": "btatt.uuid16", 
               }, 
               { 
                   "LayerName": "ATT Error", 
                   "StateNameField": "btatt.error_code", 
               }, 
               { 
                   "LayerName": "ATT", 
                   "StateNameField": "btatt.opcode.method", 
               }, 
               { 
                   "LayerName": "SMP", 
                   "StateNameField": "btsmp.opcode", 
               }, 
               { 
                   "LayerName": "L2CAP", 
                   "StateNameField": "btl2cap.cmd_code", 
               } 
            ], 

Figure 21: BLE (Host) State Mapping Rules in JSON format

            "Mapping":    [ 
               { 
                   "LayerName": "EAP", 
                   "StateNameField": [ 
                        "eap.type", 
                        "eap.code" 
                    ], 
               }, 
               { 
                   "LayerName": "802.1X", 
                   "StateNameField": [ 
                        "eapol.keydes.type", 
                        "eapol.type" 
                    ], 
               }, 
               { 
                   "LayerName": "Action", 
                   "StateNameField": "wlan.fixed.action_code", 
               }, 
               { 
                   "LayerName": "802.11", 
                   "StateNameField": "wlan.fc.type_subtype", 
               } 
            ], 

Figure 22: Wi-Fi State Mapping Rules in JSON format
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