
Genetic Algorithm Based Estimation of Non–Functional
Properties for GPGPU Programs

Adrian Horga1 Sudipta Chattopadhyay2 Petru Eles1 Zebo Peng1

1Linköping University 2Singapore Univ. of Tech. and Design
adrian.horga@liu.se, sudipta chattopadhyay@sutd.edu.sg,

{petru.eles, zebo.peng}@liu.se

Abstract

Non-functional properties, like execution time or memory access information,
of programs running on graphics processing unit (GPUs) can raise safety and se-
curity concerns. For example, understanding the execution time is critical for em-
bedded and real-time applications. To this end, worst-case execution time (WCET)
is an important metric to check the real-time constraints imposed on embedded ap-
plications. For complex execution platforms, such as GPUs, analysis of WCET
imposes great challenges due to the complex characteristics of GPU architecture
as well as GPU program semantics. GPUs also have specific memory access be-
havior. Observing such memory access behavior may reveal sensitive information
(e.g. a secret key). This, in turn, may be exploited to launch a side-channel attack
on the underlying program.

In this paper, we propose GDivAn, a measurement-based analysis framework
for investigating the non-functional aspects of GPU programs, specifically, their
execution time and side-channel leakage capacity. GDivAn is built upon a novel
instantiation of genetic algorithm (GA). Moreover, GDivAn improves the effec-
tiveness of GA using symbolic execution, when possible. Our evaluation with
several open-source GPU kernels, including GPU kernels from the OpenSSL and
MRTC benchmark suite, reveals the effectiveness of GDivAn both in terms of
finding WCET and side-channel leakage.

1. Introduction

In recent times, general-purpose graphics processing units (GPGPU or sim-
ply GPU) have seen increased usage in real-time applications due to their high
computational capacity and low power consumption. This includes applications in
avionics and automotive, among others. Such applications raise safety and security

Preprint submitted to Elsevier December 10, 2019

concerns. It is, therefore, natural to investigate non-functional properties related to
the safety and security of real-time GPU applications.

Timing behavior is a non-functional property closely related to safety in real-
time applications. In this case we are interested in estimating the worst-case ex-
ecution time (WCET) of real-time GPU applications. The analysis of WCET is
crucial to check whether a given real-time application meets the deadline. WCET
captures the maximum execution time for a given program over all its inputs. For
a given GPU program, its WCET depends on the program and its features as well
as the GPU and its features.

From the security point of view, it is necessary to reason whether GPU applica-
tions have side-channels that can be used to reveal secret information (e.g. a secret
key). More importantly, it is critical to determine how much information does a
given GPU implementation leak to an attacker through a side channel. The more
unique observations an attacker can make through the targeted side-channel, the
less secure the GPU program is in respect to the sensitive information it contains.

In this paper, we propose GDivAn, a measurement-based analysis framework
for arbitrary GPU kernels for investigating the non-functional aspects of GPU pro-
grams, specifically, their execution time and side-channel vulnerability. In order
to distinguish, in the GDivAn framework, between the timing analysis and side-
channel vulnerability analysis components, we refer to the two as GDivAn T and
GDivAn C. In our previous work [1], we proposed GDivAn T to systematically
test the WCET of GPU kernels. In this work, we extend the capability of the
GDivAn framework to not only measure WCET, but also to measure its vulnera-
bility against side-channel attacks with the use of GDivAn C.

WCET analysis
The design and implementation of GDivAn T involves several technical chal-

lenges for WCET analysis. Firstly, GPU programs employ massive parallel pro-
cessing. Hence, it is infeasible to generate all possible execution scenarios in re-
alistic GPU programs. To this end, we first symbolically execute a GPU program
with a small number of threads. We employ such a strategy to hypothesize that
it is often possible to cover the GPU program features (e.g. all possible branch
outcomes) with a small number of threads. The small number of threads will also
help mitigate the limitations of symbolic execution such as path explosion [2].
Secondly, GPUs involve complex micro-architectural features, involving shared
memory, hundreds of processing units and caches. Moreover, the exact nature of
these micro-architectural features (e.g. cache replacement, thread scheduling and
bus arbitration policies) remain opaque to developers. This, in turn, makes the
works on static WCET analysis [3, 4, 5] practically infeasible for GPGPU pro-
grams. To solve such challenges, we directly execute the generated test inputs in

2

commodity GPU-based systems. Thus, the key novelty in our approach is to drive
the generation of such test inputs to expose the WCET. To this end, we leverage the
results obtained from symbolically executing a GPU program with a small number
of threads. Subsequently, we use these results as initial information for a genetic
algorithm. The genetic algorithm will then systematically search the input space
and potentially converge towards the WCET.

Side-channel analysis
For determining the amount of information leaked through a side-channel, the

sensitive information must influence the observed values through the side-channel.
If changes in the sensitive information do not lead to changes in the observed side-
channel information, then the GPU program could be safe from attacks from the
respective side-channel. However, the more unique observations an attacker can
make for different values of the sensitive information, the less secure that particular
GPU implementation is. GPU programs that contain sensitive information include
GPU implementations of cryptographic algorithms, like the Advanced Encryption
Standard (AES). Such algorithms typically do not have branching statements to
avoid influencing the control flow via secret inputs. Consequently, it is unneces-
sary to use the heavy machineries underneath a symbolic execution to explore the
GPU code. Nevertheless, the possible state space for the values of the sensitive in-
formation still remain too large for an exhaustive search. We employ GDivAn C,
with its tailored genetic algorithm, to systematically search for sensitive informa-
tion values that will provide unique observations through the targeted side-channel.
The genetic algorithm in GDivAn C has been tailored in such a fashion that it max-
imizes the potentially observed values through side channels.

This paper presents the following contributions:

1. We propose GDivAn, a novel approach that employs a synergistic combi-
nation of symbolic execution (SE) and genetic algorithm (GA). This is to
analyze the non-functional properties: timing (GDivAn T) and side-channel
leakage (GDivAn C) of arbitrary GPU programs (Section 5).

2. We implement GDivAn for commodity GPU hardware (i.e. Nvidia Tegra
K1 GPU, Nvidia GTX 1060M GPU). Such an implementation can easily
be integrated with any measurement-based non-functional analysis for GPU
programs.

3. We evaluate GDivAn for several GPU kernels involving up to hundreds of
thousands of threads (Section 6). Our evaluation reveals that GDivAn T
is significantly more effective in exposing the WCET compared to random
testing, genetic algorithm in isolation and the state-of-the-art fuzz testing
tool Radamsa [6]. Also, GDivAn C can produce more unique side-channel

3

observations compared to random testing and Radamsa. Our implementation
and all experimental data will be publicly available.

2. Related work

How does GDivAn T differ from the state-of-the-art in timing analysis? Ex-
isting works in timing analysis of GPU applications [7, 8] address the system-level
schedulability analysis assuming the WCET of individual programs as given and
ignoring how it can be produced. As opposed to this, we focus on the structure of
individual GPU programs and produce their WCETs. In the past few years, there
has been a rise on using extreme value theory (EVT) for measurement-based timing
analysis [9, 10, 11]. However, there are strong requirements to be satisfied for any
result of an EVT-based approach to produce a sound WCET [11]. Such is the col-
lection of a representative input sample that needs to satisfy key assumptions like
independence and identical distribution. While techniques have been proposed to
achieve some of these requirements, they need deep interventions in the hardware/-
software architecture [11] and are not applicable to processors of the complexity
typical to a GPU. In general, even in the case of less complex, classical architec-
tures there are several open challenges to be solved before EVT-based techniques
can be generally applied and trusted [12, 13, 14]. In general, existing works on
the WCET analysis for GPUs [9, 10, 15] ignore the systematic generation of test
inputs for exposing the WCET and thus ignore the effects branching and branch
divergence might have on the overall WCET of GPU programs. In addition, hybrid
WCET analysis [15] is not applicable for commodity GPU-based systems. This
is due to its implicit assumption on the availability of the GPU execution model
which, as mentioned before, is not the case.

Parametric WCET analysis combined with genetic programming [16] provides
an expression of the WCET. However, assumptions regarding the underlying hard-
ware must be made in order to compute the WCET expression. In GPUs, this
approach is not feasible at the moment due to lack of precise hardware models.

The work [17] uses branch coverage as leverage for the genetic algorithm for
WCET analysis of GPU programs. Obtaining branch coverage is indeed more
feasible than obtaining path coverage via symbolic execution. Nevertheless, such
an approach captures only a subset of the paths captured by symbolic execution.
Thus, the risk of missing critical paths in the program is increased by the usage of
branch coverage.

It is worthwhile to mention, that the genetic algorithm of GDivAn T could be
complemented by using meta level parameter tuning [18] to determine the best pos-
sible parameters for WCET analysis of the targeted GPU programs. This would,

4

however, increase the execution time of such analysis by several orders of magni-
tude.

