
1

GREYHOUND: Directed Greybox Wi-Fi Fuzzing
Matheus E. Garbelini, Chundong Wang, and Sudipta Chattopadhyay

Abstract—The recent rise in complex Wi-Fi vulnerabilities, such as KRACK and Dragonslayer, indicates the critical need for effective
Wi-Fi protocol testing tools. In this paper, we conceptualize, design and implement a directed fuzzing methodology named
GREYHOUND that automatically tests the Wi-Fi client implementations against vulnerabilities such as crashes or non-compliant
behaviours. Leveraging a holistic Wi-Fi protocol model, GREYHOUND directs the fuzzer in specific states of target Wi-Fi client. By
exchanging mutated packets with a Wi-Fi client, GREYHOUND aims to induce the client to exhibit anomalous behaviours that badly
deviate from Wi-Fi protocols. We have implemented GREYHOUND and evaluated it on a variety of real-world Wi-Fi clients, including
smartphone, Raspberry Pi, IoT device microcontrollers and a medical device. Our evaluation indicates that GREYHOUND not only
automatically discovers known vulnerabilities (including KRACK and Dragonslayer) that would require specialized verification
otherwise, but, more importantly, it also has uncovered four new vulnerabilities in popular Wi-Fi client devices. All discovered
vulnerabilities have been confirmed by manufacturers and they have been assigned three different common vulnerability exposure
(CVE) IDs. We also win a bug bounty of 2,200 USD for discovering the security vulnerabilities. Furthermore, our evaluation with three
existing Wi-Fi fuzz testing tools reveals that all such tools fail to discover any of the vulnerabilities (including crashes) uncovered by
GREYHOUND. Last but not the least, we have deployed GREYHOUND to test the Wi-Fi client implementation on automotive head units.
GREYHOUND automatically discovers KRACK, Dragonslayer and other anomalies in these Wi-Fi implementations. Such a real world
try-out justifies the necessity and efficacy of GREYHOUND.

Index Terms—Greybox Fuzzing, Wi-Fi Client, Software Security.

F

1 INTRODUCTION

With the rise of internet-of-things (IoT), most computing
devices, including laptops, smartphones, and Raspberry Pi
are now equipped with wireless network hardware. Using
such hardware, these devices (called clients) set up connec-
tions with a network access point (AP) and transmit data via
the network backbone. A number of wireless protocols, e.g.,
ones following IEEE 802.11 standards [1], have been defined
so that the communication between a client and an AP
remains secure and confidential. In particular, the designers
of wireless protocols have acknowledged the essential of
privacy in data transmission and hence employed a number
of negotiation techniques such as handshaking to establish
a reliable and secure network connection [2], [3], [4].

Unfortunately, the recent rise in complex Wi-Fi vulner-
abilities has exposed the bleak side of wireless protocols.
For example, Vanhoef and Piessens [5] uncovered a series
of attacks named Key Reinstallation Attacks (KRACK) that
adversaries can leverage to intercept and steal data across
a Wi-Fi network under Wi-Fi Protected Access II (WPA2)
security protocol. Moreover, even regarding a perfect wire-
less protocol, the specific implementation of the protocol
in a wireless device, as being a hand-crafted software or
firmware program, is probable to embrace vulnerabilities.
For instance, recent implementation problems in Nest Cam
Indoor cameras can lead to the leakage of user’s privacy
(e.g., the motion trace of user) [6]. Therefore, it is critical
to validate the software or firmware implementations of
wireless protocols against potential vulnerabilities.

• M. E. Garbelini and S. Chattopadhyay are with the Singapore University
of Technology and Design, Singapore. C. Wang is with ShanghaiTech
University, China. The work was done when C. Wang was a research
fellow at Singapore University of Technology and Design.
E-mail: sudipta chattopadhyay@sutd.edu.sg.

In this paper, we have considered fuzzing the implemen-
tation of wireless protocols in an arbitrary device to discover
vulnerabilities or non-compliant behaviours. Fuzzing is an
idea in software testing [7], [8], [9]. As most of the ven-
dors do not disclose their source code of implementations,
whitebox fuzzing is inapplicable. Moreover, treating each
undisclosed implementation as a black box and naively
using a blackbox fuzzer is likely to expose shallow bugs
only. An interesting observation is that, the implementation
of any Wi-Fi device should strictly follow the standardized
wireless protocols that are clearly documented and publicly
available. This motivates us to design a greybox fuzzing
approach. With respect to the diversity of wireless devices as
well as the complexity of wireless protocols, such a greybox
fuzzer must be automated without much manual tuning or
interference in the fuzzing process. Concretely, we propose
GREYHOUND, one fully automated approach that contains a
novel greybox fuzzer as its backbone, which references the
wireless protocols to fuzz a specific implementation. GREY-
HOUND aims to discover both existing vulnerabilities as well
as unknown non-compliant behaviours. This, in turn, allows
us to attach any client (e.g., smartphone, Raspberry Pi, and
wireless medical device) with GREYHOUND to validate the
client’s wireless protocol implementation.

Existing Wi-Fi fuzzing tools [10], [11], [12], are only capa-
ble to discover crashes and are incapable to discover more
complex non-compliant behaviours. Besides, the existing
fuzzing tools fail to explore deep states in the Wi-Fi protocol
in a comprehensive fashion. To develop GREYHOUND that
is comprehensive to discover as many as vulnerabilities
and non-compliant behaviours, we faced several technical
challenges. Firstly, fuzzing a wireless device that is connect-
ing to network differs from fuzzing a standalone software
program. Fuzzing a software program uses different inputs



2

to traverse execution paths of the program in order to
find as many bugs as possible. To fuzz protocol imple-
mentations of a wireless device, GREYHOUND focuses on
discovering crashes or non-compliant behaviours against
protocol standard when the device is setting up connection
with a network AP. As a result, GREYHOUND requires a
distinct strategy. Secondly, the diversity of wireless devices
is overwhelming while most of their implementations for
wireless protocols are poorly documented. The only knowl-
edge GREYHOUND can rely on is the standards defining
those wireless protocols. To this end, GREYHOUND employs
an abstraction of Wi-Fi protocols (via a state machine) to
validate the corresponding unknown implementation be-
haviour in a specific wireless device. Thirdly, setting up
a wireless connection involves multiple wireless protocols,
which are layered to form a packet in transmission. These
protocols have different likelihoods of being vulnerable.
Thus, GREYHOUND requires systematic strategies to direct
the fuzzing process in order to quickly and thoroughly
discover vulnerabilities for different protocols.

To resolve the aforementioned challenges, GREYHOUND
incorporates several novel methods as summarized below.

• GREYHOUND employs a greybox fuzzing approach op-
erating at the side of network AP. Since a wireless
protocol can be modeled as a state machine [5], GREY-
HOUND builds a protocol model that exactly resem-
bles this state machine. GREYHOUND leverages such
a model to automatically, (i) speculate about the state
in which a wireless device is exchanging packets, (ii)
generate and mutate packets for the purpose of fuzzing,
and (iii) validate response packets received from the
wireless device to check the occurrence of crash or non-
compliant behaviours.

• GREYHOUND generates well-formatted (i.e., according
to the protocol standard) but inappropriate packets
to fuzz a wireless device. However, such a packet is
delivered to a wireless device either redundantly or
at a wrong time, or some fields of the packet are
altered. Using these fuzzed packets, GREYHOUND aims
to observe whether the device’s implementation for
wireless protocols makes the device exhibit crashes or
non-compliant behaviours that badly deviate from the
protocol standard.

• GREYHOUND uses different probabilities in mutating
multiple protocol layers in a packet. This accelerates
the fuzzing process to discover anomalous behaviours
of wireless devices. Specifically, GREYHOUND leverages
reports from the Common Vulnerability and Exposures
(CVE) and assigns initial higher mutation probability to
protocol layers that are prone to vulnerabilities. For in-
stance, the recent revelation of Dragonslayer [13] directs
GREYHOUND to assign a higher mutation probability to
the Extensible Authentication Protocol (EAP) layer.

• GREYHOUND defines a number of cost functions along
multiple dimensions to automatically monitor and in
turn improve its efficacy. One of GREYHOUND’s cost
functions, for instance, is the number of vulnerabili-
ties that it has discovered. GREYHOUND attempts to
maximize this cost function value so as to promote its
effectiveness.

authentication
authentication

association
(response)

probe response

Beacons
probe request 1

2

3
4

association
(request)

5
6

4-Way Handshake
message 17

message 2 8

message 39
message 4 10

Encrypted data 
Data
Data

Access Point Client

(a) WPA2-Personal

EAP-Challenge
(request)
EAP-Success11

probe request
probe response
authentication

authentication

EAP-Challenge
(response)

EAP-Identity
(request)

Encrypted data 

Beacons
1

2
3

4
association

(request) 56

4-Way Handshake
message 1 message 2
message 3 message 4

Data

802.1X Authentication
7

EAP-Identity
(response)

8

10

12

14
13

15

Access Point Client

association
(response)

9

(b) WPA2-Enterprise

Fig. 1: An illustration of WPA2-Personal and WPA2-
Enterprise

We have implemented GREYHOUND and fuzzed a va-
riety of real-world Wi-Fi clients, including smartphones,
Raspberry Pi, ESP8266, ESP32, and medical device. Smart-
phone was chosen due to their popularity in daily usage.
Raspberry Pi, ESP8266 and ESP32 were chosen due to their
massive usage in IoT applications [14]. Finally, we chose
a wireless medical device due to its criticality in terms
of private data communication. Our thorough experiments
confirm that, GREYHOUND not only automatically discov-
ers reported vulnerabilities (including Dragonslayer and
KRACK), but, more importantly, it also has uncovered at
least four new vulnerabilities in popular Wi-Fi clients and
three other new non-compliant behaviours. All vulnerabil-
ities have been confirmed and they are assigned three new
CVE IDs CVE-2019-12586 1, CVE-2019-12587 2 and CVE-
2019-12588 3. We also compare our GREYHOUND approach
with three existing Wi-Fi testing tools: wifuzzit [10], wi-
fuzz [11] and IoTcube wifuzz [12]. Our evaluation reveals that
such tools are incapable of discovering any of the vulner-
abilities discovered by GREYHOUND. Finally, we show the
scalability and applicability of GREYHOUND by deploying
it to test the Wi-Fi implementation on several automotive
head units.

The remainder of this paper is organized as follows. In
Section 2, we present the background of wireless connec-
tions. In Section 3, we show an overview of GREYHOUND.
We detail the modules of GREYHOUND in Section 4. We
describe the evaluation of GREYHOUND on a variety of Wi-Fi
clients in Section 5. In Section 6, we compare GREYHOUND
to other testing tools. We discuss the key factors of GREY-
HOUND in Section 7. We conclude the paper in Section 8.

2 BACKGROUND AND PROTOCOL MODEL

In this paper, we place emphasis on Wi-Fi wireless protocols
defined in the family of IEEE 802.11 standards.

1. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12586
2. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12587
3. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12588



3

message 17 message 2 8
message 39

message 4

message 3
message 4

AP retries
Message 3

Client reuses 
encryption counters.
Vulnerable behaviour.

Data
Encrypted data 

4-Way Handshake

Access Point Client

10

12
11

Data

..

(a) KRACK

EAP-Challenge
(request)

EAP-Challenge
(response)

EAP-Challenge
(response)

EAP-Identity
(response)

EAP-Challenge 
(request)

802.1X Authentication
EAP-Identity
(request)

7
8

9
10

EA
P

Invalid frame

Client processes the 
invalid request.

Vulnerable behaviour.

EA
P-

PW
D

Access Point Client

12

11

..

(b) Dragonslayer

Fig. 2: An illustration of KRACK and Dragonslayer vulner-
abilities

2.1 IEEE 802.11i Standard

The IEEE 802.11i standard [15] defines a set of protocols
to provide Wi-Fi security, such as the widely-used WPA2-
Personal and WPA2-Enterprise. It describes how authenti-
cation between a Wi-Fi client and a network AP occurs. This
includes the exchange of temporary encryption keys used
in posterior data communication. The standard also defines
how a protocol is structured in a normal Wi-Fi packet
to enable different functionalities during the negotiation
of keys. Figure 1(a) shows the packet exchanged between
a Wi-Fi client and AP until a successful connection with
WPA2-Personal. At start, an AP broadcasts beacon frames
to advertise itself to nearby Wi-Fi clients. A client starts
connecting to the AP by sending probe request ( 1 ), and
waits for the response from AP ( 2 ). Then the Wi-Fi client
initiates authentication ( 3 and 4 ) and association ( 5 and
6 ) with the AP. Once the AP accepts the association request,

it registers the Wi-Fi client and allocates necessary resources.
In WPA2-Personal, the AP further launches a strict 4-Way
Handshake with the Wi-Fi client by exchanging four mes-
sages ( 7 to 10 ). The purpose is to establish Pairwise Tran-
sient Keys (PTK) between Wi-Fi client and AP. In particular,
message 3 ensures AP legitimacy to the Wi-Fi client while
message 4 completes 4-Way Handshake. Then data can be
securely transmitted as assumed in WPA2-Personal.

