
Isle-Tree: A B+-Tree with Intra-Cache Line Sorted
Leaves for Non-volatile Memory

Chundong Wang
SIST, ShanghaiTech University, China

cd_wang@outlook.com

Sudipta Chattopadhyay
Singapore University of Technology and Design, Singapore

sudipta_chattopadhyay@sutd.edu.sg

Abstract—Byte-addressable non-volatile memory (NVM) is to
reshape computer systems. Researchers have proposed crash-
consistent in-NVM B+-trees with unsorted or sorted nodes to
store key-value (KV) pairs. However, they still yield suboptimal
performance: inserting a KV pair into a sorted node shifts
numerous KV pairs that may cause multiple cache lines to
be flushed, while to search a KV pair in an unsorted node is
inefficient. In this paper, we propose Isle-Tree. Each cache line
of Isle-Tree’s leaf node is sorted while the node is unsorted. For
most insertions/deletions, Isle-Tree flushes only one cache line of
KV pairs. For searches, sorted cache lines help Isle-Tree avoid
unnecessary comparisons. Experiments show that Isle-Tree yields
high performance for all insertions, deletions and searches.

Index Terms—B+-tree, Non-volatile Memory, Key-value Store

I. INTRODUCTION

Emerging byte-addressable non-volatile memories (NVM),
like spin-transfer torque RAM (STT-RAM), 3D XPoint, and
phase change memory (PCM), are poised to radically change
the conventional hierarchy of volatile memory and persistent
storage for computer systems. NVM embraces both DRAM’s
byte-addressability and disk’s persistency. It can be placed on
the memory bus for CPU to directly load and store data.

Several B+-trees have been developed with NVM to build
key-value (KV) stores [1–8]. All of them attempt to guarantee
the crash consistency of KV pairs without incurring much
performance overhead. A system may stop functioning at any
time due to the occurrence of a crash, e.g., power failure.
Given a B+-tree, say, inserting a KV pair when the system
crashes, it shall provide a way to properly recover the tree to
a consistent state, in which all valid KV pairs are reconcilable
and error-free. As CPUs directly operate with NVM, architec-
tural challenges emerges to affect the crash consistency. One of
them is that CPU or memory controller may perform multiple
writes from CPU cache to memory in an order deviating from
the programmed one [9, 10]. Assume that we allocate a B+-
tree node and record its pointer. A reversed order of these two
writes upon a crash would result in a dangling pointer.

Using cache line flush and memory fence retains a writing
order by forcefully flushing data to NVM with explicit mem-
ory barriers, but with non-trivial performance overhead [1, 3,
7, 9, 10]. Worse, NVM generally has slower write speed than
DRAM [11–13]. In-NVM B+-tree variants thus have sought

C. Wang’s work is supported by the ShanghaiTech Startup Funding.

different tactics to reduce the use of cache line flush and
memory fence. On one hand, researchers proposed unsorted
KV pairs in a leaf node to avoid orderly shifting and flushing
KV pairs for insertion and deletion. Examples include NV-
Tree [3] and FPTree [5]. On the other hand, store dependencies
in shifting successive KV pairs of a sorted node impose a
natural writing order, and only dirty cache lines caused by
shifting need to be shifted. FAST-FAIR [7], and Circ-Tree [8]
align with such an approach of sorted leaf nodes.

Though, both approaches have deficiencies. Take a common
insertion that inserts a KV pair into a non-full leaf node for
illustration. For an unsorted node, the new KV pair can be put
in any vacancy of the node. For a sorted node, existing KV
pairs are shifted to vacate the proper position for the new one.
Multiple cache lines are successively modified and flushed
for crash consistency. Concretely, the approach of sorted leaf
nodes yields inferior write (insertion/deletion) performance. To
search a KV pair, the approach of unsorted nodes, however,
is not efficient due to irregular distribution of unsorted keys.

For a crash-consistent in-NVM B+-tree, how to make the
best of a cache line, which is the exchange unit between CPU
and NVM, is critical. Firstly, no matter if a node is sorted or
unsorted, an insertion (resp. deletion) surely causes at least
one cache line, i.e., the one containing the newly-inserted
(resp. deleted) KV pair, to be flushed for crash consistency
and persistency. Secondly, to look up a KV pair with linear
search, which is more efficient than binary search over sorted
KV pairs due to fewer cache misses in large caches [7, 8],
traverses cache line by cache line across a node.

Accordingly, we develop Isle-Tree with novel intra-cache
line sorted leaf nodes. Its main ideas are as follows.
• Isle-Tree maintains a leaf node with multiple cache lines of

KV pairs in a contiguous, cache line-aligned NVM space.
Each cache line of a leaf node is sorted while the entire
node is unsorted (semi-sorted).

• Isle-Tree efficiently handles insertions and deletions with its
novel leaf nodes. Take a common insertion for illustration.
Isle-Tree inserts a new KV pair into a cache line with
vacancies by orderly shifting existing KV pairs inside the
cache line. As a result, only this cache line of KV pairs is
modified and flushed to NVM.

• Isle-Tree uses a linear search with hops to find a key in
its semi-sorted leaf node. It scans from the first key. Given
KV pairs sorted in a cache line, once Isle-Tree encounters a

key that is greater than the target key, it immediately jumps
to the next cache line, i.e., hops. Hops avoid unnecessary
comparisons and improve the utilization of CPU cache.

We have extensively evaluated Isle-Tree. Experiments show
that, to insert 10 million KV pairs, Isle-tree spends 55.0%,
124.3% and 49.1% less time than FAST-FAIR, wB+-tree
and Circ-tree, respectively, while it is faster by 37.0% and
18.9% than NV-tree and FPtree to search 10 million keys,
respectively. An end-to-end test by running YCSB [14] with
KV stores built on these B+-trees shows that Isle-Tree provides
from 22.4% to 36.2% shorter insertion latency.