There has been effort [19] from the software engineering community to com-
bine symbolic execution and genetic algorithm. However, such effort is focused
on the functionality testing of software. In contrast, GDivAn focuses on testing
non-functional properties. Specifically, GDivAn T sets itself apart from existing
works on combining symbolic execution and genetic algorithm [20, 19], by its
novel mechanism for testing the WCET of GPU programs.

How does GDivAn C differ from the state-of-the-art in side-channel analysis?
GPU implementations of cryptographic algorithms have been shown to be vulner-
able to side-channel attacks for retrieving the secret key. The side-channels used
range from shared memory [21] and cache [22] to power profiles [23]. However,
these works target a specific GPU implementation and do not consider the vulner-
abilities of different implementations for the same side-channel. Our work aims to
complement such approaches by providing an estimation tool that can quantify the
leakage of a side-channel (i.e. shared memory) and rank different GPU implemen-
tations of the same algorithm. This can subsequently help users in choosing the
least vulnerable implementation.

The work [24] leverages the vulnerabilities of CUDA [25] primitives for allo-
cating GPU memory in order to read secret information directly from GPU mem-
ory. Targeted memory locations ranged from shared memory to global memory
and registers. Some of the presented vulnerabilities could not be found in newer
CUDA enabled GPUs. Our work is orthogonal to such approaches. In contrast to
exploiting vulnerabilities in CUDA primitives, we aim to devise a test generation
methodology that quantifies the side-channel vulnerability of GPGPU programs.
To this end, we focus on shared memory bank conflicts. However, our GDivAn T
approach can easily be generalized for other side channels.

Works for quantifying side-channel leakage have been done for CPU imple-
mentations [26, 27, 28, 29, 30], targeting cache-related side-channels. In contrast
to these works, we focus on the shared memory side-channel. Shared memory is
a type of memory available to most GPU platforms. Such a memory is controlled
by the programmer, as opposed to the cache. Moreover, as observed in existing
works [21], the number of shared memory transactions may reveal secret informa-
tion from cryptographic applications. Thus, to understand the vulnerability against
shared memory side channel attacks, it is crucial to understand the dependency be-
tween a secret input and the number of shared memory transactions. This requires
different mechanisms as compared to the analysis of cache side-channel behavior.

In summary, to the best of our knowledge, this is the first work aimed at quan-
tifying shared memory side-channel leakage on GPU platform.

5

3. System and Execution Model

In this paper, we target GPU kernels written in CUDA [25] 1 and execution
platforms similar to NVIDIA GPUs. However, we believe that the core capabili-
ties within GDivAn are also applicable to other GPU platforms. The smallest ex-
ecution unit in CUDA programs is a thread and the program running on the GPU
is called a kernel. Several threads can be grouped into a thread block. GPUs use
Streaming Multiprocessors (SMs) to execute the kernels assigned to them. Each
SM has its own memory subsystem. Such a memory subsystem typically involves
registers, scratchpad memories and multiple levels of caches. All the SMs have ac-
cess to the global memory and all the threads within a thread block run on the same
SM. SMs leverage the single-instruction-multiple-threads (SIMT) paradigm to em-
ploy large-scale parallelism. To this end, threads in a thread block are grouped into
warps. All the threads within a warp execute instructions in lock-step.

Typically SMs in a GPU do not employ branch prediction. If two threads of the
same warp activate different targets of a branch instruction, then a phenomenon,
commonly known as branch divergence, takes place. Branch divergence may sig-
nificantly affect the level of parallelism offered by GPUs. For a typical ”if (C)
then A else B” structure, branch divergence leads to a serial executions of A
and B. Threads that do not activate the true leg of conditional C are disabled while
A is executed. Likewise, all threads satisfying the conditional C are disabled while
B is executed.

Shared memory behavior

In CUDA programming, scratchpad memory is referred to as shared memory.
All the threads in a thread block have access to the same shared memory. In con-
trast to caches, shared memories are managed by the programmer. The memory
subsystem has several banks that manage parts of the shared memory. As de-
scribed before, threads are grouped into warps. A warp can load all the requested
data from shared memory in one transaction if each request is serviced by a differ-
ent bank. However, if the requests need to be served by the same memory bank,
then the requests to the bank are serialized. Therefore, the number of transactions
for a given access to the shared memory is equal to the maximum different requests
steered to a given memory bank. The number of shared memory transactions can
be monitored (e.g. via a profiler) and resembles a side channel [21] that can be
exploited to ex-filtrate sensitive information (e.g. a secret key).

1GDivAn is equally applicable to other GPU programming paradigms like OpenCL

6

4. Overview

In this section, we discuss the challenges in estimating WCET of GPU-based
programs via simple examples. Subsequently, we show the key insight behind
our approach for GDivAn T for WCET analysis. We also discuss how observing
memory-access information for a GPU program can be used in a side-channel at-
tack and how GDivAn C can quantify the vulnerability from such memory-access
information.

4.1. Challenges in WCET analysis for GPU-based programs

Consider the GPU kernels shown in Figure 1. For the sake of simplicity in
this example, we assume that any pair of threads, executing the same instruction
in the kernels, are free from memory contention. In Figure 1(a), let us assume that
the multiplication instruction takes time t1 to execute. Hence, for each thread, the
WCET is t1. However, GPU kernels typically involve thousands of threads running
in parallel. If the kernel in Figure 1(a) is executed for two threads, then it leads to
four different execution scenarios depending on the value of input. As shown in
Figure 1(a), the WCET (i.e. t1 + t1) is manifested for path 3′ and path 4′. This is
due to the divergence that takes place at the branch instruction.

From the discussion in the preceding paragraph, we may hypothesize that
branch divergence always leads to longer execution time. The example in Fig-
ure 1(b) however, contradicts this hypothesis. In Figure 1(b), the true leg of the
branch involves an atomic add operation, which, in turn might access the slow
global-memory. In contrast, the false leg of the branch involves simple arithmetic
manipulations on registers. Accessing global-memory is several orders of magni-
tudes slower than accessing register variables. Hence, in Figure 1(b), t2 � t3,
where t2 (t3) is the time to execute the true (false) leg of the branch. If two threads
execute the kernel in Figure 1(b), then the WCET is t2 + t2, due to the atomic
nature of the operation which imposes serialization. We note that the WCET is
manifested for an execution scenario that does not exhibit branch divergence. In-
tuitively, this occurs due to the unbalanced execution time across different legs of
the branch instruction.

Will random testing work? In Figure 1, the number of execution scenarios grows
exponentially with the number of threads. In particular, consider to use random
testing for exposing WCETs of the examples in Figure 1. We observe that random
testing only has a slim chance (probability < 0.4% 2 for two threads) to synthesize

2If the element is stored on the minimum of one byte (8 bits), the probability percentage that its
value will be equal to the CONSTANT is 1

28
· 100 = 1

256
· 100 < 0.4%

7

 if (input[threadID] == CONSTANT){
 output[threadID] = input[threadID] * constant1;
 }else{
 output[threadID] = input[threadID] * constant2;
 }

t1

Execution time for one thread:

input = CONSTANT
thread 1

t1

input != CONSTANT
thread 1

Execution time for two threads:

t1

t1+t1

t1+t1

t1

t1

WCET

WCET

input
thread 1

= CONSTANT= CONSTANT = CONSTANT= CONSTANT
thread 2

input
thread 1

= CONSTANT != CONSTANT
thread 2

input
thread 1

!= CONSTANT = CONSTANT= CONSTANT
thread 2

input
thread 1

!= CONSTANT != CONSTANT
thread 2

branch
divergence

no
branch

divergence

path 1

path 2

path 1'

path 2'

path 3'

path 4'

t1

(a) Balanced branch

t2+t2

t2+t3

t3+t2

t3

WCET

t2

t3
t2 >> t3

t2

t3

 if (input[threadID] == CONSTANT){
 atomicAdd(output[blockID], input[threadID]);
 }else{
 registerVariable++;
 }

Execution time for one thread:

input = CONSTANT
thread 1

input != CONSTANT
thread 1

Execution time for two threads:

input
thread 1

= CONSTANT= CONSTANT = CONSTANT= CONSTANT
thread 2

input
thread 1

= CONSTANT != CONSTANT
thread 2

input
thread 1

!= CONSTANT = CONSTANT= CONSTANT
thread 2

input
thread 1

!= CONSTANT != CONSTANT
thread 2

branch
divergence

no
branch

divergence

path 1

path 2

path 1'

path 2'

path 3'

path 4'

(b) Unbalanced branch

Figure 1: Motivational example. thread 1 and thread 2 belong to the same warp. Both examples
use one input and one output vector. Both vectors are stored in GPU global-memory. The variable
threadID captures the global identity of a thread within the execution. For each thread, variable
blockID captures the identity of the thread block. Threads in a warp belong to the same thread
block.

input vectors equal to CONSTANT . Since the WCET is manifested only for such
input vectors, it is unlikely that random testing will converge towards exposing the
WCET of programs in Figure 1.