WPA2-Enterprise serves in more complicated environ-
ment. It adds 802.1X authentication after association and
before 4-Way Handshake. As shown in Figure 1(b), the
AP initiates the Enterprise Authentication Protocol (EAP)
exchange through exchanging EAP-Identity request and
response ( 7 to 8 ), and EAP-Challenge request and re-
sponse ( 9 to 10 ). Then the AP notifies the Wi-Fi client with
an EAP-Success ( 11 ).

Wi-Fi Vulnerabilities: Figure 2(a) and Figure 2(b) out-
line two uncovered critical Wi-Fi vulnerabilities, namely
KRACK [5] and Dragonslayer [13], respectively. KRACK is
attributed to the 4-Way Handshake, while Dragonslayer is
attributed to the EAP. For KRACK, the Wi-Fi client must not
respond via message 4 ( 12 in Figure 2(a)) in reply to the
redundant message 3 sent by the AP. For Dragonslayer,
in Figure 2(b), the Wi-Fi client must not reply with an
EAP-Challenge response ( 12 in Figure 2(b)) to the invalid
EAP-Challenge request ( 11 in Figure 2(b)) from the AP.

The preceding examples capture some unique situations

idle

authentication

association

EAP

4-Way Handshake

connected

EAP-Identity

EAP-Challenge

EAP-
Success/Fail

message 1

message 2

message 3

message 4

probe response

BEACONS

DHCP

ARP

IP BRIDGE

Encrypted Payload

Network Discovery

802.1X Pairwise Master Key Establishment

802.11i Transient Keys Exchange

Fig. 3: Wi-Fi state machine model

where the vulnerabilities appear. In the perspective of test-
ing, it is thus crucial to generate a sequence of messages that
might cause a Wi-Fi client to expose a vulnerability. Such a
sequence of messages can only be generated with a compre-
hensive model of the targeted protocol. Thus, GREYHOUND
incorporates a detailed model of specific protocols, via a
state machine, to generate valid sequence of packets.

2.2 Protocol Model
Figure 3 provides a high-level overview of the state ma-

chine model used by GREYHOUND. The model captures the
core design of IEEE 802.11, 802.11i and 802.1X, which en-
ables us to test implementations of both WPA2-Personal and
WPA2-Enterprise against possible undesirable Wi-Fi client
behaviours, such as non-compliance with the standard.

In the middle of Figure 3, the three states, i.e., idle,
authentication and association, are the minimum
states required to establish a simple open Wi-Fi connec-
tion, that is, a non-protected, plain text communication
between a Wi-Fi client and an AP. GREYHOUND emulates
a fake AP to communicate with the Wi-Fi client. In idle
state, such an AP actively broadcasts beacon frames every
100ms to announce itself towards Wi-Fi clients. The AP
also responds to probes requested by the Wi-Fi client. The
authentication state in our model consists of two mes-
sages: an authentication request from a Wi-Fi client and a
success or failure authentication response sent to the Wi-Fi
client. If the request from the client is valid, the AP responds
with a successful authentication response and transits to
association state. Next, in association state, the Wi-Fi
client must send a correct association request, so the AP can
reply with a successful association response.
EAP: With WPA2-Enterprise, the AP starts the EAP
exchange after the association state. Our model
handles three EAP sub-states, i.e., EAP-Identity,
EAP-Challenge and EAP-Success/Fail. While
EAP-Identity and EAP-Success/Fail are relatively
simple messages to construct, EAP-Challenge messages
require the usage of several cryptographic algorithms
(e.g., elliptic curve crypto). On receiving a successful
EAP-Challenge response, both the Wi-Fi client and AP
share a Pairwise Master Key (PMK).



4

GREYHOUNDWi-Fi clients Wireless Medium

802.11 Packets

Status Monitoring

Wi-Fi
AP

IoT device Smartphone

Fig. 4: An illustration of fuzzing scenario for GREYHOUND

4-Way Handshake: 4-Way Handshake state is essential for
both WPA2-Enterprise and WPA2-Personal. As mentioned
with Figure 1, in this state, four messages are exchanged
between AP and Wi-Fi client with the goal of establishing
PTK. PTKs are derived from the PMK during the state of
4-Way Handshake.

After the 4-Way Handshake state, the Wi-Fi client gets
connected to the Internet and data packets can be exchanged
between the AP and the Wi-Fi client. Moreover, all such data
packets are encrypted. We note that GREYHOUND systemati-
cally generates fuzzed packets until the 4-Way Handshake is
complete. GREYHOUND does not plan to discover vulnerabilities
in high-level protocols such as DHCP and ARP.

3 OVERVIEW OF GREYHOUND

In this section, we introduce a high-level overview of our
GREYHOUND approach and differentiate our approach with
the state-of-the-art fuzzing methodologies.

Basic Design: Figure 4 shows the scenario in which GREY-
HOUND works. GREYHOUND can be used to test an arbitrary
Wi-Fi client, such as a smartphone, computer, or Raspberry
Pi. To establish a wireless connection under, say, the afore-
mentioned WPA2-Personal, a Wi-Fi client needs to follow
protocols to orderly exchange a number of packets with a
network AP. As a greybox fuzzer, GREYHOUND models a
wireless protocol as a state machine for reference. Through
answering packets received from the Wi-Fi client and pro-
actively sending out packets, GREYHOUND triggers state
transitions at the AP side and in turn the Wi-Fi client side.
To fuzz a Wi-Fi client, our GREYHOUND, residing in the
AP, systematically generates packets via the protocol model
(cf. Figure 3) and a test optimization algorithm embodied
within GREYHOUND.

The Usage of GREYHOUND: GREYHOUND can be primarily
used in two scenarios. Firstly, GREYHOUND can be used to
systematically test the Wi-Fi client implementations of arbi-
trary Wi-Fi clients. To this end, GREYHOUND can discover
non-compliant behaviours of the implementation (including
crashes and vulnerabilities) with respect to the protocol
standard. This is possible, as GREYHOUND employs a com-
prehensive state-machine model of Wi-Fi and continuously
monitors the communication between Wi-Fi client and AP
to check unexpected packets received in any state. Secondly,
GREYHOUND can discover existing protocol design flaws,
such as KRACK, through testing Wi-Fi client implementa-
tions. This is because the set of expected layers constituting
a packet, as associated with each state in the Wi-Fi model
(cf. Figure 3), already accounts for the unexpected behaviour
in vulnerabilities such as KRACK. Yet GREYHOUND is not

Wireless 
Device

Fuzzing
& 

Optimization

Protocol Model 
(State Machine)

6. Anomaly Report & 
Cost Calculation (CFi)

Packet 
Manipulation

2.a Normal Packet (P) 

Wi-Fi 
Hardware

3a. Fuzzed Packet (P’)

Packet 
Validation

4. Device Response
Packet (Pr)

2.b Mutation

5. Validation

1. Reference 

GREYHOUND

MWIFI

3.b Well-crafted Packet sent at wrong state (Pdup) 
 

Fig. 5: An illustration of the architecture of GREYHOUND

supposed to discover new vulnerabilities in the design of
protocols.

GREYHOUND Workflow: Figure 5 illustrates the high-level
workflow of GREYHOUND. As mentioned, GREYHOUND
incorporates a protocol model, i.e., MWIFI , at the upper
right of Figure 5 to supervise and drive the process of
greybox fuzzing. Besides the protocol model, there are three
major modules in GREYHOUND, i.e., (i) fuzzing and test op-
timization, (ii) packet manipulation, and (iii) packet valida-
tion that validates the correctness of packets received from
the Wi-Fi client. Periodically, the fuzzing and optimization
module references MWIFI to learn the current state of Wi-
Fi client and advance the fuzzing process (1 in Figure 5).
The protocol model also generates normal valid packets (2.a
in Figure 5) to the packet manipulation module. Following
the mutation instructions from the fuzzing and optimization
module (2.b in Figure 5), a normal valid packet results
in a fuzzed packet P ′, which is sent through the Wi-Fi
hardware (3.a in Figure 5) to the Wi-Fi client. Concurrently,
GREYHOUND may leverage a valid packet, i.e., Pdup to be
sent from an inappropriate state of the Wi-Fi access point
(AP). This feature is crucial to expose vulnerabilities such
as KRACK, as KRACK appears when message3 is sent
from the connected state (cf. Figure 2(a)). GREYHOUND
employs such a feature to observe the response of a Wi-
Fi client when the client receives a well-formed packet at
a wrong state. Once a response packet Pr to P ′ or Pdup is
received (4 in Figure 5) from the Wi-Fi client, it is validated
by the packet validation module by referring to the protocol
model (5 in Figure 5). A non-compliant response implies
the possible existence of vulnerabilities in the Wi-Fi client.
The non-compliant responses are reported to the fuzzing
and optimization module, and based on a quantitative cost
calculation, GREYHOUND further optimizes the fuzzing pro-
cess of the Wi-Fi client (6 in Figure 5). More detailed steps
of GREYHOUND are outlined in Algorithm 1 (procedure
Greyhound_Core).

Initially, the protocol model is generated and the mu-
tation probabilities are initialized before fuzzing itera-
tions begin (Lines 3-7 in Algorithm 1). Specifically, the
mutation probabilities are initialized via the procedure
Particle_Swarm_Opt (Algorithm 2). Then the network
AP is at the idle state and waits for the Wi-Fi client to com-
municate with the AP (Lines 11, 15-17). Once the AP receives
a packet Pr from the Wi-Fi client, it automatically checks



5

whether the packet is expected via the Run_Validation
procedure (Lines 18-19, cf. Section 4.2). The crux of the
Run_Validation procedure is based on a set of expected
layers expected(S ), assigned to each state S of the protocol
model MWIFI (Line 13 in Algorithm 1). With the received
packet Pr , the AP makes an appropriate state transition
by referring to the protocol model (Line 24). Subsequently,
GREYHOUND generates a valid packet P from the current
protocol state S. However, before communicating with the
Wi-Fi client, GREYHOUND mutates the fields of packet P
and generates mutated packets P ′ (Lines 25-28) according to
a set of mutation probabilitiesXi (see Section 4.1 for details).
Xi captures the set of mutation probabilities associated with
all the states in the model (cf. Figure 3). It is worthwhile to
mention that due to the probabilistic nature of mutation, the
packet P ′ may differ from the original packet P . When the
mutated packet P ′ indeed differs from the original packet
P , the packet P ′ is deemed malformed. As a result, any
response (from the Wi-Fi client) for such P ′ is considered as
an anomaly. To this end, the expected set of layers in state
S is momentarily cleared (Line 34 in Algorithm 1). This is
for the validation process (Lines 18-19, cf. Section 4.2) to
detect potential anomalies that result due to the response to
malformed P ′.

Additionally, GREYHOUND maintains a history of pack-
ets generated from the model in Phist and selects a packet
Pdup from Phist to communicate with the Wi-Fi client
(Lines 30-36). The rationale behind such a communication
is to send a packet that is invalid regarding the current
state of the protocol. Moreover, even though Pdup triggers
a legitimate transition to the Wi-Fi client (e.g. when the
reception of Pdup is delayed), it is not possible to trigger
the same transition to the Wi-Fi client via another packet P .
As a result, duplicate responses from a Wi-Fi client, during
the same fuzzing iteration, are caught as anomalies. This is
because such responses are received during different states
of the AP state machine. In Section 4.2, we comprehensively
discuss the different scenarios that appear during anomaly
detection (i.e. procedure Run_Validation).

A fuzzing iteration finishes when the AP reaches idle
state (Line 37) or an anomaly is detected (Line 22 in Al-
gorithm 1). After a fuzzing iteration, the mutation proba-
bilities to fuzz a packet are refined via a particle swarm
optimization (Lines 38-43, Algorithm 2), which takes input
as the value of a cost function measured during the com-
munication with the targeted Wi-Fi client (cf. Section 4.1).
We note that different mutation probabilities Xi may result
in different fuzzed packets, thus leading to different cost
(e.g., number of transitions covered in the model) CF i.
We aim to automatically maximize or minimize the value
of the cost function by refining the mutation probabilities.
This new set of mutation probabilities Xi+1, as computed
iteratively via procedure Particle_Swarm_Opt are used
in the next fuzzing iteration. Using such an approach makes
GREYHOUND directed, with the aim to uncover anomalies
in the protocol implementation.