The rest of this paper is organized as follows. In Section
2, we show the background of NVM. In Section 3, we brief
state-of-the-art in-NVM B+-trees. In Section 4, we describe
the design of Isle-Tree. We present evaluation results of Isle-
tree in Section 6 and conclude the paper in Section 7.

II. BACKGROUND

Computer systems are to benefit from the use of byte-
addressable NVM. Compared to DRAM, NVM generally
has longer write latency but comparable read latency. Crash-
consistent in-memory data management systems, especially in-
NVM KV stores have been built with NVM that is placed on
the memory bus for CPU to directly load and store data [1–8].

It is non-trivial to develop in-NVM data management
systems as architectural challenges emerge for data’s crash
consistency. One is the size of atomic write, i.e., all-or-nothing
written. Conventional disk drives atomically write a sector of
512B. Modern 64-bit CPUs generally support an 8B atomic
memory write. Systems developed for NVM must take into
account such atomic writes to proceed a write transaction.

Another challenge is the reordered writes between CPU and
memory [9, 15]. When writing multiple cache lines to memory,
CPU or memory controller may schedule a different writing
order instead of the programmed one, which is adverse to crash
consistency. Assume we make a new KV pair pointing to an
actual value. The value must be filled before feeding its pointer
to form the KV pair. If these two writes are reversed while a
crash happens, the KV pair refers to an untrustworthy value.
One way to retain a writing order is using cache line flush and
memory fence. Memory fence (e.g., mfence in x86) regulates
that memory accesses after a memory fence cannot proceed
until ones before it complete. Cache line flush instruction
(e.g., clflush in x86) yet explicitly flushes a cache line
to memory. A combination of cache line flush and memory
fence hence attains a desired writing order. Nonetheless, the
cost of using them is high. Optimized cache line flush (e.g.,
clflushopt or clwb in x86) has been provided with
reduced but still non-trivial overhead. Added to this, regarding
the longer write latency of NVM, reducing memory writes to
NVM surely brings in substantial performance gains.

III. STATE OF THE ART AND MOTIVATION

A. Design and Deficiency of In-NVM B+-trees

A B+-tree has multi-level internal nodes (INs) for in-
dexing and one level of leaf nodes (LNs) to record KV

pairs. Among state-of-the-art in-NVM B+-trees, the pioneering
CDDS-Tree [1] conforms to the convention of sorted INs and
LNs. To insert and delete a KV pair, CDDS-Tree shifts KV
pairs to keep keys sorted, with every shifted KV pair flushed.

Yang et al. [3] quantified the high cost of flushing every
shifted KV pair in a sorted LN for insertion/deletion, and
designed NV-Tree with unsorted LNs. For a common insertion,
NV-Tree appends and flushes the new KV pair to the tail of an
LN. More, NV-Tree maintains all INs in a contiguous DRAM
space without consistency. To split any full IN, NV-Tree 1)
asks for a larger contiguous space, and 2) freezes and leverages
LNs to rebuild new non-full INs. Incoming insertions and
deletions are stalled until such a long rebuilding completes.

Searching a key in an unsorted node is inefficient. Chen
and Jin [4] proposed wB+-tree that uses a slot array, in which
the first element records the position of the smallest key, and
so forth. wB+-tree proceeds a search by referencing the slot
array and fetching corresponding keys for comparison; thus,
CPU does two-level indexing. Worse, the slot array must be
updated after every insertion/deletion and wB+-tree flushes
it frequently for crash consistency. Later, Oukid et al. [5]
designed FPTree that employs a fingerprint (1B hash value) for
an unsorted key. Searching a key converts to a primary search
of fingerprints. However, using fingerprints is ineffectual in
practice. Every insertion/search/deletion demands a hash cal-
culation that inflicts extra computation time. The collision
of 1B hash values is inevitable and requires a double check
over keys, thereby incurring cache misses and comparisons.
Moreover, although fingerprints can be recalculated after a
crash, FPTree flushes them to NVM for crash consistency.

Later Hwang et al. [7] revealed that store dependencies
exist in successively shifting KV pairs to retain a sorted
node, i.e., {KVi → KVi+1,KVi−1 → KVi, ...}, imposing
a natural writing order. They designed FAST-FAIR that only
flushes dirty cache lines since the order inside a cache line
is retained by store dependencies. For an insertion/deletion,
FAST-FAIR flushes less frequently than CDDS-Tree, but still
flushes multiple cache lines generally.

Recently, Wang et al. [8] discovered that shifting KV pairs
in a sorted B+-tree node is unidirectional, e.g., to the right for
insertion and left for deletion. They proposed Circ-Tree with
a circular LN in which KV pairs are bidirectionally shifted.
For an insertion or deletion, Circ-tree shifts KV pairs to the
direction that involves fewer KV pairs. Compared to FAST-
FAIR, Circ-tree significantly reduces the number of shifted
KV pairs and dirty cache lines flushed to NVM.

B. Motivational Study

With unsorted or sorted LNs, state-of-the-art in-NVM B+-
tree variants have respective designs and deficiencies. Gener-
ally, unsorted LN provides incompetent search performance
even with accelerating tactics. Despite providing good search
performance with sorted KV pairs, FAST-FAIR and Circ-Tree
need to shift KV pairs for insertion and deletion, which is
likely to cause multiple cache lines to be modified and flushed.
In the worst case, FAST-FAIR flushes all cache lines of an LN

10
a

14
g

15
d

20
b

25
c null %# %#

0 1 2 3 4 5 6 7

12
f

One cache line

Insert

4 KV pairs and one sentinel null pointer to
be shifted with both cache lines involved

10
a

12
f

14
g

15
d

20
b

25
c null %#

0 1 2 3 4 5 6 7

null: null pointer
%#: garbage pointer

(a) Insertion with sorted LN

10
a

20
b

25
c

15
d

14
g %# %# %#

0 1 2 3 4 5 6 7

10
a

20
b

25
c

15
d

14
g

12
f %# %#

0 1 2 3 4 5 6 7

A vacant position
to be inserted

12
f

Insert
null: null pointer
%#: garbage pointer

(b) Insertion with unsorted LN
Fig. 1: A Common Insertion with Sorted and Unsorted LNs

10
a

12
f

14
g

15
d

20
b

25
c null %#

0 1 2 3 4 5 6 7

10 < 14
12 < 14 Found

(a) Search with sorted LN

10
a

20
b

25
c

15
d

14
g

12
f %# %#

0 1 2 3 4 5 6 7

10≠14
20≠14 25≠14 15≠14

Found

(b) Search with unsorted LN
Fig. 2: A Search with Sorted and Unsorted LNs

while Circ-Tree flushes half. Frequent cache line flushes lead
to low cache efficiency and in turn inferior performance.