Will symbolic execution work? Symbolic execution poses an attractive choice
to systematically explore all unique execution paths in an application. It leverages
the power of constraint solvers to symbolically capture all inputs exhibiting an
execution path. Then, such a symbolic formula is manipulated to generate inputs
for a different execution path. As a result, if our example programs in Figure 1
are executed with two threads, symbolic execution terminates generating four test
inputs – one each for a unique execution scenario. Thus, the probability to expose
WCET in our example program increases to 100% if all four symbolically detected
paths are executed.

Unfortunately, the complexity of symbolic execution may quickly become in-
tractable with the growing number of threads. As GPUs are targeted to support
massive multiprocessing, typically GPGPU programs involve thousands of threads.
As a result, it is infeasible to explore all possible execution paths (via symbolic ex-
ecution) for any realistic GPGPU applications.

8

Key insight. Our GDivAn T approach proposes a novel mechanism to circum-
vent the inherent complexity of symbolic execution, yet uses its power to cover
the structure of GPGPU programs. Our key intuition is to run a GPU kernel sym-
bolically only for a limited number of threads and to cover all (or most) execution
paths of this kernel. Subsequently, we investigate each path with respect to some
program features (e.g. number of instructions) that influence timing. Leveraging
an SMT solver, we generate test inputs (atoms) for each path. Finally, we system-
atically scale and manipulate these test inputs for the original kernel that poten-
tially runs with significantly larger number of threads. The final stage involves a
novel application of genetic algorithm to manipulate the test inputs. In essence,
our GDivAn T approach combines the strength of symbolic execution to explore
program structure and the strength of genetic algorithm to systematically search a
large input space.

How GDivAn T works. Figure 2 provides an outline of GDivAn T. At a high
level, the workflow of GDivAn T involves three steps: 1) generation of input
atoms, 2) scaling of atoms, and 3) exploration of input space via genetic algorithm.

Atoms for X
threads

execution time

Increase X if branch
coverage is <100%

X:=2 Symbolic
execution tool

GPU

Scale input to N
threads

GPU kernel
with N threads

Genetic
Algorithm

worst case
execution time

GPU kernel
with X threads

Generator Block

Figure 2: Overview of GDivAn T

1) Generation of input atoms: Consider the GPU kernel shown in Figure 1(a).
We use the predicate prede(th) to symbolically capture the execution of control
flow edge e in thread th. Concretely, prede(th) is true if control flow edge e is
executed in thread th. Otherwise, prede(th) is set to false. Let us assume that the
true and false legs of the conditional in Figure 1(a) capture control flow edges e1
and e2, respectively. In order to generate input atoms, we symbolically execute a
given GPU kernel with a small number of threads. For instance, using two threads
(say, thread 0 and thread 1), a symbolic execution of the code in Figure 1(a) will

9

result in the following set of execution paths: (a) path1 : prede1(0) ∧ prede1(1),
(b) path2 : prede2(0) ∧ prede2(1), (c) path3 : prede1(0) ∧ prede2(1), and (d)
path4 : prede2(0) ∧ prede1(1). We note that path1...4 symbolically captures all
inputs leading to the respective execution paths. We leverage on constraint solvers
to generate input atoms from these symbolic formulas. The primary goal of this
step is to explore the GPU-kernel structure for a small number of threads (i.e.
two threads in this example) and generate representative test inputs covering the
structure of the GPU-kernel. Our intuition is that it is often feasible to cover the
structure of GPU kernels (e.g. all branches in the kernel) despite being executed
with a small number of threads.

2) Scaling input atoms: Input atoms, as discussed in the preceding paragraphs,
can be used to execute the given GPU kernel with a small number of threads. To
obtain an initial set of test inputs for the original kernel, which typically executes
with thousands of threads, we systematically scale the input atoms obtained via
symbolic execution. Figure 3 outlines input atoms generated from symbolically
executing the code (also shown in Figure 3) with two threads. Subsequently, these
input atoms were scaled, as shown on the top right corner of Figure 3.

 if (input[thread] == 6){
 op1;
 }else{
 op2;
 }

For 2 threads -> 4 paths

Path 1:

Path 2:

Path 3:

Path 4:

6 6

6 0 6 1 6 2 ...

2 61 60 6 ...

1 20 10 0 ...

Atoms for 4 paths: Scaling to N

Input 1: 6 6 6 6 0 1 2 6 0 6...

Input 2: 6 0 0 6 0 0 6 6 6 6...

Input 3: 6 6 6 6 0 0 6 6 6 6...

0 1 0 1 0 0 6 6 0 1...Input 4:

...

N integers

Path 1 Path 1 Path 4 Path 3 Path 3

Path 2 Path 3 Path 4 Path 1 Path 1

Path 1 Path 1 Path 4 Path 1 Path 1

Path 4 Path 4 Path 4 Path 1 Path 4

Genetic Algorithm

Input 2: 6 0 0 6 0 0 6 6 6 6...

Input 3: 6 6 6 6 0 0 6 6 6 6...

Path 2 Path 3 Path 4 Path 1 Path 1

Path 1 Path 1 Path 4 Path 1 Path 1

Input 2':

6 0 0 6 0 0

2 6 6 6...

Input 3':

6 6 6 6 0 0

6 6 6 1...
Path 2 Path 3 Path 4

Path 3 Path 1Path 1 Path 1 Path 4

Path 1 Path 2

new
inputs

New atoms

... ...

Figure 3: Examples on scaling to large inputs and creating new inputs during the Genetic Algorithm
stage in GDivAn T

10

3) Exploration of input space via genetic algorithm: Steps 1) and 2) generate
test inputs that reduce the search space. However, the paths that heavily affect the
execution times through branch divergence, instruction serialization or cache con-
tention need to be detected from the large remaining search space. We leverage
genetic algorithm (GA) to systematically explore this search space. To this end,
we first run the given GPU kernel with the set of scaled inputs (obtained from the
previous stage) and obtain the execution time for each such input. Based on the
execution times obtained, GA builds new inputs via a series of selection, crossover
and mutation operation on the current set of test population and input atoms ob-
tained via the symbolic execution. Our objective in the GA is to maximize the
execution time of the GPU kernel. Figure 3 contains an example of two new input
vectors. These input vectors were created using two of the current input vectors
and input atoms, as shown in Figure 3. The process of executing test inputs and
generating new test population via GA is repeated until the execution time does not
show significant variation across two consecutive generations of GA.

4.2. Quantifying side-channel leakage for GPU programs

Information about cache accesses [22] and shared-memory accesses [21] can
be used as side channels for recovering critical data such as secret keys from GPU
implementations of encryption algorithms. Concretely, an attacker monitors the
number of cache misses or the number of shared memory transactions and employs
statistical techniques to discover secret information. Intuitively, if the number of
cache misses or shared memory accesses depend on the secret information, then
such information may leak through the respective side channels.

To formalize the notion of side channel explained in the preceding paragraph,
we assume that a side-channel to be a function C : I → O. The function C maps
a finite set of sensitive inputs to a finite set of observations made by the attacker.
If the attacker monitors, for example, shared memory transactions, an observation
o ∈ O captures the number of shared memory transactions in an execution. If
we model the choice of a secret input via a random variable X and the respective
observation by a random variable Y , the leakage through channelC is the reduction
in uncertainty aboutX when Y is observed. The maximal leakage through channel
C can be defined as follows [26]:

ML(C) ≤ log2|C(I)| (1)

where ML(C) captures the maximal leakage of channel C. In Equation 1, equality
holds when X is uniformly distributed. Since we aim for a software validation
framework, we assume the presence of a strong attacker whose choice of secret
input is uniformly distributed. Therefore, ML(C) is maximized and ML(C) ≤

11

log2|C(I)| holds (cf. Equation 1). As a result, the number of unique observations
by the attacker (i.e. |C(I)|) resembles the side-channel leakage of the respective
program.

From the viewpoint of testing, GDivAn C acts as a coverage criterion. Con-
cretely, the higher the value of |C(I)|, the better is the effectiveness of GDivAn C.
Thus, we aim for GDivAn C to maximize the value of |C(I)|. This means that we
generate test inputs in order to explore as many unique observations as an attacker
can make. For this purpose, we leverage the state space exploration capabilities of
the genetic algorithm, modified for exploring and maximizing the unique observa-
tions.