Finally, while waiting for the response from a Wi-Fi client
(Line 15 in Algorithm 1), GREYHOUND may time out. This
mostly happens when the client drops mutated and invalid
packets or becomes unresponsive due to crashes. In such
cases, after GREYHOUND times out, the AP reaches the idle

Algorithm 1 Main Steps of GREYHOUND

1: Procedure: Greyhound_Core()
2:
3: i← 0 . i captures fuzzing iteration
4: . generate Wi-Fi protocol model (cf. Figure 3)
5: MWIFI ← Generate_Protocol_Model()
6: . wait to receive mutation probabilities from PSO
7: Xi L99 Particle_Swarm_Opt()
8: . initialize history of sent packets
9: Phist ← ∅; Pdup ← ∅

10: repeat
11: Wait for the AP to be in idle state
12: . assign expected layers for received packets
13: For each S ∈MWIFI , assign expected(S)
14: repeat
15: Wait for the Wi-Fi client to communicate
16: goto line 39 if timeout occurs at line 15
17: Let the AP receives packet Pr from the Wi-Fi client
18: . monitors states and checks anomalies
19: θanom ← Run_Validation(Pr, S)
20: . exits the fuzzing iteration in case of anomalies
21: if θanom is false then
22: goto line 39
23: end if
24: S ← Get_Current_State(MWIFI , Pr)
25: . generate a valid packet from the model
26: P ← Get_Packet_from_Model(MWIFI , S)
27: . generate fuzzed packets from P via mutation
28: P ′ ← Mutate_Packet(P,Xi)
29: Send fuzzed packets P ′ to the Wi-Fi client
30: Choose a packet Pdup ∈ Phist ∪ {∅} s.t. Pdup 6= P
31: Send irrelevant packet Pdup to the Wi-Fi client
32: . reset expected layers after fuzzing
33: if P ′ 6= P then
34: expected(S)← ∅
35: end if
36: Phist ← Phist ∪ {P}
37: until AP does not reach the idle state
38: . measure cost function value for Xi

39: CF i ← Measure_Cost_Function(Xi)
40: . send cost function value to PSO
41: Particle_Swarm_Opt() L99 CF i

42: . wait to receive new mutation probabilities from PSO
43: Xi+1 L99 Particle_Swarm_Opt()
44: i← i+ 1
45: until timeout

state and exits the inner loop in Algorithm 1. Then, the
cost function value is computed and GREYHOUND starts
a new fuzzing iteration (Line 11) via the refined mutation
probabilities (Line 43).

Handling retransmission of packets by Wi-Fi client: In
our implementation of Algorithm 1, GREYHOUND discards
duplicated packets sent by the client by checking the
Retry field of a Wi-Fi packet. Thus, while waiting for the
client (Line 17 in Algorithm 1), GREYHOUND only pro-
ceeds when the Retry flag is reset in Pr , otherwise Pr

is dropped. It is also possible that the Wi-Fi client soft-
ware may retransmit fresh authentication-request
and association-request without the Retry flag being
set. However, such retransmission happens after a substan-
tial time interval (≈ 1-2 seconds) and only when some mal-
formed packet from GREYHOUND is legitimately dropped
by the client. This time interval is large enough for the
AP to be in the idle state (i.e. it exits the inner loop



6

of Algorithm 1). While the authentication-request
is a valid packet to be received in the AP idle state,
GREYHOUND discards (i.e. does not flag anomalies) any
association-request packets in the idle state. This
is to handle the retransmission of association-request
packets from the previous fuzzing iteration.

How GREYHOUND differs from state-of-the-art fuzzers?
The fuzzing strategy of GREYHOUND differs from conven-
tional strategies for software fuzzing [16], [17], [18]. Firstly,
traditional software fuzzing methodologies fuzz programs
with valid and invalid inputs; by contrast, GREYHOUND has
to acquire a deep understanding of the underlying network
protocol to trigger appropriate state transitions with the
protocol for finding vulnerabilities. A classic fuzzer is hence
inapplicable to fuzzing Wi-Fi clients since, being ignorant
of the protocol, it would get stuck in the initial state of
the protocol model due to the invalid packets it usually
generates. Secondly, to induce certain anomalies in a Wi-
Fi protocol, it is often essential to monitor the timing for
packet exchange and also minimize the timing for a Wi-
Fi client reconnecting with the AP. This involves fairly
complex test optimization strategy – a feature that seldom
exists in the conventional fuzzing techniques. Finally, the
test optimization of GREYHOUND critically depends on how
it maps packets received from a Wi-Fi client to the states of a
protocol model. Such a test optimization strategy is unique
and significantly differentiates GREYHOUND from state-of-
the-art software fuzzing techniques.

GREYHOUND also differs from previous works [7], [19],
[20], [21] targeting network fuzzing. These works either
focused on text-structured protocols such as ftp and http,
or they are highly specific to certain fragments of Wi-Fi, such
as handshake [21]. Thus, such fuzzing techniques are inca-
pable of discovering a variety of vulnerabilities, including
Dragonslayer [13] that might appear in different protocol
states. Moreover, these works have limited automation as
their test scenarios are often manually provided. On the
contrary, GREYHOUND is a fully automated approach that
comprehensively covers the states of an AP and a Wi-Fi
client, when the client is trying to set up connection with
the AP. Moreover, GREYHOUND is general in the sense that
the protocol model can easily be replaced to support fuzzing
a variety of other protocols.

4 FUZZING IN GREYHOUND

In this section, we discuss the fuzzing component of GREY-
HOUND in detail.

4.1 Fuzzing Component

Using the aforementioned protocol model, GREYHOUND
generates packets compliant to the protocol standard. Sub-
sequently, each such packet is forwarded to the fuzzing
component embodied in GREYHOUND. The fuzzer system-
atically modifies the packets generated from the protocol
model. The objective of such modification is to direct the
fuzzer towards scenarios that are likely to lead to non-
compliant behaviours, including but not limited to crashes.
In the following, we describe the core mechanism embodied
within our fuzzer.

802.11
Header

Layers

LLC SNAP EAPoL EAP

Layers mutation probabilities
0.2 0.7

Fields
DataLengthIDCode

0.5 0.5 0.5 0.5

Wi-Fi Packet

EAP Fields mutation probability

EAP Layer

0.2

Fields
DataLengthTypeVersion

0.4 0.4 0.4 0.4
EAPoL Layer

EAPoL Fields mutation probability

0.4 0.4 0.4 ...
Mutation probabilities

0.4 0.7 0.5 0.5 0.5 0.5

Fields of EAPoL Fields of EAP

EAPoL Layer EAP Layer

Fig. 6: An illustration of GREYHOUND’s fuzzing

Mutation Probabilities: A packet generated from the pro-
tocol model has a fairly complex structure. The mutation of
GREYHOUND occurs at two levels: each packet P contains
multiple layers and each such layer may consist of multiple
fields. Let LP be the set of layers associated with the packet
P . For each layer l ∈ LP , let Fl be the set of associated
fields. We associate each layer l ∈ LP with a probability pr+l .
pr+l captures the probability for GREYHOUND to mutate
the layer l of packet P . Finally, we also associate a field
mutation probability pr−l for each layer l ∈ LP . Any field
f ∈ Fl is mutated by GREYHOUND with the probability
pr−l . As each packet is associated with a protocol state s (cf.
Figure 3), the number of mutation probabilities is bounded
by 2×

∑
s∈S Ls, where S is the total number of states in the

protocol model and Ls is the number of layers associated
with the packet in state s. In Algorithm 1, each Xi captures
a set of 2×

∑
s∈S Ls such mutation probabilities.

Figure 6 captures the core mechanism of GREYHOUND’s
fuzzing module that mutates a Wi-Fi packet. The packet
includes five different layers including LLC, SNAP, EAPoL
and EAP. The probabilities of these layers can initially be
assigned by the user or based on the reference of com-
mon vulnerability exposures (CVEs). Specifically, from the
description of a CVE, we can figure out the Wi-Fi state
where the respective vulnerability appears. As an example,
consider the Dragonslayer vulnerability (CVE-2019-9499)
that is associated with the EAP state. Thus, to assign mu-
tation probabilities based on CVE-2019-9499, we assign high
mutation probability values to all layers and fields related to
the EAP state. The rest of the layers and fields are assigned
lower mutation probability values. For instance, considering
CVE-2019-9499, GREYHOUND assigns a higher probability
of 0.7 to the EAP layer as shown in Figure 6. A layer
with a higher probability means that it would be more
frequently mutated by GREYHOUND. The intuition behind
this is that, GREYHOUND is more likely to mutate layers that
have been known to embrace vulnerabilities, and expects
the implementation of the Wi-Fi client device to be more
likely to exhibit non-compliant behaviours. Each layer in
turn contains a set of fields. Take the EAP layer for example
again. It contains four fields: Code, ID, Length, and Data.



7

GREYHOUND also needs to assign probabilities to them. To
keep the design of GREYHOUND simple, we do not use
different probabilities for fields of the same layer. However,
this can be easily tuned.
Mutation Operators: GREYHOUND uses the following mu-
tation operators to modify an arbitrary packet generated
from the protocol model:
• Random byte: Each packet field selected by the fuzzer

is assigned a randomly generated value. We choose this
operator to induce stochastic behaviour in the protocol.

• Zero filling: The packet field is overwritten with all
zeros. Such a mutation operator is chosen with the
objective to induce potential buffer underflow during
the sending and reception of Wi-Fi packets.

• Bit setting: For the chosen packet field, the most sig-
nificant bit of a byte is set. For multi-byte fields, the
most significant bit for each byte is set. GREYHOUND
chooses this mutator with the goal to incur potential
buffer overflows (e.g., setting higher bits correlates to
setting high values for certain packet fields).

Given a packet P generated from the protocol model,
GREYHOUND mutates the fields of it according to the proba-
bilities attributed to pr+l and pr−l for each layer l of P . Once
GREYHOUND decides to mutate a packet field, we choose
one of the mutation operators (i.e., random byte, zero filling
and bit setting) in random. Thus, the outcome is a mutated
packet P ′ after applying a respective mutation operator.
Refining Mutation Probabilities: In the preceding section,
we show the mechanism to mutate the layers of a Wi-
Fi packet based on certain probabilities that are initially
assigned either with CVEs or randomly. In order to effec-
tively discover anomalies (e.g., crashes or non-compliant
behaviours against the protocol standard), GREYHOUND
employs a set of cost functions to systematically refine the
mutation probabilities. The cost functions considered by
GREYHOUND are as follows.
• Transitions: This counts the number of state transitions

in the model discussed in Figure 3. The number of such
transitions are counted until the model goes back to the
idle state. This cost function is chosen to maximize
the number of state transitions that may potentially
discover more anomalous behaviours across all states.

• Anomaly period: This captures the elapsed time be-
tween two discovered anomalies. Such a cost function
value is minimized to ensure that GREYHOUND con-
verges to the potential anomalous states faster.

• Anomaly count: We use the number of unique anoma-
lies discovered as a cost function. This is to maximize
the discovery of potential anomalies including crashes.

• Iteration time: This is the duration for an AP to return
to its idle state after initiating a communication (i.e.,
the time it takes to complete the inner loop in Algo-
rithm 1). GREYHOUND aims to minimize this time to
do stress test onto Wi-Fi clients. Clients are more likely
to crash while attempting to frequently re-interact with
the AP.