Figure 1 and Figure 2 show how an insertion and a search
are handled with sorted and unsorted nodes, respectively. We
assume four KV pairs take up one cache line. On inserting a
new KV pair 〈12, f〉 into the sorted one shown in Figure 1a,
four existing KV pairs have to be shifted to maintain keys
in ascending order with two cache lines successively flushed.
Regarding the unsorted node shown in Figure 1b, the new KV
pair can be inserted to any vacancy with one cache line flushed.
Thus, for common insertions, the performance of unsorted
nodes is higher than that of sorted nodes in which multiple
cache lines may be flushed due to shifting sorted KV pairs.

Linear search, when running on CPUs with large caches,
is faster than binary search with a sorted node as the latter
has more cache misses [7, 8]. In Figure 2a and Figure 2b, we
search the key 14 with linear search over sorted and unsorted
nodes. The ascending order of keys helps CPU train its branch
prediction. In Figure 2b, the target key may stay anywhere in
an unsorted node. It is unavoidable to compare many keys
before finding the target one. For instance, four comparisons
in the first cache line cannot be skipped.

No matter if a node is sorted or unsorted, at least one
cache line that contains the key to be inserted/deleted must
be flushed. Meanwhile, sorted KV pairs facilitate searching.
We find that, the cache line, as the exchange unit between
CPU and NVM, is a critical factor. CPU loads KV pairs in
the granularity of cache line and writes them back with a
cache line flush. To keep one cache line sorted by shifting
few KV pairs is not costly and only flushes that cache line
to NVM. Meanwhile, searching a target key in a sorted cache
line can avoid unnecessary comparisons once a greater key
is encountered. Concretely, we design a B+-tree with intra-
cache line sorted leaf nodes (Isle-Tree). In a nutshell, an LN
of Isle-Tree is semi-sorted as each cache line of it is sorted.

Root

… …9… …

LNs

INs

KV Pairs

LN
Header

One cache line

10
c

14
d

15
e

26
f

12
g

20
h

18
a

34
b

One cache line One cache line

Counters
Right sibling
pointer

2 4 2 0

One cache line

8

IN Header

No. of
keys

Lock array

Fig. 3: An Illustration of Isle-Tree and Its Leaf Node

IV. DESIGN OF ISLE-TREE

A. Overview

Figure 3 captures an in-NVM Isle-Tree with intra-cache
line sorted LNs and sorted INs as well as one example LN.
LN: An LN of Isle-Tree occupies a contiguous NVM space
that is cache line-aligned and partitioned into multiple cache
lines. An LN has a header at its first cache line and an array of
KV pairs that form the LN’s main body. KV pairs are sorted
in each cache line while an LN is unsorted (semi-sorted).
KV Pairs: A value is a pointer (8B memory address) pointing
to an actual value. As to the key, we use an 8B integer as
a key for illustration. Like previous works [5, 7], we assume
that there are no duplicate keys. As a KV pair contains 16B,
a typical cache line in 64B holds four KV pairs.
LN Header: As shown by Figure 3, in an header, there are
1) an array of counters, each of which has 1B, to record the

number of valid KV pairs in each cache line of the LN,
2) a sibling pointer that connects to the right sibling LN so

as to make an LN linked list.
Isle-Tree requires that an LN header at most takes up one
cache line. The 8B sibling pointer points to right sibling LN.
1B (0–255) is sufficient for each counter. Both a sibling pointer
and a counter can be atomically changed through 8B atomic
write. Isle-Tree only includes the array of counters and sibling
pointer in the header and enforces crash consistency to them
because they are essential in crash recovery (cf. Section IV-F).
Operations: Isle-Tree aims to service insertions, searches,
and deletions with high cache efficiency and in turn high
performance. In brief, on inserting a KV pair to a non-full
LN, Isle-Tree finds a cache line with a vacant position by
referencing the array of counters and shifts KV pairs in that
cache line to retain the ascending order. By doing so, Isle-Tree
involves and flushes at most one cache line of KV pairs.

Inserting a KV pair to a full LN triggers a split. It is easy
for Isle-Tree to separate greater half KV pairs from small ones
in sorted cache lines and proceed the split. To delete a KV
pair, Isle-Tree writes off it by shifting KV pairs inside the
cache line where the KV pair is found. To look up or update
a KV pair, Isle-Tree applies a linear search with hops to avoid
unnecessary comparisons in each sorted cache line.
IN: INs of Isle-Tree are standard B+-tree nodes with sorted
keys and values that are pointers pointing to children INs or
LNs. As shown in Figure 3, the number of values in an IN

Search key 12

34
b

10
c

14
d

15
e

26
f

12
g

20
h

18
a

2nd cache line 3rd cache line

12 < 18 12 > 10 Found1 2 12 < 143

1st cache line

Header

Fig. 4: An Illustration of Isle Searching Key 12

is one greater than the number of keys. An IN of Isle-Tree
also has a header that includes metadata like the number of
valid keys and an array of locks. Each lock is used to control
multi-threading access to a corresponding child IN or LN (cf.
Section IV-E). INs can be maintained in NVM [7] or DRAM
as they can be reconstructed from LNs [3, 5].