Figure 4 outlines the components of GDivAn C. The genetic algorithm pro-
vides inputs for the GPU kernel. The kernel is executed on the GPU. During the
kernel execution, the GPU profiler captures the value of the targeted metric an at-
tacker might use for a side-channel attack. The observed value is, then, provided
back to the genetic algorithm, which uses the past observation and the current
one, to generate new inputs that will maximize the number of unique observations.
At the end of the execution for GDivAn C, the total number of unique observed
values measured for the side-channel are reported as a quantity of the selected
side-channel leakage vulnerability.

value of observed metric

GPUGPU kernelGenetic
Algorithm

number of unique
observations

GPU
profiler

Figure 4: Overview of GDivAn C

In the next section we present the usage of the GDivAn framework for WCET
analysis (GDivAn T) and side-channel leakage analysis (GDivAn C).

5. Detailed Methodologies

5.1. WCET analysis using GDivAn
In this section, we describe the mechanism of different building blocks in

GDivAn for WCET analysis (GDivAn T). The overall outline of GDivAn T and
the inter-dependencies between its building blocks are given in Figure 2.

5.1.1. Generator block
The purpose of this block is to enable the creation of an initial test population.

To this end, we generate test inputs via symbolic execution.

12

The test inputs are generated to cover the structure (e.g. the branches) of a GPU
kernel. As discussed in Section 4, it is practically infeasible to employ symbolic
execution for realistic GPU kernels running a large number of threads. Hence, we
apply symbolic execution in a trimmed down version of a given GPU kernel. Such
a trimming is employed by symbolically executing the GPU kernel only with a
small number of threads and aiming to obtain branch coverage. We describe this
in the following.

Trimmed symbolic execution
We note that it requires at least two threads to manifest branch divergence in a

GPU kernel (see Figure 1). In Figure 1(a), we observed that the presence of branch
divergence may lead to longer execution time. The primary intuition behind ob-
taining the branch coverage is to have representative inputs in the test population
that trigger branch divergence. To employ our trimmed version of symbolic execu-
tion, we systematically increase the number of threads (starting from two threads)
in the GPU kernel and invoke the symbolic execution engine. For each invocation
of the symbolic engine, we measure the branch coverage being obtained. Finally,
we stop the symbolic execution process once both legs of all branch instructions
are covered. However, for complex GPU kernels, it might even be infeasible to
obtain 100% branch coverage within a reasonable time. For such cases, we impose
a time bound (<1 hour) on the symbolic runs of the kernel.

Let us assume that symbolic execution of the kernel is performed forX number
of GPU threads. Upon termination of the symbolic execution, it generates the set
of all execution paths in the kernel trimmed down to X threads. For each explored
path π, we collect the following information:

Pπ(X) ≡ 〈formπ, brdivπ, instrπ〉 (2)

Where formπ symbolically captures all inputs leading to the execution path π,
brdivπ captures the total branch divergence along the path π and instrπ is the total
number of instructions executed along π.

We compute brdivπ per barrier interval. A barrier interval is the code between
the start of the kernel and the first barrier instruction or between two consecutive
barrier instructions. The end of a kernel serves as an implicit barrier.

For each execution path π explored via symbolic execution, the branch diver-
gence per barrier interval b is computed as follows:

brdivπ(b) =
divergent setsb

X − 1
× 100

Where divergent setsb is the number of different paths taken by the X threads
in the given barrier interval b. Finally, the total branch divergence is computed

13

by summing up the branch divergence over all barrier intervals (|BI | captures the
number of barrier intervals):

brdivπ =

|BI |∑
b=1

brdivπ(b)

|BI |
Branch divergence and the number of instructions per execution path serve as

important information for guiding the test generation. In general, the genetic algo-
rithm systematically leverages the information on branch divergence and number
of instructions in order to generate test inputs maximizing kernel execution time.

5.1.2. Scaling
In this stage, we scale the input atoms generated via symbolic execution to fit

the input size of the given GPU kernel. Assuming that the GPU kernel involves N
GPU threads, recall that we run the symbolic execution for X ≤ N threads. As a
by-product of symbolic execution, we obtain a set of paths (captured by symbolic
formulas) in the GPU kernel involving X number of GPU threads. The key intu-
ition of this scaling process is that often the different paths in the given GPU kernel
(that involves N threads) can be generated via the combinations of paths obtained
from its trimmed version (that involves X threads). For instance, consider our ex-
amples in Figure 1. Assume pathin captures the i-th path in the kernel involving n
threads. The following relationships hold:

• path12 = path11 ‖ path11
• path22 = path21 ‖ path21
• path32 = path11 ‖ path21
• path42 = path21 ‖ path11

where ‖ captures an ordered (with respect to thread identities) combination of dif-
ferent execution paths. Ideally N is divisible by X so that no truncation is needed
while scaling the input atoms.

It is worthwhile to mention that branch conditionals targeting thread ID (i.e.
(threadID == CONSTANT)) or positioning of the thread (i.e. (threadID ==
inputLength)) are special cases that cannot be handled via the scaling process. For
instance, when scaling from X threads to 2 ·X threads, thread X will no longer be
equal to the input length. Hence, our trimmed version of symbolic execution will
not cover all branch legs for such conditional branches involving input lengths or
specific thread IDs. Hence, we complement both the symbolic execution and the
scaling process via a genetic algorithm. This is to systematically explore the input
space for covering worst-case scenarios that were not obtained after the scaling.

14

5.1.3. Genetic Algorithm
Our engineered algorithm involves a mapping between terms used in the ge-

netic algorithm [31] (GA) literature and the specific context of our targeted prob-
lem. Table 1 provides an outline of this mapping and we use the terms used in
Table 1 for the rest of the discussion. Our GA process is outlined in Figure 5.

WCET problem GA term

Path formula (i.e. formπ) Allele

Part of kernel input Gene

Kernel input Individual/Chromosome

Kernel execution time Fitness

Table 1: Mapping the WCET problem to genetic algorithm terms

atoms Initialize
population

Compute
fitness

execute kernel

execution time
End

condition
No Yes

Elite
selection

Crossover and
mutation

Figure 5: Stages of the Genetic Algorithm for GDivAn T

An individual is mapped to an input for the kernel. If the kernel runs for N
threads and the trimmed symbolic execution runs for X threads, then we encode
the chromosome as a combination of NX genes. Figure 3 captures this phenomenon.
In particular, instead ofN genes, we have N

2 genes to construct Input 1 as follows:

Input 1 = Path 1‖Path 1‖Path 4‖Path 3‖ . . . ‖Path 3

To maintain diversity in the initial test population, we employ multiple strate-
gies. Firstly, we create individuals by combining a set of randomly selected paths.
These paths belong to the trimmed version of the kernel. Secondly, we select in-
dividuals by combining paths that manifested maximum number of instructions
and branch divergence in the trimmed kernel. Recall that the information on the
number of executed instructions and branch divergence was collected during sym-
bolic execution (cf. Equation 2). As an example, assume that the path “Path 2”
exhibits the maximum number of instructions and branch divergence. Therefore,
we create an individual as follows: Path 2‖Path 2‖ . . . ‖Path 2. The individuals

15

in the initial population, that are not suitable to expose the WCET, are removed in
subsequent iterations via the natural selection of the genetic algorithm.

The elite selection stage selects a predefined percentage of individuals from the
population based on their fitness (i.e. the kernel execution time). These individuals
are kept unaltered to use in the next population.

During crossover, we select one of the parents randomly and the other with a
bias towards the elite. Subsequently, an 1-point crossover is employed between
parents. An example of such an 1-point crossover can be observed in Figure 3 (in
the bottom half). A small fraction of individuals are mutated at every iteration of
the genetic algorithm. To this end, we implement a low-cost mutation operation.
Concretely, we generate two random numbers – the first number to check if we hit
the probability to mutate and the other (in case we mutate) to identify the specific
gene to mutate.

The iterative process of GA continues until the kernel execution times, man-
ifested by two consecutive generations of GA, do not change substantially. The
process is also terminated if the time budget of testing is reached.

5.1.4. Why GDivAn works for WCET analysis?
The reason GDivAn works is because of the synergistic combination of sym-

bolic execution (SE) and genetic algorithm (GA) employed in GDivAn T. The
purpose of our symbolic execution step is not to explore all different aspects in
the GPGPU program that may impact the program performance. Due to the com-
plexity of symbolic execution, such a strategy is unlikely to scale. Besides, sym-
bolic executors are classically not designed to explore the performance behavior of
GPGPU programs. As a result, integrating GPU-specific performance features into
a symbolic executor would require heavy engineering of state-of-the-art symbolic
execution tools. To address such challenges, we propose to use off-the-shelf sym-
bolic executors and explore the structure of GPGPU programs considering branch
divergence. This leads to an initial population of test cases for our genetic algo-
rithm. We are testing each generated test input on real hardware during the genetic
algorithm stage. We, therefore, do not solely rely on the assumptions gathered from
the trimmed symbolic execution stage that a single path atom could be scaled and
provide the test input that produces the WCET. The role of our genetic algorithm
is to, then, search the input space and discover inputs that lead to longer execu-
tion times due to other micro-architectural features (e.g. thread scheduling, mem-
ory coalescing, memory-bank conflicts and cache misses). This makes GDivAn a
scalable and effective framework to discover the likely WCET of arbitrary GPGPU
programs.