The cost function value is measured for each individual
capturing a set of mutation probabilities. We note that a
different set of mutation probabilities may direct the fuzzer
to generate different sets of mutated packets (Line 28 in

Algorithm 2 GREYHOUND Particle Swarm Optimization

1: Procedure: Particle_Swarm_Opt()
2: Send: Sets of mutation probabilities Xi

3: Receive: Cost function value CF i for Xi

4:
5: . g captures PSO generation number
6: g ← 0
7: Let [[X ]]g be a population of sets of mutation probabilities
8: For each Xi ∈ [[X ]]g , assign Xi randomly
9: . initialize velocity, mutation probabilities and cost

10: for each Xi ∈ [[X ]]g do
11: . send Xi to Algorithm 1 for fuzzing
12: Greyhound_Core() L99 Xi

13: . wait to receive cost from Algorithm 1
14: CF i L99 Greyhound_Core()
15: pbi ← Xi; fi ← CF i; vi ← 0
16: end for
17: . initialize gb with initial best mutation probabilities
18: gb← Xm such that CFm ≤ CF i for any Xi ∈ [[X ]]g
19: repeat
20: for each Xi ∈ [[X ]]g do
21: . randomize r1 and r2
22: r1, r2 ← rand(0,1)
23: . calculate velocity (to shift mutation probabilities)
24: vi ← w((vi + η1r1) · (Xi − pbi) + η2r2 · (Xi − gb))
25: . calculate new mutation probabilities
26: Xi ← Xi + vi
27: . send Xi to Algorithm 1 for fuzzing
28: Greyhound_Core() L99 Xi

29: . wait to receive cost from Algorithm 1
30: CF i L99 Greyhound_Core()
31: . update mutation probabilities
32: if CF i < fi then
33: pbi ← Xi; fi ← CF i

34: end if
35: . update global best mutation probabilities
36: if fi < CFm then
37: gb← pbi; CFm ← fi
38: end if
39: end for
40: g ← g + 1
41: until g ≥ max generations

Algorithm 1). As a consequence, the measured cost function
value might vary with respect to the set of chosen mutation
probabilities. The objective of refining the mutation proba-
bilities is to minimize or maximize a chosen cost function
value for next fuzzing iteration. In GREYHOUND, we used
the custom generational particle swarm optimization (PSO).
We chose this optimization due to its superior performance
in the light of the non-linear and stochastic behaviour
present in the protocol model. The PSO is accomplished
via the procedure Particle_Swarm_Opt (cf. Line 41 in
Algorithm 1). We describe this procedure next.

Procedure Particle_Swarm_Opt:
We capture sets of mutation probabilities Xi, in any

given fuzzing iteration i, as the particle in a swarm. Recall
that each Xi is a vector of length 2 ×

∑
s∈S Ls. Therefore,

Xi can be considered as the position of a particle in a
2 ×

∑
s∈S Ls dimensional space. The goal of PSO is to

optimize the value of a chosen cost function via regulating
the positions of the swarm of particles. Since the position
of the particles is captured via the mutation probabilities,
we refine the mutation probabilities via PSO and optimize



8

until 𝒈 ≥ max_generations

𝑿𝒊+𝟏 ∈ 𝑿𝒈

𝑪𝑭𝒊+𝟏

27: send 𝑋𝑖 to Algorithm 1 for fuzzing
Greyhound_core()  𝑿𝒊

𝑿𝒊 ∈ 𝑿𝒈

𝑪𝑭𝒊

.

Alg. 2 (Particle_Swarm_Opt)

.

.

41: wait to receive 𝑋𝑖 from PSO
𝑿𝒊 Particle_Swarm_Opt()

29: wait to receive cost from Alg. 1
𝑪𝑭𝒊 Greyhound_core()

37: measure cost value for 𝑋𝑖
𝑪𝑭𝒊Measure_Cost_Function()
39: send cost to PSO
Particle_Swarm_Opt()  𝑪𝑭𝒊

Greyhound_core()  𝑿𝒊+𝟏 𝑿𝒊+𝟏 Particle_Swarm_Opt()

Particle_Swarm_Opt()  𝑪𝑭𝒊+𝟏𝑪𝑭𝒊+𝟏 Greyhound_core()

Alg. 1 (Greyhound_core)

Fig. 7: Communication between Greyhound_Core fuzzing
(Algorithm 1) and PSO (Algorithm 2)

our chosen cost function (e.g. anomaly count). The overall
process of refining the mutation probabilities is outlined in
Algorithm 2. The positions of a swarm of particles [[X ]]g are
first initialized (Line 8 in Algorithm 2). The position of each
particle (i.e., Xi), which, in turn captures a set of mutation
probabilities, is then sent to trigger a fuzzing iteration
via procedure Greyhound_core (Line 12 in Algorithm 2).
Once the fuzzing iteration in Greyhound_core finishes
(i.e., the inner loop in Algorithm 1 terminates), the value
of the cost function is measured (Line 14 in Algorithm 2) for
the respective fuzzing iteration. It is worthwhile to note that
the cost function value is also received from the procedure
Greyhound_Core (Line 41 in Algorithm 1). Once the cost
function value CF i is computed for each Xi ∈ [[X ]]g , the
value of each Xi is refined via PSO to optimize the cost
function value in next fuzzing iteration.

The refinement of mutation probabilities (i.e., Xi) is
influenced via three crucial variables: the personal best
mutation probabilities pbi, velocity vi and the global best
mutation probabilities gb for the entire swarm [[X ]]g (see
Lines 24-26 in Algorithm 2). The velocity component vi is an
offset to modify the mutation probabilities, whereas pbi and
gb components act as a memory to direct the search process
towards optimal cost function value. Once the value of Xi

is refined, Xi is sent to trigger the next fuzzing iteration
via Greyhound_core (Line 28 in Algorithm 2) and the
cost function value for the respective fuzzing iteration is
measured accordingly (Line 30 in Algorithm 2). This process
is repeated for each Xi in the swarm [[X ]]g . During this
process, the personal and global best mutation probabilities,
i.e. pbi and gb, respectively, are also updated according to
the cost function value measured via Greyhound_core
(Lines 33-37 in Algorithm 2). Finally, we repeat the pro-
cess of refining the mutation probabilities and fuzzing for
max generations iterations. In our experiments, we set
max generations to be 200. Figure 7 illustrates the com-
munication between the procedure Greyhound_Core and
Particle_Swarm_Opt in our framework.

As observed in Algorithm 2, the refinement is also
dictated via three configuration parameters: the inertia
component w, the cognitive component η1 and the social
component η2. w controls the speed that the particle Xi is
originally heading to, whereas the cognitive component η1
acts by increasing the tendency to follow its personal best
position pbi. Finally, the social component η2 increases the
tendency of Xi to follow the best position of the swarm (gb).
In our experiments, we set the default values of w (0.729), η1

802.11
Header

idle

authentication

association EAPoL
Start

Dot11
RSN

STATES

Dot11
Disas ...

Dot11
Assoc

Dot11
Deauth

Dot11
Auth

Dot11
Probe ...

Received Packet: disassociation

CURRENT STATE

Dot11
Disas

Dot11
Reason

Expected layers

...

802.11
Header

Received Packet: authentication

...

Validated

Invalidated
Dot11
Auth

Dot11
Reason

Layer matched

No layer matched

Packet reception

Fig. 8: Packet dissection and validation of GREYHOUND

(2.05) and η2 (2.05) as embodied in the PAGMO toolkit [22].

Algorithm 3 GREYHOUND Validation Component

1: Procedure: Run_Validation()
2: Input: State S of Wi-Fi protocol model (cf. Figure 3)
3: Input: Packet Pr sent via Wi-Fi client
4: Output: Absence of anomaly (true or false)
5: . Layers(Pr) is the set of layers constituting packet Pr

6: if ∃l ∈ Layers(Pr) s.t. l ∈ expected(S) then
7: validated← true
8: else
9: validated← false

10: end if
11: . restore the set of expected layers if required
12: if expected(S) = ∅ then
13: restore the original set of expected layers expected(S)
14: end if
15: return validated

4.2 Validation Component
GREYHOUND relies on the validation module to check
whether the packets received from Wi-Fi client are com-
pliant with the protocol model. To this end, GREYHOUND
monitors the state of protocol model while interacting with
the Wi-Fi client. Moreover, GREYHOUND assigns a prede-
fined set of expected layers (that can be received from the
Wi-Fi client) to each state (cf. Line 13 in Algorithm 1). When
a packet is received from Wi-Fi client, its type is compared
to the expected set of layers assigned with the current state
of the protocol. Any mismatch is deemed as an anomaly.
To discover crashes, GREYHOUND monitors whether the
Wi-Fi client process was killed. To this end, GREYHOUND
uses a global timer, which is initialized to a pre-determined
threshold (large enough to detect crashes) and is reset to
the initialized value each time a response is received from
the Wi-Fi client. For the sake of brevity, this is not shown
in Algorithm 1. Certain devices (e.g., ESP32 and ESP8266)



9

also send a customized message to indicate a crash during
communication.

Algorithm 3 outlines the Run_Validation module in-
voked in Algorithm 1. There is a special case where the
expected set of layers was cleared during fuzzing. This
happens when a mutated packet is sent from state S (Line 34
in Algorithm 1), as any response to such a mutated packet
is considered an anomaly. Thus, at the end of the valida-
tion process, we restore the original set of expected layers
(Line 13 in Algorithm 3).

Figure 8 provides an example of our validation com-
ponent in practice. The current state of the protocol, as
monitored by GREYHOUND, is association. At this state,
the types of expected layers are shown alongside the state.
As shown in Figure 8, two packets have been received
from the Wi-Fi client via association-Request and
authentication. We note that the types of packets in the
association-Request, i.e., Dot11 Assoc and Dot11
RSN are compliant with the type of expected packets in
the association state. By contrast, the types of packets
in the authentication, i.e., Dot11 Auth and Dot11
Reason, are not compliant with the expected packet types
in the association state and thus, GREYHOUND would
flag them as anomalies.

Analysis of the validation component: It is worthwhile
to note that we discover anomalies simply by monitoring
the state of AP. This is possible due to the design of
GREYHOUND and the unique nature of the Wi-Fi protocol.
To consider the different situations that may arise while
detecting anomalies, let us assume an arbitrary fuzzing
iteration where GREYHOUND waits in state S after sending
packets P ′ and Pdup to the Wi-Fi client (i.e Line 15 in
Algorithm 1). The following scenarios may arise based on
the response Pr received from the Wi-Fi client:

a) Response for P ′: If P ′ = P , it is a valid response
and in Algorithm 3, Layers(Pr) ∩ expected(S ) 6= ∅.
Therefore, no anomaly is detected. However, if P ′ 6= P
(i.e. P ′ was mutated), by design of Greyhound_Core,
expected(S ) = ∅. Therefore, response to P ′ 6= P will be
legitimately flagged as an anomaly via Algorithm 3.

b) Response for Pdup: Since Pdup 6= P (cf. Algorithm 1),
Pdup is always an invalid packet to be sent from state
S. Thus, the response from the client for Pdup is not
expected in state S of the AP. Due to our design,
Layers(Pr) ∩ expected(S ) = ∅ (the expected layers
in AP states are mutually exclusive) and therefore, an
anomaly will be correctly highlighted via Algorithm 3.
This case is void when Pdup = ∅.

c) AP does not receive any response: In this scenario, the
validation in Algorithm 3 trivially passes, as Pr = ∅.
This might happen if the client drops all invalid and
mutated packets or crashes. We note that a crash is
separately detected via a global timer. However, when
the client legitimately drops invalid or mutated packets,
the AP reaches idle state and eventually commences the
next fuzzing iteration.

d) Response for sent packets from previous fuzzing
iteration: We do not consider this case, as it is highly
unlikely to occur in practice because of the timing
constraints in Wi-Fi protocol.

7

msg 2 

Access Point Wi-Fi Client

msg 1
message 1 𝒔′

message 3 𝒔

8

9

10

..

[Anomaly]

𝑷𝒓 = msg 4

𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒔 = {∅}

(ignore 𝑷𝒅𝒖𝒑)

7

msg 2 

Access Point Wi-Fi Client

msg 1
message 1 𝒔′

message 3 𝒔

8

9

10

..

[Anomaly]

𝑷𝒓 = msg 4

𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒔 = {∅}
(ignore 𝑷′)

(a) Anomalous behaviour (b) Expected behaviour

Fig. 9: An Illustration of ambiguous scenarios during vali-
dation

e) Response for sent packets during state 6= S: This
scenario occurs when packets sent from the Wi-Fi client
are delayed. Specifically, let us assume the response Pr

corresponds to the packet PS′ sent via AP during the
state S′ 6= S. In an abuse of notation, we consider
P ′(S′) and Pdup(S

′) to capture the sent packets P ′ and
Pdup in state S′. Given these notations, there are three
possible situations as follows:
• PS′ = P′(S′) and P′(S′) was mutated: Since S 6= S′,
expected(S ) ∩ expected(S ′) = ∅. This holds even if
P ′ 6= P , as expected(S ) = ∅ in such case. Therefore,
Algorithm 3 will legitimately catch an anomaly for
the response to P ′(S′) albeit being at a different state
S.