B. Search and Update

A search with a key starts from the root of Isle-Tree until
one LN is reached. Isle-Tree applies a linear search with hops
onto such a semi-sorted LN. Figure 4 exemplifies how Isle-
Tree scans the LN from Figure 3 upon searching a key 12. It
initiates the scan from the first KV pair. Given KV pairs sorted
in each cache line, after one comparison to a greater key (1),
Isle-Tree deems that key 12 cannot be in the current cache line.
So Isle-Tree jumps overs the remaining KV pair. It resumes the
scan at the beginning of the second cache line. After two more
comparisons (2 and 3), it jumps again to the third cache line.
Next it finds the key 12 and obtains the corresponding value f .
To sum up, by leveraging the intra-cache line sorted KV pairs,
Isle-Tree avoids unnecessary comparisons with hops, thereby
improving the utilization of CPU cache lines.

An update operation is a search operation plus a substitute
of value pointer. After storing the updated actual value into
NVM, Isle-Tree uses the new pointer to replace the original
one through an 8B atomic write followed by cache line flush
and memory fence. Both search and update do not change the
metadata in an LN header.

C. Insertion

Common Insertions: Algorithm 1 illustrates the insertion
procedure of Isle-Tree. Before inserting, Isle-Tree calls its
linear search with the newly-arrived KV pair 〈k, v〉 until it
reaches the target LN with a header h. Isle-Tree then checks
if the LN is full (Line 2). If so, it splits the LN (Line 3).
Otherwise, Isle-Tree proceeds the insertion with this LN.

By referring to the array of counters, Isle-Tree gets a non-
full cache line and the leftmost vacant position in the cache
line (ξ and p at Line 7, and p is a local index inside cache line
ξ, i.e., 0 ≤ p < CL_Limit(ξ)). Then, Isle-Tree starts shifting
KV pairs that are with greater keys than k inside the cache
line (Lines 8 to 14). Isle-Tree leverages a property of B+-
tree in shifting KV pairs, i.e., a normal B+-tree node has no
duplicate pointers [7, 8]. In particular, to shift one KV pair,
Isle-Tree first shifts the key to the right and then the value.
By doing so, duplicate pointers correspond to the same key,
thereby ruling out ambiguity in case of a crash.

The new k may be the new greatest key (for loop not
executed), or the cache line is vacant (p is 0 and i is −1). In
this sense, Isle-Tree adjusts the position where 〈k, v〉 should

Algorithm 1 Insertion of Isle-Tree (Insert(h, 〈k, v〉)
Input: A KV pair 〈k, v〉 and an LN’s header h //Isle-Tree first searches

out a target LN that is with a header h and an array of KV pairs KV
Output: A completion of inserting 〈k, v〉

1: //LN_Limit: the max number of KV pairs held by an LN.
2: if (sum (h.counters)≥ LN_Limit) then
3: return Split(h, 〈k, v〉);
4: else
5: //ξ is a sub-array of KV and fitted in a non-full cache line.
6: //p is the leftmost vacancy of ξ. 0 ≤ p < CL_Limit(ξ)

(CL_Limit(ξ): the max number of KV pairs held by ξ).
7: (ξ, p) := get_cacheline_vacancy(h.counters, KV);
8: for (i := p− 1; i ≥ 0; i := i− 1) do
9: if (ξ[i].key > k)) then

10: ξ[i+ 1].key = ξ[i].key; ξ[i+ 1].val = ξ[i].val;
11: else
12: break;
13: end if
14: end for
15: i := (i == (p− 1)) ? p : (i+ 1);
16: ξ[i].key = k; ξ[i].val = v;
17: clflush_with_mfence(&(ξ[i]));
18: atomic_increase(h.counters, ξ);
19: clflush_with_mfence(h.counters);
20: return the completion of inserting 〈k, v〉;
21: end if

be placed (Line 15). Next, Isle-Tree stores and flushes 〈k, v〉
to NVM (Lines 16 to 17). Before returning the completion of
inserting 〈k, v〉, Isle-Tree atomically increases and flushes the
counter corresponding to cache line ξ (Lines 18 to 20).

Figure 5 shows two insertion examples, of which each cache
line is still assumed to hold four KV pairs. In Figure 5a, after
scanning, the left most vacant position, i.e., p, is 2 (1). No
KV pair is shifted (2) as the key to be inserted is the new
greatest of the cache line. Isle-Tree just appends the new KV
pair into the leftmost vacancy (3 and 4). In another example
shown by Figure 5b, initially p is 3 (1) and the for loop shifts
one KV pair (2 and 3). After Isle-Tree encounters the first
smaller key, i.e., 20 (4), it moves i back (5) and inserts and
flushes the new KV pair there (6).

Split: Inserting a KV pair to a full LN triggers a split. Figure 6
illustrates how Isle-Trees does so. In short, it asks for two
zero-initialized LNs and orderly copies two halves of KV
pairs into them, respectively. By atomically changing sibling
pointers, the two LNs substitute the orignal full LN. Note that
with intra-sorted cache lines, Isle-Tree efficiently separates KV
pairs by scanning from the tail of each cache line to find the
greater half. Moreover, Isle-Tree flushes both LNs in a batch
way, i.e., flushing contiguous cache lines only with beginning
and ending memory fences instead of flushing them one by
one [1, 3]. Isle-Tree updates the parental IN with the split key
(the last copied key of the greater half) and two new LNs. In
the end, it inserts the newly-arrived KV pair into either LN,
regarding if the new key is greater than the split key.