16

GDivAn limitations for WCET analysis

The complexity of GPU programs especially due to the large number of threads
imposes some limitations on our GDivAn T approach. It is a known fact that sym-
bolic execution suffers from path explosion and path divergence [2]. We mitigate
such limitations of symbolic execution by using the trimmed symbolic execution
method (see Section 5.1.1) to generate input atoms. As mentioned in Section 5.1.2,
if branch outcomes depend on the thread ID or the thread positioning, the trimmed
symbolic execution embodied in GDivAn T might not reach the respective branch
legs. If, during the trimmed symbolic execution stage we did not achieve 100%
branch coverage, the genetic algorithm stage could help reach the branches not
covered. However, we cannot provide such guarantees. Finally, GDivAn T uses a
measurement based approach, therefore, we cannot guarantee the tightness of the
obtained WCET. Specifically, GDivAn T does not provide tightness guarantees on
the accuracy of the measured WCET, as there is no existing solution that can safely
guarantee such tightness.

5.2. Side-channel analysis using GDivAn

As discussed in Section 4.2, quantifying the side-channel leakage depends di-
rectly on how many different observations a strong attacker can make for the re-
spective side-channel. Cryptographic algorithms implemented on GPUs like AES
are appropriate targets [22, 21] for attackers. Such cryptographic algorithms do not
usually have key-dependent branching statements. This is to avoid execution be-
havior dependent on the key. For example, different paths, depending on the key,
may lead to vastly dissimilar timing behaviors. This, in turn, may significantly
narrow down the search space for an attacker aiming to find the key.

The lack of branching statements in cryptographic algorithms significantly re-
duces the effectiveness of the symbolic execution part of GDivAn employed for
WCET analysis (i.e. GDivAn T). However, given a proper fitness function, the
genetic algorithm can be used to systematically explore the search space in these
single-path algorithms. Concretely, the goal of the genetic algorithm is to search
for inputs that maximize the number of observations for the targeted side-channel.
For the purpose of this paper, we use the distinct counts of shared memory transac-
tions as the side-channel. This is because such side channels in GPUs are exploited
in existing works [22, 21]. Table 2 outlines the mapping of the side-channel prob-
lem onto the genetic algorithm terms.

For GPU implementations of table based cryptographic algorithms, such as
AES, GPUs can store search tables in the shared memory. This significantly re-
duces the execution time of the implementation, as the shared memory is two orders
of magnitude faster than global GPU memory (DRAM). However, the accesses to

17

Side-channel problem GA term

Input byte domain Allele

Input byte Gene

GPU program input (secret key) Individual/Chromosome

Targeted GPU metric

(number of shared memory Fitness

transactions)

Table 2: Mapping the GPU side-channel testing problem to genetic algorithm terms

the shared memory are performed based on the value of the shared key. This, in
turn, makes a program’s shared memory transactions dependent on the value of the
secret key. For the genetic algorithm embodied within GDivAn C, each individual
corresponds to a different secret key. The final goal of the algorithm is to find as
many different secret keys as possible (within a time budget) such that the set of ob-
servations (i.e. shared memory transactions) is maximized. In order to accomplish
this, the genetic algorithm from GDivAn C needs to be tailored for maximizing
the cardinality of the fitness observations set. In other words, GDivAn C needs to
search for new and different fitness values. This is in contrast to the exploration
strategy for the WCET analysis where GDivAn T needed to search for new but
only higher timing values.

The proposed strategy is exploiting information regarding properties of secret
keys already explored. This allows us to avoid exploring already available observa-
tions. Concurrently, the memory of the past secret keys allows selecting appropri-
ate individuals for future populations. Figure 6 illustrates the steps of the modified
GA for the purpose of maximizing the observations set. Obs holds the set of all
observations explored by the GA at any point of time. Thus, the cardinality of Obs
captures the side-channel leakage of the GPU program under test. In the subse-
quent sections, we discuss the different stages of this genetic algorithm in more
detail.

Population initialization

In the population initialization stage, we randomly generate a set of N indi-
viduals (Indi , i ∈ [1..N]) and we compute their fitness fi. We attach to each
individual an effective rank eri calculated as follows:

eri =

{
0, fi ∈ Obs

1, fi /∈ Obs

18

Initialize
population

Compute
fitness

execute kernel

measured metric
value

End
condition

No

Yes

Elite
selection

Obs = <empty set>

Create
families

(crossover&mutation)

Compute
fitness

Update
fitness

Update Obs Update Obs

Anti elite
selection

|Obs|
increased

No

Yes

Generate
new population

|Obs|

Alpha children
selection

Neighborless
elite

selection

Low histo
elite

selection

execute kernel

measured metric
value

Elite selection stage

Figure 6: Stages of the modified Genetic Algorithm for GDivAn C

In the initialization step, the effective rank is equal to one for all the individuals,
as the Obs set is empty. The effective rank is used as part of a ranking score in the
elite selection stage. Moreover, the rank keeps track of the chosen individuals. We
note that the effective rank of an individual drops to zero in subsequent iterations
if the observations resulting from the individual is already in Obs .

Crossover and mutation (family generation in GA)

In the crossover and mutation stage for GDivAn C, we generate children for
each individual. We refer to the list of children generated from the crossover and
mutation of Ind i with other individuals as the family Fami of Ind i. Let us assume
Fami = {Chi1 ,Chi2 , . . . ,Chik}. We compute the fitness (i.e. number of shared
memory transactions) of each child Chij as fij . This is performed by running the
program with input Chij and obtaining the number of shared memory transactions.
It is worthwhile to mention that we can also generate children by mutation of the
parent chromosomes. The intuition is that a small change in the parent chromo-
some will be directly reflected in a small change in the observed fitness value.
Thus, such mutations are useful for searching values in the neighborhood of the
fitness value for the parents. In contrast to the GA from the WCET analysis, the
children plays a role in selecting the elites for the next iteration.

For a family Fami, we compute two rankings: the family ranking fri and the
set ranking sri of individual Ind i. The family ranking fri represents the cardinal-

19

ity of the set of fitnesses for all the children of Ind i and is computed as follows:

fri =

∣∣∣∣∣∣
k⋃
j=1

{fij | Chij ∈ Fami}

∣∣∣∣∣∣
fri is useful to see how diverse individuals a specific family can produce. The
set ranking sri represents the cardinality of the set of fitnesses for all the children
of Ind i whose fitness is not already in the observed set Obs; sri is computed as
follows:

sri =

∣∣∣∣∣∣
k⋃
j=1

{fij | fij /∈ Obs ∧ Chij ∈ Fami}

∣∣∣∣∣∣
Of course, the set ranking sri captures the effectiveness of a family to produce new
observations, which, in turn is directly correlated with the side-channel leakage.

Finally, the overall ranking ri of an individual is the sum of all the rankings
presented in the preceding, i.e., ri = eri + fri + sri. Intuitively, such an over-
all ranking accounts for the diversity resulting from the individual as well as the
children produced by it.

Elite selection stage

The role of the elite selection stage in a genetic algorithm is to save remark-
able individuals for breeding in future generations. Remarkable individuals have
properties and genes that are useful for reaching the objective.

In order to drive our algorithm towards diversity, we pick the individuals based
on the following aspects: overall diversity, fitness diversity, fitness value isolation,
and fitness value rarity.

Overall diversity. The individuals with genes that produce diverse fitness val-
ues are relevant for keeping in future generations. We prioritize selection of such
individuals. The overall ranking ri provides a metric for selecting the individuals
that have genes which lead to diverse families. We use the overall ranking ri to
order all the individuals in a population. We pick the top individuals (i.e. with the
most potential for diversity) and save them for the next iteration. We call this the
elite selection step in Figure 6.

Fitness diversity. Only choosing the individuals with the top overall ranking
might lead the search in the state space to a single direction. We want to make
sure that the fitness values of the elite individuals will not lead to an excessively
limited exploration fo the search space. On this step, we keep the ranking ri, for
the remaining individuals. However, we pick the top individuals that also have

20

the fitness values different from the ones of the individuals from the elite selection
step. Since this step is trying to avoid searching in only one direction and the fitness
values are different from the ones of the elite selection step, we call this the anti
elite selection step in Figure 6.