• PS′ = P′(S′) and P′(S′) was not mutated: Since
P ′(S′) was a legitimate packet sent during state S′, a
response to this packet was valid during state S′. We
note that the AP state machine waits for the response
during fuzzing (Lines 15-17 in Algorithm 1). Thus, if
the state machine had moved to a different state S′,
then it must be due to a response to some Pdup(S

′′)
sent in state S′′ 6= S′ and S′′ 6= S. Since S 6= S′,
expected(S ) ∩ expected(S ′) = ∅ and this also holds
when P ′ 6= P . Thus, Algorithm 3 will catch the
response as an anomaly. We believe this should be
highlighted as an anomaly, as the Wi-Fi client should
not have responded to both the packets Pdup(S

′′) and
P ′(S′) that trigger the same state transitions at the
client.

• PS′ = Pdup(S
′): Let us first consider the case where

P ′ = P . Thus, the set of expected layers expected(S)
is not cleared. If Layers(Pr) ∩ expected(S ) 6= ∅, then
Pr is validated via Algorithm 3 and GREYHOUND
will proceed to the next state. It is worthwhile to
mention that despite Pdup(S

′) being sent during
an invalid state S′, the client response arrives at
the correct state S. Thus, the AP does not need
to flag the response Pr as an anomaly in state S.
If Layers(Pr) ∩ expected(S ) = ∅, an anomaly will
be caught via Algorithm 3. Nonetheless, such an
anomaly is caught in state S instead of state S′ (as
Layers(Pr) ∩ expected(S ) = ∅ by design).
If P ′ 6= P , expected(S) = ∅. If expectedorig(S)
is the original set of expected layers at state S



10

and Layers(Pr) ∩ expectedorig(S ) = ∅, Algorithm 3
will legitimately highlight an anomaly. However, if
Layers(Pr) ∩ expectedorig(S ) 6= ∅, Algorithm 3 will
still catch an anomaly, as expected(S) = ∅. Nonethe-
less, we consider it to be an anomaly, as it cannot be
inferred whether the client responds for the mutated
packet P ′ or Pdup(S

′). Due to such ambiguity, this
needs to be further investigated by the developer.
Figure 9(a) captures a scenario where the situation
is an anomaly while Figure 9(b) is an expected sce-
nario. As these scenarios cannot be differentiated by
GREYHOUND and thus, both are flagged as anomalies
conservatively.

5 EVALUATION

In this section, we describe our experimental setup and the
evaluation findings in detail.

5.1 Evaluation Setup
We have implemented GREYHOUND with a Wi-Fi AP, i.e.,
Ralink RT3070 dongle. In order to improve overall re-
sponsiveness of GREYHOUND, we have developed a cus-
tom RT3070USB driver patch. Before GREYHOUND starts
fuzzing, the dongle is configured to enable raw data recep-
tion and transmission. In data reception and transmission
components, the fuzzer can interact with the Wi-Fi hardware
using standard libraries (e.g., packets socket) available for
most operating systems. Since GREYHOUND is targeted to
discover existing and new vulnerabilities, we generically
use the term anomaly to refer to both existing vulnerabilities
and new non-compliant behaviours including crashes. The
fuzzer and the validation components of GREYHOUND run
on a machine with Intel i7 8-th generation CPU, 16GB
DRAM memory, and Ubuntu 16.04 operating system. As
to the four cost functions discussed in Section 4.1, we have
used each of them to test the effectiveness of GREYHOUND
against all subject Wi-Fi clients.

In evaluation, we have chosen five representative Wi-
Fi clients: smartphone (Oneplus 5T), Raspberry Pi 3 Model
B+, ESP8266, ESP32, and a medical device. Smartphones
are widely used in daily life. Raspberry Pi is a popular
embedded computing platform. ESP8266 and ESP32 are Wi-
Fi modules playing important roles in IoT applications, such
as energy metering, fire hazard alarm, and motion-based
security camera [23], [24], [25]. The medical device is a smart
syringe pump with Wi-Fi connection, which demands high-
level data privacy in transmitting healthcare information of
patients. We do not give the exact name of medical device
due to a non-disclosure agreement signed with the company
selling the medical device.

5.2 Summary of results
Table 1 outlines an overall summary of the results obtained
through GREYHOUND. Each row in Table 1 lists a possible
vulnerability, inconsistency (w.r.t. protocol specification) or
crash discovered by GREYHOUND. It is worthwhile to em-
phasize that all such anomalies were discovered automati-
cally by GREYHOUND. Overall, GREYHOUND discovered four
existing vulnerabilities across different devices (e.g., Raspberry

Pi and Oneplus 5T) and seven new anomalies including three
crashes. These anomalies were discovered by GREYHOUND
while communicating with the Wi-Fi client and in different
states of the protocol model. The state, in which the respec-
tive anomaly was discovered, is also listed in the second
column of Table 1. We also indicate, for each affected device,
the fuzzing iteration number with which an anomaly was
discovered (cf. Table 1). Finally, Table 1 precisely captures
the set of our subject devices that are affected by a discov-
ered anomaly. We note that the discovered vulnerabilities by
GREYHOUND have been assigned three CVEs (common vul-
nerability exposures) already: CVE-2019-12686, CVE-2019-
12687 and CVE-2019-12688. At the timing of writing this
paper, the details of these vulnerabilities are undisclosed for
confidentiality. Moreover, the vulnerability associated with
CVE-2019-12587 has been awarded a bug bounty of 2,200
USD by the manufacturer of ESP8266 and ESP32.

Furthermore, we evaluated GREYHOUND to answer the
following research questions.

RQ1: How effective is GREYHOUND in finding anomalies?
We measure the effectiveness of GREYHOUND by analysing
the total number of anomalies found over a limited number
of iterations (cf. Table 2). After evaluating each device,
GREYHOUND generates a report for each cost function to
summarize the discovered anomalies in three categories:
(i) inconsistencies with respect to protocol specification, (ii)
crashes and (iii) vulnerabilities. While each anomaly discov-
ered by GREYHOUND is automatically summarized as either
a crash or an inconsistency, we manually perform a further
in-depth analysis to identify whether an inconsistency is
indeed a security vulnerability.

In Table 2, each cost function used by GREYHOUND
has shown a different level of effectiveness in terms of
discovered anomalies. Meanwhile, the effectiveness of a
cost function is not consistent across all devices, because
the implementations of Wi-Fi protocols differ significantly
across different Wi-Fi clients. Therefore, it is desirable to
use multiple cost functions to direct the fuzzing process of
GREYHOUND. For ESP8266 and ESP32, the higher number
of anomalies indicates that their protocol implementations
are fragile and untrustworthy. By contrast, the medical
device embraces more secure implementation, as the de-
vice contains a security patch for KRACK. In addition,
it only includes implementations of EAP-TLS, EAP-PEAP,
and EAP-TTLS that do not suffer from the Dragonslayer
vulnerability, which refrains the device from being affected
by Dragonslayer. However, GREYHOUND discovered that
the medical device suffers from an old vulnerability A0, as
captured by the CVE id CVE-2008-5230. This vulnerability
allows conducting ARP poisoning.

RQ2: How do the different directed strategies converge in
GREYHOUND?

We measure the convergence of GREYHOUND across
different cost functions for all the devices (cf. Figure 10).
All devices were run for 1,000 iterations except the medical
device that was run for ≈ 200 iterations. This is due to the
long testing time incurred for the medical device. Figure 10
exhibits the unique number of anomalies discovered with
respect to the number of iterations. These diagrams confirm
that all the cost functions direct GREYHOUND to discover



11

TABLE 1: A summary of vulnerabilities / inconsistencies uncovered by GREYHOUND. The number beside each Affected
tag captures the fuzzing iteration number in which the respective anomaly was discovered.

Vulnerabilities / Inconsistencies Wi-Fi State OnePlus 5T Raspberry Pi 3 ESP8266 ESP32 Medical device

A0 CVE-2008-5230 connected Not affected Not affected Not affected Not affected Affected (91)
A1 CVE-2017-13077 (KRACK) message 3 Not affected Affected (48) Not affected Not affected Not affected
A2 CVE-2017-13078 (KRACK) message 3 Not affected Affected (48) Not affected Not affected Not affected
A3 CVE-2017-13080 (KRACK) connected Not affected Affected (50) Not affected Not affected Not affected
A4 CVE-2019-9499 (Dragonslayer) EAP-Challenge Affected (307) Affected (95) Not affected Not affected Not affected
A5 New - Non compliance EAP-Challenge Affected (3) Affected (9) Affected (26) Affected (2) Affected (2)
A6 New - Non compliance EAP-Success/Fail Affected (23) Affected (13) Affected (20) Affected (7) Affected (10)
A7 New - Implementation issue

EAP-Success/Fail Not affected Not affected Affected (91) Affected (64) Not affected(New CVE-2019-12587)
A8 New - Crash ALL States Not affected Not affected Affected (2) Not affected Not affected(New CVE-2019-12588)
A9 New - Crash EAP-Identity Not affected Not affected Not affected Affected (421) Not affected(New CVE-2019-12586) EAP-Challenge

A10 New - Crash EAP-Identity
EAP-Challenge

Not affected Not affected Affected (228) Not affected Not affected

A11 New - Malformed response EAP-Identity
EAP-Challenge

Not affected Not affected Not affected Affected (261) Not affected

TABLE 2: A summary of results per cost function
Discovery Vulnerabilities / Inconsistencies / Crashes
Cost Iteration Anomaly Transitions Anomaly
Function Time Period Count
OnePlus 5T 0/1/0 1/2/0 0/1/0 0/2/0
Raspberry Pi 3 1/1/0 3/2/0 2/2/0 1/2/0
ESP8266 1/2/5 0/2/5 0/2/3 0/2/4
ESP32 0/2/2 0/1/0 1/2/2 1/1/0
Medical Device 0/1/0 0/2/0 1/2/0 1/2/0

TABLE 3: A summary of evaluation time for each device

Device Max Best case Worst caseIterations
OnePlus 5T 1000 5 h. 50 min 6 h 40 min.
Raspberry Pi 3 1000 3 h. 32 min. 4 h. 52 min.
ESP8266 1000 1 h. 8 min. 1 h. 17 min.
ESP32 1000 1 h. 35 min. 1 h. 47 min.
Medical device 200 1 h. 52 min. 3 h. 41 min.

unique anomalies.
The effectiveness of different cost functions varies in

terms of finding anomalies across different devices. As an
example, from Figure 10(c), it is feasible to conclude that the
cost iteration time was best suited for ESP8266; while the Wi-
Fi client implementation of ESP32 (cf. Figure 10(d)) was best
directed with the cost transitions. Raspberry Pi 3, however,
(cf. Figure 10(b)) is better tested via the cost anomaly period.

RQ3: How efficient is GREYHOUND with respect to gener-
ating error-prone inputs?

Timing between the AP and a Wi-Fi client significantly
affects the evaluation process. For example, when GREY-
HOUND minimizes the cost iteration time (cf. Section 4.1), it
is expected to decrease the average time to complete each
evaluation. This may not hold while GREYHOUND aims
to optimize other costs. Thus, to evaluate the efficiency
of GREYHOUND, we measure both the best case and the
worst case completion time of GREYHOUND after 1000 it-
erations. The best and the worst case evaluation time are
captured in Table 3. From Table 3, we note that the timing
behaviour is heavily dependent on the target Wi-Fi client
implementation. This is because implementations in differ-
ent devices use different thresholds for iteration time. For
more specialized devices, such as the medical device, such

thresholds are significantly higher and negatively affect the
efficiency of GREYHOUND. As we had a limited time budget
for accessing the medical device, we tested it for a maximum
of 200 iterations. Nevertheless, the usage of iteration time
as a cost aims to minimize the time to re-interact with the
AP. By using this cost function, GREYHOUND improves the
evaluation time for the medical device by a factor of two.

We report the results of the following three research
questions for all devices except the medical device. The
device was returned to the manufacturer due to the loan
agreement signed earlier on.

RQ4: Does the effectiveness of GREYHOUND depend on
initial mutation probabilities?

As discussed in Section 4.1, GREYHOUND assigns a set of
initial mutation probabilities to direct fuzzing specific layers
and fields within each layer (cf. Figure 6). These mutation
probabilities can be assigned randomly or they can be based
on existing CVEs. Without loss of generality, we evaluate
whether the effectiveness of GREYHOUND improves when
the mutation probabilities are assigned based on CVE-2019-
9499 for Dragonslayer. To this end, GREYHOUND assigned
high mutation probability values for states only related to
EAP. Specifically, all layers and fields that belong to the
EAP state received an initial mutation probability of 80%.
The rest of the layers and fields received zero probability
for mutation. Such a configuration allows us to start the
fuzzing process with a population that are likely to discover
vulnerabilities similar to CVE-2019-9499.