Note that Isle-Tree uses null (zero) pointers as boundaries
to identify valid KV pairs. Assume that no null pointer exists
as a boundary in a cache line of LN, and a crash happens after

10
a

20
b

0 1 2 3

<25, c>

p = 2

i ß p-1, i = 12

1

i = p - 1

10
a

20
b

25
c

0 1 2 3

3 i ß p, i = 2

4 <25, c> inserted to 2nd

(a) Insertion with new greatest key

15
d

20
b

26
e

0 1 2 3

<22, f>

p = 3

i ß p – 1, i = 22

1

15
d

20
b

26
e

26
e

0 1 2 3

3 <26, e> shifted to the right

4 i ßi – 1, i = 1

26 > 22 20 < 22

15
d

20
b

22
f

26
e

0 1 2 3
5 i ß i + 1, i = 2

6 <22, f> put into i-th (2nd)

(b) Insertion with shifting KV pairs

Fig. 5: An Illustration of Isle-Tree Handling Common Insertion in One Cache Line of an LN

15
d

20
b

22
e

25
c

0 1 2 3

10
a

12
f

14
g

21
h

4 5 6 7

20
b

21
h

22
e

25
c

0 1 2 3 4 5 6 7

Right
sibling

Full LN to
insert <36, x>

New Sibling

keymax= 251

keymax= 222

keymax= 20 (split key)4

keymax= 213

Right
sibling

Set counters and right sibling
pointer, and flush half node

5

0

Set Ꝑ = {7, 3, 2, 1}6

(a) Split (Part 1)

15
d

20
b

22
e

25
c

0 1 2 3

10
a

12
f

14
g

21
h

4 5 6 7

20
b

21
h

22
e

25
c

1 2 3

36
x

4 5 6 7 Right
sibling

7

Update parental IN of original LN with split key (20), new LN,
and new sibling. Then Insert <36, x> into new sibling.

10

New Sibling

Original LN

0 1 2 3 4 5 6 7

New LN

0

10
a

12
f

14
g

15
d

8 Set sibling pointer of new LN pointing to new sibling, and flush half node

Replace the original LN with new LN by changing its left sibling’s sibling pointer

For smaller keys not in Ꝑ, move them to
a new LN, and set counters

9

(b) Split (Part 2)

Fig. 6: An Illustration of Isle-Tree Handling Insertion with Split

inserting a new KV pair but before the atomic increase of the
counter. In recovery, it is impossible to determine if the counter
was increased or not, thereby leaving an unreliable cache line.
With a null pointer at each cache line, the recoverability is
surely guaranteed (cf. Section IV-F). In a split, Isle-Tree may
copy and remove KV pairs from all cache lines. If Isle-Tree
insists on keeping the original LN, it must place null pointers
in all cache lines and flush them one by one. Such consistency
cost is substantial. Comparatively, the way Isle-Tree asks for a
zeroed LN and moves remaining KV pairs with a batch flush
causes much less performance overhead, and the atomic write
to change the sibling pointer rules out inconsistency. Isle-Tree
can rely on NVM libraries [16] to provide functions similar
to classic calloc to allocate zeroed NVM memory space or
maintain its own pool of zeroed LNs.

D. Deletion

Due to the space limitation, we brief major steps of Isle-
Tree’s deletion. If the KV pair to be deleted is with the greatest
key of a cache line, Isle-Tree clears the value to be null as a
new boundary. Otherwise, Isle-Tree shifts KV pairs to write
it off. Isle-Tree starts shifting the target KV pair’s immediate
right KV pair in the order of value and then key, and so forth,
until the KV pair with the greatest key is shifted. Then Isle-
Tree zeros the value at the original position of the greatest key
to set a new boundary. After flushing the cache line, Isle-Tree
atomically decreases and flushes the corresponding counter.

LNs with more than half KV pairs deleted become un-
derutilized. To promote space utilization, Isle-Tree merges
underutilized sibling LNs with the same parental IN. To merge
LNs, say, A and B, Isle-Tree allocates a zero-initialized new
LN, and orderly moves KV pairs from A and B into the new
LN. It then sets counters and makes the new LN’s sibling
pointer link to B’s right sibling. Isle-Tree flushes the new

LN in a batch fashion, and atomically replaces the sibling
pointer of A’s left sibling. By doing, A and B are detached
and recycled while the new LN substitutes them. The parental
IN is updated as two KV pairs for A and B are reduced to
one, i.e., the new LN. Isle-Tree does not move KV pairs from
A to B or B to A because each move is an actual insertion
that requires cache line flushes and memory fences. Flushing
a new LN in a batch takes less time.

E. Multi-threading Insertion/Deletion/Search
Isle-Tree enables multi-threading with a lock array incor-

porated in an IN’s header (cf. Figure 3). A lock held by a
thread makes other threads wait until the lock is released. In
addition, a thread may trigger a split (resp. merge) that adds
(resp. removes) a KV pair with the current-level IN. The next
thread that seizes a released lock must check if the lower-level
IN or LN it has intended to access is still the proper one.
The thread compares the key it takes to immediate left and
right keys in the current-level IN. For example, if a split has
occurred, this thread’s key may be greater than the immediate
right key (newly-added split key), so the thread moves by one
to the right lower-level IN or LN to proceed its operation.

F. Recovery
Isle-Tree focuses on recovering LNs because INs can be

rebuilt from LNs [3, 5]. By default, Isle-Tree places INs in
NVM with crash consistency. It can maintain a flag to mark a
normal shutdown [5, 8]. Such a flag is set at startup and reset
at normal exit. A crash prevents the flag from being reset.
When Isle-tree enters recovery, it first traverses the LN linked
list. In an LN, a cache line is consistent if its counter and the
number of non-null values are equal, and it has no duplicate
value. Scenarios for an inconsistent cache line are as follows.
• The counter is one less than the number of non-null values

and there is no duplicate value. So a crash happened after

0

0.5

1

1.5

2

2.5

3

1 10 100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Number of KV Pairs (Million)

NV-Tree FPTree wB+-tree FAST-FAIR
Circ-Tree Isle_all Isle-Tree

(a) Average insertion time

0

1

2

3

4

5

6

7

NV-Tree FPTree wB+-tree FAST-FAIR Circ-Tree Isle_all Isle-Tree

Th
e

N
o.

 o
f f

lu
sh

ed
 c

ac
he

 li
ne

s
x

10
00

00
00

B+-tree variants

(b) clflushopt executed (10 million)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 10 100

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Number of KV pairs (million)

NV-Tree FPTree wB+-tree
FAST-FAIR Circ-Tree Isle_all
Isle-Tree

(c) Average search time
Fig. 7: A Comparison among Seven B+-tree Variants for Insertion and Search

Isle-Tree had shifted KV pairs and inserted a new one, but
before the atomic increase of the counter. Isle-Tree just
increases the counter for the cache line.