Fitness value isolation. In a genetic algorithm, a mutation changes slightly
the chromosomes of an individual usually leading to a slightly different observed
fitness value. We employ such single mutations for family generation as explained
earlier. For this purpose, it is useful to pick suitable individuals that make use of
such a mutation. Such individuals are the ones for which the neighboring fitness
values are not yet found in Obs . This maximizes the potential that a mutation might
lead to a new fitness value, that is the neighbor of the mutated individual’s fitness
value. Therefore, we rank the remaining individuals in the population, after the
elite and anti elite steps, based on how many neighboring fitness values are already
in Obs . We consider the neighbors at a distance of one to the left and right. Higher
distances could be considered. The individuals with fewer neighbors in Obs are
ranked higher. This step is called the neighborless elite step in Figure 6.

Fitness value rarity. During the execution of GDivAn C, fitness values can
appear multiple times. The observed fitness values that appeared a large amount of
times are not of high interest. We are, however, interested in fitness values that are
rare. Individuals that produce such values might have interesting genes we want to
save for future generations. Therefore, we rank the remaining individuals from the
population based on the rarity of their fitness. We pick the top individuals with the
rarest observed fitness values (lowest values in the fitness appearance histogram).
We refer to this selection as the low histogram elite selection in Figure 6.

We consider that fitness value isolation is more important than fitness rarity
when choosing elite individuals. Lets consider two individuals Ind i and Ind j with
observed fitness values fi and fj , respectively. We consider that fi has appeared
only once in Obs , but fi−1 and fi+1 exist as well in Obs . Now, we consider fj has
appeared a thousand times in Obs , during the execution of GDivAn C. However,
fj − 1 and fj + 1 do not yet exist in Obs . Picking individual Ind j over Ind i gives
higher probability to find the neighboring values of fj . Therefore, we prioritize the
selection of individuals with isolated fitness values over the ones with rare fitness
values.

It is important to mention that some of the selection steps might be redundant
in some generations. For example, the most diverse individuals could have the
rarest fitness values. Or that individuals selected in the anti elite selection step
could have the top isolated fitness values. We still require all the elite selection
steps to be present, as a safety mechanism in case some important individuals are
not selected in the previous steps.

21

Children selection
The elite selection stage is useful for keeping important genes in the population.

The children selection stage helps the genetic algorithm with the diversification
of the search. The children are ranked based on the rarity of their fitness value.
Children with rare fitness values are more likely to lead to new observed values.
Therefore, for the new population, after the elite individuals have been selected,
the rest of the population for the next generation is picked from the top ranked
children.

We do not consider fitness isolation in the children selection stage, as that is the
role of the elite selection steps. Since the children are useful for driving the search,
rare (new) values are always more valuable than existing values. Children selected
will have the possibility to be kept in future generations in the elite selection stage,
where the fitness isolation will be taken into account.

If, after a specified number of iterations, the number of found values in Obs
doesn’t increase, we generate another random batch of individuals and we place
them instead of the children in the population for the next iteration. The analysis
will terminate after a predefined number of iterations.

GDivAn limitations for side-channel analysis
Our proposed solution for side-channel analysis, GDivAn C, is a measurement

based approach. Therefore, we cannot provide a guarantee that the observed num-
ber of distinct values is the maximum achievable value. However, such a limitation
is fundamental and unavoidable for any approach based on testing and measure-
ment.

6. Evaluation

6.1. Evaluation of GDivAn T to obtain WCET
Experimental setup. We use GKLEE [32] as the symbolic execution tool

for GDivAn T. GKLEE is a symbolic analyzer and test generator tool tailored
for CUDA C++ programs. We modify the source code of GKLEE to obtain the
relevant information (e.g. branch divergence, number of instructions) for each ex-
plored path and drive the genetic algorithm stage within GDivAn T.

We have picked four kernels for evaluating GDivAn T. Specifically, we have
chosen kernels involving multiple program paths to stress-test the mechanism im-
plemented within GDivAn T. Table 3 captures some salient properties of the cho-
sen subject programs. NSICHNEU is a single-threaded CPU program obtained
from Mälardalen WCET benchmarks [33]. NSICHNEU exhibits complex control
flow and implements the simulation of a Petri net. We have modified it to a multi-
threaded CUDA program, where each thread of the GPU runs the simulation of a

22

Petri net. LBM is a GPU program for computational fluid dynamics using Lattice
Boltzmann Models. BFS is the GPU implementation of breadth-first search and it
is obtained from the Rodinia 3.1 benchmark suite [34]. Convolution is a GPU
program that applies a convolution filter to the kernel input, based on the values of
the respective input.

Program #Kernels #lines of #Kernel #if #loops #threads

name code invocations stmts.

LBM 1 97 1 13 0 32768

BFS 2 17 >1 2 1 1024

11 >1 1 0 1024

NSICHNEU 1 2346 1 252 0 4096

Convolution 1 17 1 2 2 262144

Table 3: Kernel properties

All the kernels have been evaluated on an NVIDIA Tegra K1 GPU. The kernels
were compiled with CUDA nvcc version 6.5. For measuring the execution time on
the Tegra K1, the default frequencies have been used, i.e., 72 MHz for the GPU’s
core clock and 204 MHz for the GPU’s memory clock. Each generated test was
executed ten times in the GPU and the averages of these ten runs are reported in
the evaluation.

Evaluating the hypothesis of GDivAn T. In order to evaluate the key hypothesis
of GDivAn T, we have implemented a synthetic kernel as shown in Listing 1 to
run with 215 threads. This kernel is similar to the example in Figure 1(b) where
branch divergence does not lead to the WCET of the kernel. In this section, we
will refer to this kernel as Artificial.

g l o b a l void k e r n e l (i n t ∗ v a l u e s , i n t ∗ r e s u l t) {

i n t t i d = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

i f (v a l u e s [t i d] == CONSTANT) {
atomicAdd(& r e s u l t [b l o c k I d x . x] , v a l u e s [t i d]) ;
. . .
a tomicAdd(& r e s u l t [b l o c k I d x . x] , v a l u e s [t i d]) ;

} e l s e {
atomicAdd(& r e s u l t [t i d] , 10) ;

}

}

Listing 1: An example to test the hypothesis of GDivAn T

23

Symbolic execution stage.
Table 4 captures the maximum number of threads GKLEE can run within an

hour, the branch coverage obtained and the total time taken to symbolically exe-
cute the respective programs. Recall (see Section 5.1.1) that our goal is to achieve
a branch coverage as close as possible to 100%. For Artificial this has been
achieved with two threads and the execution time is 1 second. For the other bench-
marks, the branch coverage and execution time is indicated with the maximum
number of threads that could be analyzed in less than an hour. We have to mention
here that the number of threads to be considered is different for each benchmark.
LBM, for example, works on square matrices and each element is assigned to one
thread. Thus, the next level after four threads would be nine which, however, lead
to an analysis time beyond one hour. Similar considerations apply to BFS and
NSICHNEU.

Recall that we use the paths explored by GKLEE to create individuals for the
genetic algorithm (Section 5.1.2).

Program # threads branch coverage (%) execution time (secs)

Artificial 2 100 1

LBM 4 80 10

BFS 2 83.33 1

NSICHNEU 2 70.24 341

Convolution 8 100 11

Table 4: Evaluation of GKLEE runs with our subject programs

Genetic algorithm stage. We select a population size of 100 (i.e. number of in-
puts in one generation) to run our genetic algorithm. Moreover, we keep the elite
percentage 10% (cf. Section 5.1.3) and the probability to mutate a gene (for a given
individual) to be 25%. It is worthwhile to note that we mutate only one gene of
an individual, thus keeping the overall mutation rate (across all genes of the indi-
viduals) quite low. Finally, while creating the initial population of individuals, we
reserve 30% population for individuals with special traits. These special individ-
uals were created from paths that exhibited maximum number of instructions and
branch divergence during the symbolic execution. The parameters of the GA have
been set after a preliminary set of extensive experiments.
Overall evaluation. Figure 7 outlines the overall evaluation of GDivAn T. To
stress test our approach, we compare GDivAn T with random testing (“random”
in Figure 7), our genetic algorithm without the symbolic execution step (“ran-
dom+ga” in Figure 7), and a state-of-the-art fuzz testing tool, namely Radamsa [6].
For “random+ga” approach, we created the initial population of genetic algorithm

24

randomly. Radamsa is a black-box fuzzer. We provide random samples to Radamsa
for each target program. Radamsa uses the respective samples to mutate and gener-
ate input tests. For a fair comparison, the number of test runs across all approaches
is kept the same. Figure 7 clearly shows that the GDivAn T approach outperforms
the rest in terms of exposing the kernel WCET.