Table 4 outlines our findings. When evaluating with each
cost function, we check the iteration number (i.e., the value
alongside the X axis in Figure 10) where the first anomaly
was discovered. We make several observations from Table 4.
Firstly, a majority of the devices discover A5 as the first
anomaly when mutation probabilities are assigned based on
CVE-2019-9499 (row labelled “with CVE”). This is because
A5 appears in the same state (i.e., EAP) as the Dragonslayer
vulnerability. Secondly, A5 is discovered much faster (i.e.,
fewer fuzzing iterations) when the mutation probabilities
are assigned based on CVE-2019-9499. This is expected,
as GREYHOUND fuzzing process initially mutates the EAP
layer more frequently compared to other layers. Thirdly,



12

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(a) Anomaly number w.r.t fuzzing iterations for OnePlus 5T

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(b) Anomaly number w.r.t fuzzing iterations for Raspberry Pi 3

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(c) Anomaly number w.r.t fuzzing iterations for ESP8266

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(d) Anomaly number w.r.t fuzzing iterations for ESP32

 0

 1

 2

 3

 4

 0  20  40  60  80  100  120  140  160  180  200

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(e) Anomaly number w.r.t fuzzing iterations for medical device

Fig. 10: The convergence of GREYHOUND

TABLE 4: The effect of initializing mutation probabilities-
based CVEs. For each device, we show the first anomaly
discovered and the number of fuzzing iterations taken to
discover the first anomaly.

Cost Function Population
Initialization

Max iterations until 1st anomaly is found / 1st anomaly
ESP8266 ESP32 Raspberry Pi 3 OnePlus 5T

Anomaly count with CVE 10 / A5 27 / A5 10 / A5 24 / A5
Randomly 07 / A8 45 / A5 56 / A5 51 / A5

Anomaly period with CVE 05 / A8 06 / A5 35 / A5 46 / A5
Randomly 16 / A8 31 / A5 64 / A5 105 / A5

Transitions with CVE 06 / A5 04 / A5 39 / A1,A2 18 / A5
Randomly 02 / A8 21 / A5 48 / A5 44 / A5

Iteration time with CVE 04 / A5 07 / A5 25 / A5 40 / A5
Randomly 06 / A8 13 / A6 103 / A5 61 / A5

for ESP8266, assigning mutation probabilities based on CVE
resulted in more iterations to find the first anomaly, when
compared to randomly initializing the probabilities. This is
possible as the random initialization does not restrict the
initial fuzzing iterations to find the anomaly A8 (beacon
crash), which in turn, might appear in any state. Finally,
for Raspberry Pi 3, we note that GREYHOUND discovers A1
and A2 as the first anomaly. This occurs when GREYHOUND
uses the transitions in the state machine as the cost function.
In such a case, despite mutating EAP layer more frequently
than other layers, GREYHOUND still aims to cover the states
due to the chosen cost function. As a result, it is possible
for GREYHOUND to reach the connected state and send
message3 to trigger A1 and A2. In our evaluation, this
happens even before A5 was triggered on Raspberry Pi 3.

Table 4 clearly captures that assigning the mutation
probabilities from the CVEs helps GREYHOUND to converge
faster in discovering anomalies that are similar to the re-
spective CVEs (e.g., anomalies appearing in the same state).
RQ5: How do the different design choices contribute in
the effectiveness of GREYHOUND?

In this research question, we evaluate the rationale and
contribution of the specific design choices made for GREY-
HOUND. To this end, we develop three additional variants
of GREYHOUND: (i) GREYHOUND without any mutation and
evolutionary components. Intuitively, this means the variant
only generates packets from the state machine model and
send these packets to the Wi-Fi client. The Wi-Fi client,
however, may get these packets unexpectedly. Technically,
in Algorithm 1, we make P ′ = P in all iterations and disable
lines 38-41 of Algorithm 1. (ii) GREYHOUND only with
mutation. This means, GREYHOUND generates packets from
the state machine model and mutates them before sending
to the Wi-Fi client. However, these packets are never sent to
the client unexpectedly and the mutation probabilities are
not refined with the evolutionary approach. As a result, in
Algorithm 1, we disable lines 30-36 and lines 38-41. (iii) The
third variant of GREYHOUND considers both mutation and
evolutions to send packets to the Wi-Fi client. However, all
mutated packets are sent to the client at expected states.
Formally, we disable lines 30-36 in Algorithm 1.

Figures 11(a)-(d) show our findings. For all the results
reported in Figure 11, we keep the cost function to be the
“Anomaly count” and we compare the number of anoma-
lies discovered for each GREYHOUND variant. Variants (i),
(ii) and (iii) are labelled as “Duplicated”, “Mutation” and
“Evolution”, respectively. We make the following crucial



13

 0

 1

 2

 3

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Duplicated Mutation Evolution Greyhound

(a) Anomaly number w.r.t fuzzing iterations for OnePlus 5T

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Duplicated Mutation Evolution Greyhound

(b) Anomaly number w.r.t fuzzing iterations for Raspberry Pi 3

 0

 1

 2

 3

 4

 5

 6

 7

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Duplicated Mutation Evolution Greyhound

(c) Anomaly number w.r.t fuzzing iterations for ESP8266

 0

 1

 2

 3

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

n
u

m
b

er

Iterations

Duplicated Mutation Evolution Greyhound

(d) Anomaly number w.r.t fuzzing iterations for ESP32

Fig. 11: The impact of different design components in GREY-
HOUND

observations from Figure 11. Firstly, we observe that it
is crucial to mutate the packets and refine the mutation
probabilities to discover anomalies. Except for OnePlus 5T,
the variant “Duplicated” was incapable of discovering the
same number of anomalies as other variants until 1000
iterations. For OnePlus 5T, the variant “Duplicated” took
much longer iterations to discover the same number of
anomalies as the other variants. Secondly, except for ESP32,
GREYHOUND discovered the anomalies much faster than the
other variants. This is expected as GREYHOUND employs a
systematic combination of techniques embodied in the other
three variants. For ESP32, it is noticeable that the variant
“Evolution” got an anomaly faster than GREYHOUND. We

TABLE 5: GREYHOUND compared to other public tools

Comparison Vulnerabilities / Inconsistencies / Crashes

Tools Maximum One Plus Raspberry ESP8266 ESP32state 5T Pi 3
wifuzzit association 0/0/0 0/0/0 0/0/0 0/0/0
wifuzzit (Client) idle 0/0/0 0/0/0 0/0/0 0/0/0
wifuzz association 0/0/0 0/0/0 0/0/0 0/0/0
IoTcube wfuzz association 0/0/0 0/0/0 0/0/1 0/0/1
Greyhound connected 1/2/0 3/2/0 1/2/2 1/2/1

TABLE 6: The time taken by GREYHOUND to discover each
security vulnerability. “-” indicates that the respective tool
was unable to discover the security vulnerability within the
time budget.

Vulnerability Device Greyhound Wifuzzit Wifuzz IoTcube
A0 Medical Device 55 min. - - -
A1, A2 Raspberry Pi 3 3 min. - - -
A3 5 min. - - -

A4
OnePlus 5T 37 min. - - -
Raspberry Pi 3 11 min. - - -

A7
ESP8266 22 min. - - -
ESP32 16 min. - - -

A8 ESP8266 < 1 min. - - -
A9 ESP32 37 min. - - -
A10 ESP8266 29 min. - - -

New ESP8266 N.A - - 8 min.
ESP32 N.A - - 29 min.

argue that the additional introduction of the duplicated
packets can sometimes delay the finding of anomalies that
can appear by normal evolutionary mutation (i.e. the variant
“Evolution”). However, it is expected that GREYHOUND will
eventually trigger such anomaly with more test iterations,
as observed in Figure 11(d). Finally, we note that it is
not sufficient to simply use mutation to trigger all the
anomalies. Specifically, for Raspberry Pi 3 and ESP8266, the
variant “mutation” cannot discover all the anomalies in 1000
iterations. For the rest of the devices, this variant discovers
anomalies much slower than GREYHOUND.
RQ6: How effective is GREYHOUND with respect to exist-
ing Wi-Fi Fuzzing tools?

We choose three freely available Wi-Fi fuzzers, namely
wifuzzit [10], wifuzz [11] and IoTcube wfuzz [12] (state-of-
the-art) to compare the effectiveness of GREYHOUND with
respect to existing works. The choice of these fuzzing tools
is motivated by the rationale that they are the closest to the
objective of our work, when compared with the other avail-
able fuzz testing methodologies. Nonetheless, such tools can
detect only crashes and therefore, they are fundamentally
incapable of discovering other security vulnerabilities, such
as CVE-2019-12587 (cf. Table 1) and anomalous behaviours.
Moreover, these tools are limited in regards by the depth of
states that can be fuzzed. For example, while GREYHOUND
can quickly reach states such as EAP and connected, we
observe that the existing Wi-Fi fuzzers are only able to reach
the association state at best.

To evaluate the comparative effectiveness of GREY-
HOUND, each competitive fuzzing tool is tested on our
subject devices. Except for wfuzz, which finishes the fuzzing
in 30 minutes, other tools are evaluated until the worst-
case time taken by GREYHOUND, as outlined in Table 3.
This is required for a fair comparison with GREYHOUND.
In general, wifuzzit and wifuzz require more than one day
to finish their respective fuzzing processes. Despite the
fast fuzzing session conducted by IoTcube wfuzz (i.e. 30



14

EAP-Challenge
(response)

message 2

message 4

EAP-Identity
(response)

EAP-Challenge
(request)

EAP-Identity
(request)

4-Way Handshake
message 1

message 3

Encrypted data 
Data

802.1X Authentication
7

8
9

10
EAP-Fail11

PM
K

 
es

ta
bl

is
hm

en
t

PT
K

ex
ch

an
ge

Client ignores 
EAP Fail message

12

14
13

15

Invalid message

Access Point Client

EAP-PEAP  
EAP-TTLS
EAP-TLS 
EAP-PWD

X
X

✓
✓

..

PMK=0

EAP-Challenge
(response)

message 2

EAP-Identity
(response)

EAP-Challenge
(request)

EAP-Identity
(request)

4-Way Handshake
message 1

802.1X Authentication
7

8
9

10
EAP-Fail11

PM
K

 
es

ta
bl

is
hm

en
t

PT
K

ex
ch

an
ge 12

13

Access Point ..
Client

Client uses last PMK

probe request

message 2

message 4

message 1

message 3

7

9
8

10

Access Point Client..
4-Way Handshake

Encrypted Data

Crash

Malformed frame

Beacons

probe response
or

11
12

13

EAP-Success

EAP-Challenge
(response)

EAP-Identity
(response)

EAP-Challenge
(request)

EAP-Identity
(request)

802.1X Authentication
7

8

9

10
11

Access Point ..
Client

Crash
12

Malformed frame

(a) Anomaly A6 (b) Anomaly A7 (c) Anomaly A8 (d) Anomaly A9 and A10

Fig. 12: An illustration of new anomalies (A6 to A10) discovered by GREYHOUND

minutes), it is worthwhile to note that its users must keep a
database with up-to-date test cases. However, GREYHOUND
does not need to maintain any such database, all test cases
are automatically generated via the approach outlined in
Algorithm 1.

Table 5 outlines the summary of unique vulnerabilities,
anomalies and crashes triggered by each competitive tool
and GREYHOUND. It is worthwhile to mention that only
wifuzzit (Client) is able to fuzz the Wi-Fi client, whereas the
AP implementation is fuzzed by wifuzzit, IoTcube wfuzz and
wifuzz. We note that the state machine model embodied in
GREYHOUND facilitates us to fuzz the implementation of
Wi-Fi client. Consequently, the overall result clearly shows
that our GREYHOUND approach not only detects more
crashes for ESP8266, but also indicated vulnerabilities and
anomalies across all devices. Although wifuzzit (Client) can
fuzz the Wi-Fi client implementation, it failed to discover
any anomaly across all the test devices. This is because the
crashes and vulnerabilities might appear deep in the Wi-
Fi state, such as EAP. Our evaluation indicates that wifuzzit
(Client) was unable to reach such state during its fuzzing
process. Specifically, wifuzzit (Client) failed to trigger a crash
caused by malformed beacon frame or association response.
This further shows the rationale behind the mutation oper-
ators and the comprehensive Wi-Fi model embodied within
GREYHOUND.