• The counter is one less than the number of non-null values
and there is a duplicate value. A crash happened when Isle-
Tree was shifting KV pairs to the right for an insertion. Isle-
Tree shifts KV pairs to the left from the rightmost non-null
KV pair until the one with the greatest key. It then zeros
the rightmost non-null value for a boundary.

• The counter is one greater than the number of non-null
values and there is no duplicate value. This means a crash
happened after Isle-Tree had shifted KV pairs and set null
pointer to delete a KV pair, but before the atomic decrease
of the counter. Isle-Tree just decreases the counter.

• The counter is the same as the number of non-null values
but there is a duplicate value. A crash occurred when Isle-
Tree was shifting KV pairs to delete a KV pair. Isle-Tree
shifts KV pairs to the left from the right KV pair with the
duplicate value until all non-null KV pairs are shifted. It
then zeros the rightmost non-null value and decreases the
counter to finish the deletion.

Split and merge have no impact to the consistency of LNs.
Both operations are a replacement by atomically changing
some left sibling LN’s sibling pointer. Before the replacement,
Isle-Tree is with original consistent LN(s). After the replace-
ment, Isle-Tree is with newly-constructed consistent LN(s).
After a split (resp. merge), a KV pair should be inserted (resp.
deleted) with the parental IN. Given INs enforced consistency
in NVM, a crash may make the parental IN inconsistent
with one more or less KV pairs, or with duplicate pointers.
Such inconsistencies can be fixed by checking between each
parental IN and its children LNs (or INs).

V. EVALUATION

A. Evaluation Setup

Platforms: We used a machine with an Intel Core i7-7700 CPU
(256KB/1MB/8MB L1/L2/L3 cache and 64B cache line) and
64GB DRAM for evaluation. Ubuntu 18.04.1 and GCC/G++
7.4.0 were installed. The instructions for cache line flush and
memory fence are clflushopt and sfence. We used a
part of DRAM space and set the write latency of emulated
NVM to be 300ns regarding asymmetrical write/read of NVM.
Implementations: We have implemented two variants of Isle-
Tree: Isle_all maintains INs and LNs in NVM with consistency
while Isle-Tree only keeps LNs in NVM. We downloaded
the source code of FAST-FAIR and implemented NV-Tree,

FPTree, wB+-tree (with both slot array and bitmap [4]) and
Circ-Tree. Overall we have seven B+-tree variants.
Testing Methodology: We first tested standalone B+-tree vari-
ants with 8B/8B KV pairs. Then we built prototyping KV store
systems with them and ran YCSB [14] that inserts, searches,
and updates an actual value for each key with a configurable
number of clients. We set the default node size to be 512B.
The main performance metric is the average execution time.

B. Evaluation of Standalone B+-Trees

Insertion Performance: We have inserted 1/10/100 million
KV pairs. The keys follow a uniform distribution. As shown
in Figure 7a, Isle_all and Isle-Tree consistently outperform
state-of-the-art B+-tree variants with varying KV pairs in-
serted. For example, on inserting 10 million KV pairs, the
average execution time of NV-Tree, FPTree, wB+-tree, FAST-
FAIR, and Circ-Tree is 11.6%, 41.0%, 124.3%, 55.0%, and
49.1% more than that of Isle-Tree, respectively.

Isle-Tree attempts to reduce memory writes to NVM by
flushing less data. We have recorded the overall numbers of
clflushopt executed at runtime for seven B+-tree variants
when each of them was inserting 10 million KV pairs. Isle-
Tree mostly calls clflushopt twice, i.e., one for the cache
line of KV pairs and the other one for the LN header. For
FAST-FAIR and Circ-Tree, they shift KV pairs to keep LNs
sorted, which may involve multiple cache lines to be modified
and flushed. As shown in Figure 7b, they executed 109.2%
and 53.2% more clflushopt than Isle-Tree.

By appending a newly-arrived KV pair to the tail of an
LN, NV-Tree only flushes the involved tail cache line as well
as the LN metadata. As illustrated in Figure 7b, NV-Tree
flushes almost the same cache lines as Isle-Tree. Though, NV-
Tree still yields lower performance than Isle-Tree. The reason
is, when any IN becomes full, NV-Tree stalls all incoming
requests until it finishes rebuilding INs from scratch [3]. In
addition, for every common insertion, FPTree executes one
extra clflushopt to flush the fingerprint of inserted key [5].
Thus, FPTree yields worse performance than Isle-Tree due to
calling 44.0% more cache line flushes.

The performance gap between Isle-Tree and wB+-tree is
due to their respective designs. As mentioned in Section III-A,
wB+-tree uses a slot array to maintain ascending order of keys
in a node. It also has a bitmap to indicate the availability
of positions in each node. wB+-tree updates and flushes
both structures for every insertion to track unsorted KV
pairs. For an insertion without split, wB+-tree calls at least

0

0.2

0.4

0.6

0.8

1

1.2

NV‐Tree wB+‐tree FPTree FAST‐FAIR Circ‐Tree Isle_all Isle‐Tree

Pe
rc
en

ta
ge
 (1

00
%
)

B+‐tree variants

Common Split

(a) Breakdown of common insertions (com-
mon) and insertions with split (split)

0

1

2

3

4

5

512B 1KB 2KB 512B 1KB 2KB

Insert Search

Av
er
ag
e
Ex
ec
ut
io
n
Ti
m
e
(u
s)