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000

M
ea

su
re

d
W

C
E

T
 (

m
s)

Number of runs

 GDivAn_T
 random+ga

 random
 Radamsa

(a) Artificial

 165

 166

 167

 168

 169

 170

 171

 172

 0 500 1000 1500 2000
M

ea
su

re
d

W
C

E
T

 (
m

s)
Number of runs

 GDivAn_T
 random+ga

 random
 Radamsa

(b) LBM

 10

 20

 30

 40

 50

 0 500 1000 1500 2000

M
ea

su
re

d
W

C
E

T
 (

m
s)

Number of runs

GDivAn_T
 random+ga

 random
 Radamsa

(c) BFS

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000

M
ea

su
re

d
W

C
E

T
 (

m
s)

Number of runs

 GDivAn_T
 random+ga

 random
 Radamsa

(d) NSICHNEU

 22.4

 22.6

 22.8

 23

 23.2

 23.4

 23.6

 23.8

 0 500 1000 1500 2000

M
ea

su
re

d
W

C
E

T
 (

m
s)

Number of runs

 GDivAn_T
 random+ga

 random
 Radamsa

(e) Convolution

Figure 7: WCET of kernels via Random, Random+GA, Radamsa and GDivAn T

Table 5 captures the WCET detected with the four approaches. The qual-
ity of WCETs obtained via GDivAn T is significantly higher than that produced
via “random” and “random+ga”. Only in the case of the program NSICHNEU,

25

Radamsa performs as good as our GDivAn T approach. It is worthwhile to note
that our approach does not always produce the best quality WCET from the start.
This is noticeable for LBM and Convolution where GDivAn T requires some
generations to converge to a higher measured WCET than the other three ap-
proaches. Table 5 also highlights the time consumed for each approach until it
reached the WCET it was able to produce (after that time no improvements on the
measured WCET were observed).

GDivAn T random+ga random Radamsa

WCET WCET WCET WCET WCET WCET WCET WCET

Program reached reached reached reached

name after after after after

(ms) (s) (ms) (s) (ms) (s) (ms) (s)

Artificial 6.454 459 0.44 258 0.369 1 0.469 1.4

LBM 171.631 12028 169.661 1514 169.777 7255 171.369 7083

BFS 52.482 1411 33.03 911 32 1128 10.679 239

NSICHNEU 119.412 12669 5.419 13333 5.381 2702 119.419 6790

Convolution 23.619 719 22.757 253 22.889 742 23.21 197

Table 5: Testing time. All experiments were performed on an Intel i5 machine having 16GB RAM
and running Ubuntu 16.04

The analysis time reported in Table 5 is the sum of the GA steps, the time
for data allocation and copying on the GPU, and the kernel execution time. The
kernel execution time takes from around 10% (for NSICHNEU) to around 33%
(for BFS) of the total analysis time, until GDivAn T reports the WCET of the
respective programs. Note that this kernel execution time already accounts running
the respective kernel ten times for each input. For GDivAn T, the indicated time
also includes the duration of the symbolic execution (see Table 4).

6.2. Evaluation of GDivAn C to test side-channel leakage
Experimental setup. We use several cryptographic programs implemented in

CUDA to test the efficacy of GDivAn C. Specifically, we choose AES, Blowfish,
Camellia and CAST5 to evaluate the effectiveness of GDivAn C. The GPU im-
plementations of the respective subject algorithms have been selected from [35]
and [36]. The implementations selected from [35] are GPU versions of the re-
spective OpenSSL implementations. Thus, we refer to these implementations as
OpenSSL implementations. The implementations selected from [36] are part of the
ISPASS 2009 benchmark suite. We refer to these implementations as ISPASS im-
plementations. All our chosen implementations are encryption routines. Table 6
summarizes the implementations chosen for evaluation.

26

Algorithm name Origin Key size (bits) Reference name

AES ISPASS 128 ISPASS AES128

AES ISPASS 256 ISPASS AES256

AES OpenSSL 128 OpenSSL AES128

AES OpenSSL 256 OpenSSL AES256

Blowfish OpenSSL 128 OpenSSL BF

Camellia OpenSSL 128 OpenSSL Camellia

CAST5 OpenSSL 128 OpenSSL CAST5

Table 6: Selected algorithms

We have tested each of the implementations from Table 6 with our GDivAn C
approach and we have compared the effectiveness of GDivAn C against a testing
strategy that randomly generates secret keys for the encryption routine and the test
input fuzzer Radamsa. As in the case of the WCET analysis evaluation, we have
provided Radamsa with random input key samples from which it could generate
keys for test purposes. The target of our experiments was to expose as many side-
channel observations as possible, as the number of side-channel observations can
be used to quantify the side-channel information leakage. Specifically, for a given
input message, we observe the number of shared memory transactions with respect
to the secret key.

Figure 8 captures the results of the comparison between random key generation
, keys generated by Radamsa and generating keys via GDivAn C. We observe that
GDivAn C explores the search space of keys in a more efficient manner. Specif-
ically, the number of unique observations exposed by GDivAn C is higher than
the observations found through random key generation or by keys generated using
Radamsa. We also observe that the OpenSSL implementations do not exhibit a
large number of unique observations as compared to the respective ISPASS imple-

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(a) ISPASS AES128

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(b) ISPASS AES256

27

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(c) OpenSSL AES128

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(d) OpenSSL AES256

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(e) OpenSSL BF

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(f) OpenSSL Camellia

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Number of keys

 GDivAn_C
 RANDOM

 Radamsa

(g) OpenSSL CAST5

Figure 8: Comparing the number of unique observations when using random generated keys and a
fuzzer versus GDivAn C

mentations of the same algorithm. GDivAn C is sometimes outperformed by the
random approach or by Radamsa during the testing of the OpenSSL implementa-
tions. Even though for a smaller number of keys, GDivAn C does not always per-
form better, as the number of tested keys increases, GDivAn C provides a higher
number of distinct observations.

The efficacy of GDivAn C is better underlined in the ISPASS versions, where
it is clear that GDivAn C finds up to 35% more observations as compared to ran-
dom testing and up to 40% more observations than the fuzzer Radamsa, as seen

28

Unique observations % increase by using GDivAn C

Reference name RANDOM Radamsa GDivAn C vs. RANDOM vs. Radamsa

ISPASS AES128 123 119 167 35.7% 40.3%

ISPASS AES256 149 152 182 22.1% 19.7%

OpenSSL AES128 23 23 26 13% 13%

OpenSSL AES256 28 27 31 10.7% 14.8%

OpenSSL BF 24 24 26 8.3% 8.3%

OpenSSL Camellia 22 20 23 4.5% 15%

OpenSSL CAST5 24 24 25 4.1% 4.1%

Table 7: Comparison between RANDOM, Radamsa and GDivAn C. All experiments were per-
formed on an Intel i5 machine having 16GB RAM and running Ubuntu 16.04

in Table 7. The results from Table 7 have been obtained on an Nvidia GeForce
GTX 1060M, using CUDA 8.0. We have used the NVIDIA nvprof to profile and
obtain the required metrics from the execution of the listed GPU programs.

Comparing robustness of implementations w.r.t. side-channel leakage. Our
approach GDivAn C can be used to rank the robustness of different implementa-
tions of the same algorithm. In particular, finding more unique observations for
an implementation of an algorithm leads to more information being leaked by that
implementation and, thus, reduced robustness. We observe from the results of Ta-
ble 7 that the ISPASS implementations for AES are less robust than the OpenSSL
implementations for AES. The results from Table 7 were tested on the same 16
byte plain text. Since the plain text might have an influence on the possible num-
ber of observations, it might be argued that this observation is only valid for that
single plain text and does not fairly characterize the implementation. Therefore,
we have also evaluated the robustness of OpenSSL and ISPASS implementations
with different plain texts.

Figure 9 contains the observations gathered by GDivAn C when running AES
for different plain texts. We observe that the OpenSSL implementation consistently
remains more robust than the ISPASS implementation even for different plain texts.
These results show the utility of GDivAn C to compare the robustness of different
implementations with respect to side-channel leakage and the consistency of the
results obtained.

7. Conclusion and discussion

In this paper, we propose GDivAn, a framework for estimating non-functional
properties of GPU programs. In its core, GDivAn embodies a novel approach

29

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Plain text ID

ISPASS
OpenSSL

(a) AES128

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8

U
ni

qu
e

sh
ar

ed
 m

em
or

y
lo

ad
 tr

an
sa

ct
io

ns
 o

bs
er

ve
d

Plain text ID

ISPASS
OpenSSL

(b) AES256

Figure 9: Comparing the robustness of different AES implementations (from OpenSSL and ISPASS
benchmark suite) when using GDivAn C with different plain texts

based on genetic algorithm driven estimation. To test the WCET of arbitrary
GPGPU programs, GDivAn systematically combines the strength of symbolic ex-
ecution and genetic algorithm to converge towards the WCET. We evaluate this ap-
proach with several GPU kernels and show its effectiveness compared to random
testing and genetic algorithm in their pure forms, and a state-of-the-art fuzz testing
tool, namely Radamsa. In the future, the capability of GDivAn can be extended
to compute the response time of arbitrary GPU-based applications represented as
task graphs.