Table 6 compares the time taken by GREYHOUND in
discovering each anomaly. It is worthwhile to mention that
A0-A4 are existing security vulnerabilities, whereas A6-A10
are new vulnerabilities discovered by GREYHOUND (cf. Ta-
ble 1). As observed from Table 6, GREYHOUND is not only
capable to discover new vulnerabilities, but it also discovers
existing vulnerabilities effectively in contrast to state-of-the-
art fuzzers. Finally, as shown in Table 5 and Table 6, IoTcube
wfuzz discovered a new anomaly shared across both ESP32
and ESP8266 AP implementations. GREYHOUND does not
have a Wi-Fi AP model yet, thus it does not fuzz AP
implementations to detect the crash found by IoTcube wfuzz.

5.3 Description of Anomalies
In this section, we will briefly present the anomalies discov-
ered by GREYHOUND. GREYHOUND automatically discovers
critical vulnerabilities such as variants of KRACK and Drag-
onslayer A4 in multiple Wi-Fi clients (cf. Table 1). Besides
these known vulnerabilities, GREYHOUND has also discov-
ered seven new anomalies as discussed in the following.

Anomaly A5: Anomaly A5 indicates the absence of verifi-
cation on the “Version” field in the EAPoL layer of a Wi-Fi
packet (cf. Figure 6). The lack of such verification results in
the communication to proceed even with an arbitrary value
in the “Version” field. Albeit not raising a security concern,
such a behaviour captures a violation of the protocol stan-
dard.
Anomaly A6: A6 captures a non-compliant behaviour of Wi-
Fi implementation in Wi-Fi clients that support EAP-PWD
and EAP-TLS (cf. Figure 12(a)). Specifically, according to
the RFC 3748 [26], following an EAP-Fail message after
EAP-Challenge, the client must terminate the respective
communication. GREYHOUND discovers a scenario (cf. Fig-
ure 12(a)) where several Wi-Fi clients, though implementing
EAP-PWD and EAP-TLS, simply ignore the EAP-Fail mes-
sage and proceed to the 4-way Handshake. Although this
is highlighted as a non-compliant behaviour, GREYHOUND
does not consider it as a vulnerability, because the affected
Wi-Fi clients proceed with the correct PMK to the 4-way
Handshake stage (cf. Section 2). Such a PMK was already
established before the reception of the EAP-Fail message.
Anomaly A7: A7 is similar to A6, but A7 exposes a vulner-
ability for ESP8266 and ESP32. As shown in Figure 12(b),
despite receiving an EAP-Fail message, both ESP8266 and
ESP32 proceed to the 4-Way Handshake stage. Worse,
both devices surprisingly drop the PMK obtained dur-
ing EAP-Challenge state and proceed with the 4-Way
Handshake using the last PMK. We investigated and dis-
covered that the last PMK is always zero at start. Thus, it is
possible for a rogue AP to easily hijack any ESP32/8266 con-
nectivity to an enterprise network. This is doable by sending
an EAP-Fail message before the original EAP-Success
message is sent out by the authentic AP. As a result, we
consider this to be a vulnerability of the Wi-Fi client imple-
mentations in ESP32/8266. This vulnerability is now assigned
a CVE id CVE-2019-12587 [27]. We also win a bug bounty
of 2.2K USD for reporting this security vulnerability to the
manufacturer.
Anomalies A8-A10: GREYHOUND identified three crashes
mostly affecting low-power devices. A8 affects only ESP8266
and can be practically triggered in all states (cf. Figure 12(c)):
a crash is triggered when a malformed beacon frame with
incorrect length is broadcast to ESP8266. A9 and A10manifest
other crashes during EAP-Challenge state of ESP32 and
ESP8266, respectively (cf. Figure 12(d)). Specifically, GREY-
HOUND found that sending an EAP-Success message



15

Fig. 13: GREYHOUND setup with Toyota Altis

with additional padding caused ESP32 to crash. ESP8266
crashes in similar scenarios even without the padding.
Note that RFC 3748 clearly addresses the proper han-
dling of EAP-Success message in an EAP-Challenge
state. According to RFC 3748, a Wi-Fi client being in
EAP-Challenge state must always discard EAP-Success
message. These crashes are now assigned CVE ids CVE-2019-
12586 [28] and CVE-2019-12588 [29].
Anomaly A11: Finally, we discovered a non-compliant be-
haviour A11, which causes ESP32 to communicate with
a malformed EAP response during the EAP-Identity
and EAP-Challenge states. According to RFC 3748, Wi-Fi
clients must not respond to malformed messages.

5.4 Case Study with Automotive Head Units

In this study, we choose three car automotive head units to
validate the scalability and deployment potential of GREY-
HOUND. To this end, we first target the head unit of Toyota
Altis, dated from 2016 with firmware version 01.04.1600.
The car’s head unit contains a system that supports internet
access through its Wi-Fi implementation. Moreover, the
presence of old firmware, which is dated before KRACK
vulnerabilities were discovered, gave us an incentive to per-
form tests against the car media center. The configuration of
GREYHOUND is captured in Figure 13. A notebook running
GREYHOUND (to the right) is used. GREYHOUND, in turn,
generates an access point with the name TEST KRA (shown
in the media center screen). Subsequently, GREYHOUND
starts fuzzing in line with the methodologies outlined in
Algorithm 1. This is accomplished via leveraging the RT3070
dongle (on top of the car panel) to communicate systemati-
cally fuzzed packets.

Similar to the medical device, the car head unit exhibits
a long delay between reconnection with the fuzzer, thus,
making it impractical, during our limited access to the car,
to complete substantial number of fuzzing iterations. Nev-
ertheless, after running GREYHOUND for about ten minutes,
it was already possible to discover anomaly A3 (CVE-2017-
13080 KRACK). We note that the car Toyota Altis features a
head unit from the vendor Alpine, which provides custom
media center solutions for other car manufacturers.

We have extended our study to two different automotive
head units, i.e., UGAR EX8-L and XY Auto (used by differ-
ent vendors such as Podofo A2222A1, Bingfan YT9216B-07
and Midcourse MC7023E-N1), both running on Android 8.1
operating system. These are sold separately from a car. Such
a study allowed us to perform a more complete analysis of
the automotive head units. We evaluated both head units
against each cost function and we compute the number of
anomalies with respect to fuzzing iteration (cf. Figures 14(a)
and 14(b)). We discovered that both head units are vulner-
able to Dragonslayer (A4). However, we noted both units
are resilient to KRACK, as their respective Android systems
are updated with security patches from November, 2017 and
May, 2018. It is worthwhile to mention that these results are
expected as their system is similar to OnePlus 5T, which also
runs Android 8.1 with a security patch from October, 2018.

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

co
u

n
t

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(a) Anomaly number w.r.t fuzzing iterations for UGAR

 0

 1

 2

 3

 4

 0  100  200  300  400  500  600  700  800  900  1000

A
n

o
m

al
y 

co
u

n
t

Iterations

Anomaly count
Anomaly period

Iteration time
Transitions

(b) Anomaly number w.r.t fuzzing iterations for XY Auto

Fig. 14: The convergence of GREYHOUND

The outcome of our study concludes that the owners
of Alpine head units are vulnerable to anomaly A3 if the
security patch for KRACK is not applied. Moreover, owners
of the aforementioned UGAR and XY Auto head units are
vulnerable to anomaly A4 if they have not updated their
respective units.

6 RELATED WORK

Wi-Fi Vulnerabilities: GREYHOUND is inspired from recent
works [5] [13] that have discovered vulnerabilities in wire-
less protocols. KRACK [5] discovers implementation and
design flaws in the Wi-Fi 4-Way Handshake. Dragonslayer
indicates a vulnerability in the EAP-Challenge state for
EAP-PWD authentication method [13], affecting many de-
vices that rely on an enterprise network for improved secu-
rity. These works require careful manual investigation of the



16

protocol standard to discover design and implementation
flaws. By contrast, GREYHOUND is an automated technique
to streamline the discovery of vulnerabilities including but
not limited to KRACK and Dragonslayer. Moreover, GREY-
HOUND can easily be extended for testing a variety of
protocols. This can be accomplished by providing the state
machine model of the targeted protocol.

Fuzzing Network Protocols: Directed greybox fuzzing is
a well known software testing strategy [9], [16], [17], [18].
However, there has been limited to no attempt to adapt such
methodologies for testing complex systems such as Wi-Fi.
GREYHOUND is the first approach towards fuzzing complex
wireless protocols. Existing works on fuzzing [30], [31], [32]
wireless protocols only support testing driver implemen-
tations against buffer overflow or null pointer deference.
These works are not capable to detect vulnerabilities such
as KRACK and Dragonslayer, as they only support a limited
number of states to fuzz, namely idle, authentication
and association (cf. Figure 3). Moreover, tests need to be
configured manually (e.g., fields to fuzz) for the fuzzing to
progress. In contrast to these works, GREYHOUND provides
a holistic and fully automated approach to fuzz all the states
associated with Wi-Fi protocol. GREYHOUND is also orthog-
onal to other works on network protocol testing [7], [19],
[20] that focus on text structured protocols such as ftp and
http, but ignores wireless protocols. Finally, the objective
of a recent work on IoT fuzzing [33] is orthogonal to the ap-
proach proposed in GREYHOUND. Specifically, the work [33]
aims to discover memory corruptions in IoT devices via
fuzzing the application layers (e.g., JSON and XML formats)
through the mobile app. By contrast, GREYHOUND aims to
discover vulnerabilities in wireless protocols via fuzzing Wi-
Fi packets, it does not intend to fuzz application layers and
it does not need to rely on mobile apps. Moreover, by design
and as shown in our evaluation, GREYHOUND can discover
security vulnerabilities beyond memory corruptions.

Fuzzing Optimization: A number of works have been pro-
posed to improve the effectiveness of fuzzing process [34],
[35], [36]. These approaches primarily target fast generation
of interesting inputs via application-aware data and control
flow features [36], using static and dynamic analysis to
leverage information about program states [35] and via
optimizing the choice of effective mutation operators [34].
None of these works are directly applicable to fuzzing Wi-Fi
protocols. Moreover, these works are primarily targeted to
discover crashes and they often require instrumenting pro-
gram binaries to extract program state information. In con-
trast, our work is generally targeted to discover anomalous
protocol behaviours including but not limited to crashes
(e.g. encryption bypass). Moreover, our GREYHOUND ap-
proach does not involve any instrumentation and works in
a fully automated fashion.

Model-based Testing: Model-based testing has recently
been applied to validate IoT communication [37]. Specif-
ically, it applies active automata learning to understand
IoT communication protocol. The learned protocol model
is then used for testing. This work does not employ an
evolutionary approach. As shown in our evaluation, an
evolutionary approach is critical for effective fuzzing of Wi-
Fi protocol implementations. Finally, the automata learning

approach of existing model-based testing framework [37] is
complementary to our approach. Specifically, such automata
learning can be considered to learn the Wi-Fi protocol model
in GREYHOUND. Model-based security testing has also been
studied for OAuth 2.0 implementations [38]. However, this
work is not directly applicable for fuzzing Wi-Fi protocols
and it does not involve any evolutionary method in fuzzing.
Fuzzing Wi-Fi Handshake: The closest to GREYHOUND is a
work related to the testing of 4-Way Handshake [21]. In this
work, a model of the 4-Way Handshake was constructed to
test Wi-Fi client implementations. However, in contrast to
GREYHOUND, such a model ignores the behaviour of the Wi-
Fi client. Moreover, GREYHOUND differs from this approach
in multiple other aspects. Firstly, the proposed approach [21]
is incomplete in the sense that it only considers the model
of handshake. Thus, it is incapable of handling other lay-
ers of wireless protocols, failing to discover vulnerabilities
such as Dragonslayer. Secondly, all the test strategies in
the approach are manually defined and specifically crafted
for testing handshaking mechanism only. By comparison,
GREYHOUND is a more generic approach for testing arbi-
trary wireless protocols and all the tests in GREYHOUND are
generated automatically. Thirdly, GREYHOUND is modular
and can easily be extended for fuzzing other protocols via
adding protocol models [39].
Verification of Network Protocols: Our work is orthogonal
to the chain of works that aim to perform verification of
network protocols [40]. In contrast to these works, GREY-
HOUND has a significant testing flavour and it can be used
to provide a concrete test case that exhibits vulnerabilities or
non-compliant behaviours in Wi-Fi client implementations.