Operations with Different Node Sizes

NV‐Tree wB+‐tree FAST‐FAIR
Circ‐Tree Isle_all Isle‐Tree

(b) Three node sizes

0
0.5
1

1.5
2

2.5
3

3.5
4

NVDIMM 100ns 200ns 300ns 400ns 500ns 600ns

Av
er
ag
e
Ex
ec
ut
io
n
Ti
m
e
(u
s)

NVM write latency

NV‐Tree FPTree wB+‐tree FAST‐FAIR
Circ‐Tree Isle_all Isle‐Tree

(c) NVM latencies

Fig. 8: The Breakdown of Insertions and the Impact of Node Size and NVM Latencies

four clflushopts [4, 7]. Comparatively, Isle-Tree calls two
clflushopts for a common insertion. For splits, wB+-tree
employs and flushes redo log for slot array and bitmap besides
copying KV pairs. Figure 7b confirms that the number of
clflushopts used by wB+-tree is 2.6× that of Isle-Tree.
Search Performance: Figure 7c shows the average search
time of seven B+-trees. All of them employ the linear search.
Nonetheless, the search performance of NV-Tree, FPTree,
wB+-tree and Circ-Tree is inferior. They spent 37.0%, 18.9%,
23.0% and 18.3% more time, respectively, than Isle-Tree in
searching 10 million keys. NV-Tree has to scan unsorted KV
pairs which disfavors CPU’s branch prediction. FPTree, de-
spite leveraging fingerprints to probe where the key should be,
calculates the fingerprint for every search and incur additional
time cost. Worse, the 1B fingerprint is prone to collisions
which entail cache misses for loading and comparing actual
keys to double check. For wB+-tree, the slot array of a node
presents the ascending order of keys. However, the slot array
is an indirect index and keys are still scattered across cache
lines. Following the slot array to orderly check keys exhibits
irregular accesses of cache lines, which are not favored
by CPU’s prefetcher and branch predictor. Comparatively,
Isle-Tree sequentially accesses cache lines of a node with
avoidance of unnecessary comparisons. As a result, Isle-Tree
outperforms wB+-tree with higher search performance.

As to Circ-Tree, its circular LN usually makes sorted LNs
discontinuous in two segments. Every search with Circ-Tree
starts with deciding which segment to be scanned, and CPU
needs to do a branch prediction. Comparatively, FAST-FAIR
and Isle-Tree scan from the first KV pair and facilitate CPU
to prefetch successive cache lines. The linear search with hops
of Isle-Tree helps it skip greater KV pairs and leave a cache
line as early as possible, thereby improving the utilization of
cache lines. Isle-Tree hence yields high search performance.
Breakdown of Insertions: We have further analyzed the
insertion performance by separately recording the average
execution time for common insertions and insertions with
split. A 512B LN can accommodate at most 32 KV pairs
(512
8+8) regardless of LN metadata, so approximately every 32

common insertions trigger an insertion with split. Hence, the
execution time of common insertions theoretically dominates
the overall execution time. That is the reason why Isle-Tree
tries to complete every common insertion with one cache line
of KV pairs to be flushed. Figure 8a gives the percentage
breakdown of two types of insertions in the overall execution

time for each B+-tree variant. In Figure 8a, the percentage
of insertions with split is around 20% of overall execution
time except for NV-Tree due to its stalling incoming insertions
to rebuild INs. These results quantitatively justify Isle-Tree’s
strategy in reducing memory writes for common insertions.

C. The Impact of Node Size and NVM Latency

Node Sizes: We have configured two greater node sizes (1KB
and 2KB) for B+-tree variants excluding FPTree because a
greater node’s metadata cannot be fitted in one cache line for
FPTree. Figure 8b shows the performance of six B+-trees
inserting and searching 10 million KV pairs. The insertion
performance of NV-Tree, Isle_all, and Isle-Tree does not
fluctuate with varying node sizes. Isle-Tree inserts KV pairs
at the cache line level. It is unaffected by the change of node
size. Comparatively, the insertion performance of wB+-tree,
FAST-FAIR and Circ-Tree badly degrades with greater nodes.
For them, shifting KV pairs in a greater node is likely to cause
more cache lines of the node to be modified and flushed. For
wB+-tree, a greater node contains a longer slot array, which
demands more clflushopts for updating with regard to the
insertion algorithm of wB+-tree [4]. On the other hand, when
searching KV pairs in greater nodes, Isle-Tree still outperforms
NV-Tree, being comparable to FAST-FAIR and Circ-Tree.
NVM Latencies: The default write latency of NVM used in
evaluation was 300ns. We also configured varying write laten-
cies from 0 (identical to NVDIMM [3]) to 600ns. Figure 8c
presents the average execution time to insert 10 million KV
pairs with seven NVM latencies. A longer latency degrades
performance of all B+-trees; however, the gaps between Isle-
Tree and others become wider. For example, from NVDIMM
to 600ns, the difference between Isle-Tree and FAST-FAIR
rises from 20.0% to 70.8%. This is because Isle-Tree aims to
reduce memory writes to NVM by flushing less data. With
slower NVM technologies, the effect of reducing memory
writes becomes more significant.