We further employ GDivAn, with its evolutionary heuristic based on genetic
algorithms, for testing the side-channel leakage of GPGPU programs. More specif-
ically, we investigate the leakage through shared-memory access information for
GPU implementations of cryptographic algorithms. The results from comparing
against a random exploration approach and the fuzz testing tool Radamsa show
that GDivAn can expose more side-channel information. As shown in the eval-
uation, GDivAn is also useful for ranking different implementations of the same
algorithm with respect to the leakage via side channel.

Acknowledgements

This work is partially supported by the Swedish Research Council (VR) under
the grant NT-2017-04194 and partially supported by the Ministry of Education of
Singapore under the grant MOE2018-T2-1-098.

References

[1] A. Horga, S. Chattopadhyay, P. Eles, Z. Peng, Measurement based execution
time analysis of GPGPU programs via SE+GA, in: 2018 21st Euromicro

30

Conference on Digital System Design (DSD), IEEE, 2018, pp. 30–37.

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino, et al., An orchestrated
survey of methodologies for automated software test case generation, Journal
of Systems and Software 86 (8) (2013) 1978–2001.

[3] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al., The worst-
case execution-time problem–overview of methods and survey of tools, ACM
Transactions on Embedded Computing Systems (TECS) 7 (3) (2008) 36.

[4] J. Rosen, A. Andrei, P. Eles, Z. Peng, Bus access optimization for predictable
implementation of real-time applications on multiprocessor systems-on-chip,
in: RTSS, 2007, pp. 49–60.

[5] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P. Marwedel,
H. Falk, A unified WCET analysis framework for multicore platforms, ACM
Trans. Embedded Comput. Syst. 13 (4s) (2014) 124:1–124:29.

[6] Radamsa (2016).
URL https://github.com/akihe/radamsa

[7] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. C.
Berg, S. Wang, An evaluation of the NVIDIA TX1 for supporting real-time
computer-vision workloads, in: RTAS, 2017, pp. 353–364.

[8] G. A. Elliott, B. C. Ward, J. H. Anderson, GPUSync: A framework for real-
time GPU management, in: RTSS, 2013, pp. 33–44.

[9] K. Berezovskyi, L. Santinelli, K. Bletsas, E. Tovar, WCET measurement-
based and extreme value theory characterisation of CUDA kernels, in: RTNS,
2014, pp. 279:279–279:288.

[10] K. Berezovskyi, F. Guet, L. Santinelli, K. Bletsas, E. Tovar, Measurement-
based probabilistic timing analysis for graphics processor units, in: ARCS,
2016, pp. 223–236.

[11] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston, et al., Proartis: Probabilistically
analyzable real-time systems, ACM Transactions on Embedded Computing
Systems (TECS) 12 (2s) (2013) 94.

31

https://github.com/akihe/radamsa
https://github.com/akihe/radamsa

[12] S. J. Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, L. Cucu-Grosjean,
Open challenges for probabilistic measurement-based worst-case execution
time, IEEE Embedded Systems Letters 9 (3) (2017) 69–72.

[13] L. Santinelli, J. Morio, G. Dufour, D. Jacquemart, On the sustainability of the
extreme value theory for WCET estimation, in: OASIcs-OpenAccess Series
in Informatics, Vol. 39, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2014.

[14] G. Lima, D. Dias, E. Barros, Extreme value theory for estimating task execu-
tion time bounds: A careful look, in: ECRTS, 2016, pp. 200–211.

[15] A. Betts, A. Donaldson, Estimating the WCET of GPU-accelerated appli-
cations using hybrid analysis, in: Real-Time Systems (ECRTS), 2013 25th
Euromicro Conference on, IEEE, 2013, pp. 193–202.

[16] A. Marref, Evolutionary techniques for parametric wcet analysis, in: 12th
International Workshop on Worst-Case Execution Time Analysis, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[17] M. Tlili, S. Wappler, H. Sthamer, Improving evolutionary real-time testing,
in: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, ACM, 2006, pp. 1917–1924.

[18] I. Ashraf, G. M. Hassan, K. Yahya, S. A. Shah, S. Ullah, A. Manzoor, M. Mu-
rad, Parameter tuning of evolutionary algorithm by meta-eas for wcet analy-
sis, in: 2010 6th International Conference on Emerging Technologies (ICET),
IEEE, 2010, pp. 7–10.

[19] J. P. Galeotti, G. Fraser, A. Arcuri, Improving search-based test suite gen-
eration with dynamic symbolic execution, in: 2013 ieee 24th international
symposium on software reliability engineering (issre), IEEE, 2013, pp. 360–
369.

[20] A. I. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella,
T. E. J. Vos, Symbolic search-based testing, in: ASE, 2011, pp. 53–62.

[21] Z. H. Jiang, Y. Fei, D. Kaeli, A novel side-channel timing attack on GPUs, in:
Proceedings of the on Great Lakes Symposium on VLSI 2017, ACM, 2017,
pp. 167–172.

[22] Z. H. Jiang, Y. Fei, D. Kaeli, A complete key recovery timing attack on a
GPU, in: 2016 IEEE International symposium on high performance computer
architecture (HPCA), IEEE, 2016, pp. 394–405.

32

[23] C. Luo, Y. Fei, P. Luo, S. Mukherjee, D. Kaeli, Side-channel power analysis
of a GPU AES implementation, in: 2015 33rd IEEE International Conference
on Computer Design (ICCD), IEEE, 2015, pp. 281–288.

[24] R. Di Pietro, F. Lombardi, A. Villani, CUDA leaks: a detailed hack for CUDA
and a (partial) fix, ACM Transactions on Embedded Computing Systems
(TECS) 15 (1) (2016) 15.

[25] CUDA toolkit documentation (2017).
URL http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[26] B. Köpf, L. Mauborgne, M. Ochoa, Automatic quantification of cache side-
channels, in: International Conference on Computer Aided Verification,
Springer, 2012, pp. 564–580.

[27] T. Basu, S. Chattopadhyay, Testing cache side-channel leakage, in: 2017
IEEE International Conference on Software Testing, Verification and Vali-
dation Workshops (ICSTW), IEEE, 2017, pp. 51–60.

[28] G. Doychev, B. Köpf, L. Mauborgne, J. Reineke, Cacheaudit: A tool for the
static analysis of cache side channels, ACM Transactions on Information and
System Security (TISSEC) 18 (1) (2015) 4.

[29] C. S. Pasareanu, Q.-S. Phan, P. Malacaria, Multi-run side-channel analysis
using Symbolic Execution and Max-SMT, in: 2016 IEEE 29th Computer
Security Foundations Symposium (CSF), IEEE, 2016, pp. 387–400.

[30] J. Demme, R. Martin, A. Waksman, S. Sethumadhavan, Side-channel vul-
nerability factor: A metric for measuring information leakage, in: 2012 39th
Annual International Symposium on Computer Architecture (ISCA), IEEE,
2012, pp. 106–117.

[31] E.-G. Talbi, Metaheuristics: from design to implementation, Vol. 74, John
Wiley & Sons, 2009.

[32] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, S. P. Rajan, GKLEE:
concolic verification and test generation for GPUs, in: PPOPP, 2012, pp.
215–224.

[33] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The Mälardalen WCET
benchmarks – past, present and future, in: WCET, 2010, pp. 137–147.

33

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[34] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, K. Skadron,
Rodinia: A benchmark suite for heterogeneous computing, in: IISWC, 2009,
pp. 44–54.

[35] J. Gilger, J. Barnickel, U. Meyer, GPU-acceleration of block ciphers in the
openssl cryptographic library, in: D. Gollmann, F. C. Freiling (Eds.), Infor-
mation Security, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.
338–353.

[36] S. A. Manavski, CUDA compatible GPU as an efficient hardware accelerator
for AES cryptography, in: 2007 IEEE International Conference on Signal
Processing and Communications, IEEE, 2007, pp. 65–68.

34

	Introduction
	Related work
	System and Execution Model
	Overview
	Challenges in WCET analysis for GPU-based programs
	Quantifying side-channel leakage for GPU programs

	Detailed Methodologies
	WCET analysis using GDivAn
	Generator block
	Scaling
	Genetic Algorithm
	Why GDivAn works for WCET analysis?

	Side-channel analysis using GDivAn

	Evaluation
	Evaluation of GDivAn_T to obtain WCET
	Evaluation of GDivAn_C to test side-channel leakage

	Conclusion and discussion