To the best of our knowledge, GREYHOUND is the
first holistic approach to automatically test arbitrary Wi-Fi
clients.

7 THREATS TO VALIDITY

GREYHOUND’s effectiveness depends on some key factors:
Choice of initial probabilities: Incorrectly assigning muta-
tion probabilities to basic Wi-Fi layers, such as Wi-Fi Mac
header, can result in several iterations of GREYHOUND being
stuck in the idle state of the protocol model. In such cases,
GREYHOUND could cause a Wi-Fi client to never attempt a
connection to the AP, as packets received by the Wi-Fi client
might be invalid when the Wi-Fi Mac header is mutated.
Choice of cost function: GREYHOUND does not guarantee
the accomplishment of finding the maximum anomalies
using one single cost function in testing a Wi-Fi client. Each
cost function focuses on a different interaction with the Wi-
Fi client while the number of anomalies may highly depend
on the specific Wi-Fi client implementation in a device.
Thus, it is important to use different cost functions to cover
different characteristics of Wi-Fi client implementations.
Model robustness: The protocol model must be well im-
plemented in order to correctly interact with Wi-Fi clients.
An incorrect or incomplete model may lead GREYHOUND
to misinterpret anomalies or limit its coverage in finding
anomalies.
Validation: Currently, GREYHOUND’s packet validation re-
lies mostly on the checks implemented to investigate the



17

expected set of layers in each state of the protocol model.
An incomplete set of packets may miss potential anomalies
attributed to the protocol. To mitigate this, we carefully
followed the protocol standards and included the type of
expected layers in each state of the protocol model.

8 CONCLUSION

We propose GREYHOUND, an automated and directed test-
ing methodology to discover anomalies in the implementa-
tion of wireless protocols. It employs a holistic model of Wi-
Fi protocol to systematically interact with Wi-Fi compliant
devices. An appealing feature of GREYHOUND is that it
can optimize the testing process via multiple cost functions
and with the objective to discover anomalies in arbitrary
Wi-Fi client implementation. We extensively evaluated the
effectiveness of GREYHOUND with five representative Wi-
Fi compliant devices. Our evaluation reveals that GREY-
HOUND discovers critical security vulnerabilities such as
KRACK and Dragonslayer. Moreover, it uncovers seven
new anomalies including three crashes and one new vulner-
ability. All these new anomalies have been confirmed by the
respective manufacturers. In the future, we plan to extend
GREYHOUND for Bluetooth compliant devices.

GREYHOUND is just one step forward to push the state-
of-the-art in automated validation of current and next-
generation wireless protocols. Given the critical vulnera-
bilities discovered in such protocols, we believe the need
for automated testing is urgent and concrete. We hope that
GREYHOUND provides a baseline to extend and streamline
the research in systematic testing of wireless protocol imple-
mentations. For reproducibility and research, GREYHOUND
source code is available upon request to sweyntooth@gmail.
com.
Acknowledgement: We thank the anonymous reviewers for
their insightful comments. The research is partially sup-
ported by Keysight Technologies grant no. RTKS171003.

REFERENCES

[1] Brian P Crow, Indra Widjaja, Jeong Geun Kim, and Prescott T
Sakai. Ieee 802.11 wireless local area networks. IEEE Communi-
cations magazine, 35(9):116–126, 1997.

[2] Changhua He and John C Mitchell. Analysis of the 802.11 i 4-
way handshake. In Proceedings of the 3rd ACM workshop on Wireless
security, pages 43–50. ACM, 2004.

[3] CHJC Mitchell and Changhua He. Security analysis and improve-
ments for IEEE 802.11 i. In The 12th Annual Network and Distributed
System Security Symposium (NDSS’05) Stanford University, Stanford,
pages 90–110. Citeseer, 2005.

[4] Wi-Fi Alliance. WPA3 specification v1.0. https://www.wi-
fi.org/downloads-registered-guest/WPA3 Specification v1.0.pdf,
January 2018. https://www.wi-fi.org/file/wpa3-specification-
v10.

[5] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks:
Forcing nonce reuse in WPA2. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’17, pages 1313–1328, New York, NY, USA, 2017. ACM.

[6] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A smart
home is no castle: Privacy vulnerabilities of encrypted IoT traffic.
arXiv preprint arXiv:1705.06805, 2017.

[7] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth,
Richard Kemmerer, and Giovanni Vigna. SNOOZE: Toward a
stateful network protocol fuzzer. In Sokratis K. Katsikas, Javier
López, Michael Backes, Stefanos Gritzalis, and Bart Preneel, edi-
tors, Information Security, pages 343–358, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[8] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Ab-
hik Roychoudhury. Directed greybox fuzzing. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 2329–2344, New York, NY, USA, 2017.
ACM.

[9] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey.
Cybersecurity, 1(1):6, 2018.

[10] Laurent Butti. wifuzzit: a 802.11 wireless fuzzer.
https://github.com/0xd012/wifuzzit, January 2013.
https://www.blackhat.com/presentations/bh-europe-
07/Butti/Presentation/bh-eu-07-Butti.pdf.

[11] Roberto Paleari. wifuzz, March 2011. https://code.google.com/
archive/p/wifuzz/.

[12] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Poster:
Iotcube: an automated analysis platform for finding security vul-
nerabilities. In 2017 IEEE Symposium on Poster presented at Security
and Privacy (SP). IEEE, 2017.

[13] CVE-2019-9499. ble from MITRE, CVE-ID CVE-2019-9499., March
2019.

[14] Kiran Jot Singh and Divneet Singh Kapoor. Create your own
internet of things: A survey of IoT platforms. IEEE Consumer
Electronics Magazine, 6(2):57–68, 2017.

[15] Jyh-Cheng Chen, Ming-Chia Jiang, and Yi-wen Liu. Wireless lan
security and ieee 802.11 i. IEEE Wireless Communications, 12(1):27–
36, 2005.

[16] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as Markov chain. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 1032–1043, New York, NY, USA,
2016. ACM.

[17] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury.
Model-based whitebox fuzzing for program binaries. In ASE,
pages 543–553, 2016.

[18] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion:
Grammar-aware greybox fuzzing. In ICSE, 2019.

[19] Serge Gorbunov and Arnold Rosenbloom. AutoFuzz: Automated
network protocol fuzzing framework. IJCSNS, 10(8):239, 2010.

[20] Joshua Pereyda. boofuzz: Network protocol fuzzing for
humans. https://github.com/jtpereyda/boofuzz, April 2017.
https://wpa3.mathyvanhoef.com/.

[21] Mathy Vanhoef, Domien Schepers, and Frank Piessens. Discov-
ering logical vulnerabilities in the Wi-Fi handshake using model-
based testing. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 360–371. ACM, 2017.

[22] Francesco Biscani, Dario Izzo, and Marcus Märtens. esa/pagmo2:
pagmo 2.6, 2017.

[23] Win Hlaing, Somchai Thepphaeng, Varunyou Nontaboot,
Natthanan Tangsunantham, Tanayoot Sangsuwan, and Chaiyod
Pira. Implementation of WiFi-based single phase smart meter for
internet of things (IoT). In 2017 International Electrical Engineering
Congress (iEECON), pages 1–4. IEEE, 2017.

[24] Lakshmana Phaneendra Maguluri, Tumma Srinivasarao, R Ragu-
pathy, Maganti Syamala, and NJ Nalini. Efficient smart emergency
response system for fire hazards using IoT. International Journal of
Advanced Computer Science and Applications (IJACSA), 9(1):314–320,
2018.

[25] Gopinath Muruti, Fiza Abdul Rahim, Md Zawawi, and Nabil
Ahmad. Motion activated security camera using Raspberry Pi: An
IoT solution for room security. Advanced Science Letters, 24(3):1698–
1701, 2018.

[26] Bernard Aboba, L Blunk, J Vollbrecht, James Carlson, and Henrik
Levkowetz. RFC 3748-extensible authentication protocol (EAP).
Network Working Group, 2004.

[27] CVE-2019-12587. Available from MITRE, CVE-ID CVE-2019-
12587., June 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2019-12587.

[28] CVE-2019-12586. Available from MITRE, CVE-ID CVE-2019-
12586., June 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2019-12586.

[29] CVE-2019-12588. Available from MITRE, CVE-ID CVE-2019-
12588., June 2019. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2019-12588.

[30] Manuel Mendonça and Nuno Neves. Fuzzing wi-fi drivers to
locate security vulnerabilities. In 2008 Seventh European Dependable
Computing Conference, pages 110–119. IEEE, 2008.

sweyntooth@gmail.com
sweyntooth@gmail.com
https://code.google.com/archive/p/wifuzz/
https://code.google.com/archive/p/wifuzz/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12587
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12587
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12586
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12586
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12588
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12588


18

[31] Laurent Butti and Julien Tinnes. Discovering and exploiting
802.11 wireless driver vulnerabilities. Journal in Computer Virology,
4(1):25–37, 2008.

[32] Sylvester Keil and Clemens Kolbitsch. Stateful fuzzing of wireless
device drivers in an emulated environment. Black Hat Japan, 2007.

[33] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo,
Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun,
Ronghai Yang, and Kehuan Zhang. Iotfuzzer: Discovering mem-
ory corruptions in iot through app-based fuzzing. In NDSS, 2018.

[34] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han
Lee, Yu Song, and Raheem Beyah. MOPT: optimized mutation
scheduling for fuzzers. In 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,
pages 1949–1966, 2019.

[35] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei
Lin, Yang Liu, and Alwen Tiu. Steelix: program-state based binary
fuzzing. In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, pages 627–637, 2017.

[36] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware evolution-
ary fuzzing. In 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017, 2017.

[37] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem.
Model-based testing iot communication via active automata learn-
ing. In 2017 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2017, Tokyo, Japan, March 13-17,
2017, pages 276–287, 2017.

[38] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang,
and Pili Hu. Model-based security testing: An empirical study on
oauth 2.0 implementations. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, pages 651–662, 2016.

[39] Debiao He, Neeraj Kumar, Huaqun Wang, Lina Wang, Kim-
Kwang Raymond Choo, and Alexey V. Vinel. A provably-secure
cross-domain handshake scheme with symptoms-matching for
mobile healthcare social network. IEEE Trans. Dependable Sec.
Comput., 15(4):633–645, 2018.

[40] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A.
Basin. The TAMARIN prover for the symbolic analysis of security
protocols. In CAV, pages 696–701, 2013.

Matheus E. Garbelini graduated with a bach-
elor of engineering degree in Electronics from
Pontifical Catholic University of Paraná in Brazil.
Currently Matheus is a PhD student at Sin-
gapore University of Technology and Design
(SUTD). His research interests include Wireless
Security, cyber-physical Systems and IoTs and
embedded systems.

Chundong Wang received the Bachelors de-
gree in computer science from Xian Jiaotong
University in 2008, and the Ph.D. degree in com-
puter science from National University of Singa-
pore in 2013. Currently he is an assistant pro-
fessor at ShanghaiTech University. Before join-
ing ShanghaiTech University, he was a research
fellow in Singapore University of Technology and
Design (SUTD). Before joining SUTD, he worked
as a scientist in Data Storage Institute, A*STAR,
Singapore. He has published a number of pa-

pers in IEEE TC, ACM TOS, DAC, DATE, LCTES, USENIX FAST, etc.
His research interests include data storage, non-volatile memory and
computer architecture.

Sudipta Chattopadhyay received the Ph.D. de-
gree in computer science from the National Uni-
versity of Singapore, Singapore, in 2013. He is
an Assistant Professor with the Information Sys-
tems Technology and Design Pillar, Singapore
University of Technology and Design, Singapore.
In his doctoral dissertation, he researched on
Execution-Time Predictability, focusing on Mul-
ticore Platforms. He seeks to understand the in-
fluence of execution platform on critical software
properties, such as performance, energy, robust-

ness, and security. His research interests include program analysis,
embedded systems, and compilers. Mr. Chattopadhyay serves in the
review board of the IEEE Transactions on Software Engineering.


	Introduction
	Background and Protocol Model
	IEEE 802.11i Standard
	Protocol Model

	Overview of Greyhound
	Fuzzing in Greyhound
	Fuzzing Component
	Validation Component

	Evaluation
	Evaluation Setup
	Summary of results
	Description of Anomalies
	Case Study with Automotive Head Units

	Related work
	Threats to Validity
	Conclusion
	References
	Biographies
	Matheus E. Garbelini
	Chundong Wang
	Sudipta Chattopadhyay