D. End-to-End Evaluation with KV Stores

To evaluate the applicability and multi-threading of Isle-
Tree in real-world environments, we have built prototyping KV
store systems with each B+-tree variant as the index structure
and exported interfaces to answer requests issued by YCSB’s
concurrent clients. Due to the space limitation, we show results
of running YCSB’s workloada (‘SessionStore’) with six B+-
trees except wB+-tree. With workloada, YCSB first inserted 1
million KV pairs, each of which contains a string key and an

0

2

4

6

8

10

12

14

1 2 4 8

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (u

s)

Number of Clients

NV-tree FPTree FAST-FAIR Circ-tree Isle_all Isle-tree

(a) Insertion

0

1

2

3

4

5

1 2 4 8

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (u

s)

Number of Clients

NV-tree FPTree FAST-FAIR Circ-tree Isle_all Isle-tree

(b) Search

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 4 8

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (u

s)

Number of Clients

NV-tree FPTree FAST-FAIR Circ-tree Isle_all Isle-tree

(c) Update
Fig. 9: The 99p Latencies of Insertion, Search and Update with Prototyping KV Stores

actual string value; then YCSB searched and updated stored
KV pairs in 1 million requests with a ratio of 50%/50%. We
ran YCSB with 1, 2, 4, and 8 clients to impose concurrent
write/read to every prototyping KV store system. YCSB
reported several latencies as the end-to-end performance. In
order to rule out biases of abnormal response time caused by
factors like software scheduling and network disturbance, we
chose the 99th percentile (99p) latency, which means that 99%
insertion/search/update requests can be satisfied within such a
latency. The three diagrams in Figure 9 correspond to the 99p
latencies for insertion, search, and update, respectively.

From Figure 9a, we can observe that with varying clients,
Isle-Tree consistently outperforms other B+-tree variants. Take
4 clients for example. The 99p latency of Isle-Tree is 33.1%,
27.7%, 36.2%, 22.4% shorter than that of NV-Tree, FPTree,
FAST-FAIR, and Circ-Tree, respectively. Therefore, storing
actual values through Isle-Tree dramatically benefits from Isle-
Tree’s reducing memory writes to NVM and improving cache
efficiency, because an actual value also relies on CPU to persist
it into NVM through CPU cache. On the other hand, with
more and more clients, all B+-tree variants require longer
latencies to process insertion requests due to the contention
among multiple threads. In addition, the bars of NV-Tree and
FAST-FAIR in Figure 9a differ from those in Figure 7a. The
average execution time in Figure 7a contains biases to shorter
insertion latencies, while 99p latency can be viewed as the
latency ranked as the 99% longest one of all insertions. At that
point, NV-Tree and FAST-FAIR must heavily do rebuilding
and shift KV pairs across all cache lines of an LN, respectively.

For search and update, each B+-tree variant first locates a
KV pair by searching and fetches the actual value or updates a
part of it, respectively. Reading the actual value and partially
replacing it cost the most time for search and update, respec-
tively, and the search process through an indexing B+-tree does
not affect much. That explains why Isle-Tree achieves similar
or a bit higher search and update performance compared to
other B+-tree variants in Figure 9b and Figure 9c.

VI. CONCLUSION

In this paper, we propose Isle-Tree that handles most
insertions and deletions by flushing only one cache line of
KV pairs. The split and merge of Isle-Tree are made in a
replacement fashion. Isle-Tree also employs a linear scan with
hops to avoid unnecessary comparisons. Extensive experiments
with standalone B+-trees and prototyping KV stores confirm
that Isle-Tree yields both high write and read performance.

REFERENCES

[1] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” in Proceedings of the 9th USENIX Conference on File and
Stroage Technologies, ser. FAST’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 1–15.

[2] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in 5th Biennial Conference on Innovative
Data Systems Research (CIDR ’11), January 2011, pp. 1–11.

[3] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “NV-
Tree: Reducing consistency cost for NVM-based single level systems,”
in 13th USENIX Conference on File and Storage Technologies (FAST
15). Santa Clara, CA: USENIX, 2015, pp. 167–181.

[4] S. Chen and Q. Jin, “Persistent B+-trees in non-volatile main memory,”
Proc. VLDB Endow., vol. 8, no. 7, pp. 786–797, Feb. 2015.

[5] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “FPTree:
A hybrid SCM-DRAM persistent and concurrent B-Tree for storage
class memory,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
ACM, 2016, pp. 371–386.

[6] P. Chi, W. Lee, and Y. Xie, “Adapting B+ -tree for emerging nonvolatile
memory-based main memory,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1461–1474,
Sep. 2016.

[7] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent B+-Tree,” in 16th USENIX
Conference on File and Storage Technologies (FAST 18). Oakland, CA:
USENIX Association, 2018, pp. 187–200.

[8] C. Wang, G. Brihadiswarn, X. Jiang, and S. Chattopadhyay, “Circ-tree:
A B+-Tree variant with circular design for persistent memory,” https:
//arxiv.org/abs/1912.09783, 2019.

[9] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering consistency for
persistent memory,” in Computer Design (ICCD), 2014 32nd IEEE
International Conference on, Oct 2014, pp. 216–223.

[10] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM:
Enabling software-transparent crash consistency in persistent memory
systems,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec 2015, pp. 672–685.

[11] J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” in 14th USENIX Conference on
File and Storage Technologies (FAST 16). Santa Clara, CA: USENIX
Association, Feb. 2016, pp. 323–338.

[12] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-volatile
main memory,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA: ACM,
2016, pp. 12:1–12:16.

[13] S. Kannan, N. Bhat, A. Gavrilovska, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Redesigning lsms for nonvolatile memory with NoveLSM,”
in Proceedings of the 2018 USENIX Conference on Usenix Annual Tech-
nical Conference, ser. USENIX ATC ’18. USA: USENIX Association,
2018, p. 993–1005.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154.

[15] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“iDO: Compiler-directed failure atomicity for nonvolatile memory,” in
Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-51. IEEE Press, 2018, p. 258–270.

[16] Intel, “Persistent memory development kit,” http://pmem.io/pmdk/.

https://arxiv.org/abs/1912.09783
https://arxiv.org/abs/1912.09783

	Introduction
	Background
	State of the art and Motivation
	Design and Deficiency of In-NVM B+-trees
	Motivational Study

	Design of Isle-Tree
	Overview
	Search and Update
	Insertion
	Deletion
	Multi-threading Insertion/Deletion/Search
	Recovery

	Evaluation
	Evaluation Setup
	Evaluation of Standalone B+-Trees
	The Impact of Node Size and NVM Latency
	End-to-End Evaluation with KV Stores

	Conclusion
	References

