
Distribution-aware Fairness Test Generation
Sai Sathiesh Rajana,∗, Ezekiel Soremekunb, Yves Le Traonc and Sudipta Chattopadhyaya

aSingapore University of Technology and Design, Singapore
bRoyal Holloway, University of London, United Kingdom
cSnT, University of Luxembourg, Luxembourg

A R T I C L E I N F O
Keywords:
Software Testing
Fairness Testing
Computer Vision

A B S T R A C T
Ensuring that all classes of objects are detected with equal accuracy is essential in AI systems. For
instance, being unable to identify any one class of objects could have fatal consequences in autonomous
driving systems. Hence, ensuring the reliability of image recognition systems is crucial. This work
addresses how to validate group fairness in image recognition software. We propose a distribution-
aware fairness testing approach (called DISTROFAIR) that systematically exposes class-level fairness
violations in image classifiers via a synergistic combination of out-of-distribution (OOD) testing
and semantic-preserving image mutation. DISTROFAIR automatically learns the distribution (e.g.,
number/orientation) of objects in a set of images. Then it systematically mutates objects in the images to
become OOD using three semantic-preserving image mutations – object deletion, object insertion and
object rotation. We evaluate DISTROFAIR using two well-known datasets (CityScapes and MS-COCO)
and three major, commercial image recognition software (namely, Amazon Rekognition, Google Cloud
Vision and Azure Computer Vision). Results show that about 21% of images generated by DISTROFAIR
reveal class-level fairness violations using either ground truth or metamorphic oracles. DISTROFAIR is
up to 2.3x more effective than two main baselines, i.e., (a) an approach which focuses on generating
images only within the distribution (ID) and (b) fairness analysis using only the original image dataset.
We further observed that DISTROFAIR is efficient, it generates 460 images per hour, on average. Finally,
we evaluate the semantic validity of our approach via a user study with 81 participants, using 30
real images and 30 corresponding mutated images generated by DISTROFAIR. We found that images
generated by DISTROFAIR are 80% as realistic as real-world images.

1. Introduction
Image classification has several critical applications

in autonomous driving, robotics and healthcare, among
others. Image classification may involve several tasks [1].
For instance, given an image, one of the crucial tasks for
several autonomous applications is to recognize the different
objects in the image i.e., multi-label object classification
(MLC) [1]. Consider the MLC system used in autonomous
driving, it is pertinent for the classifier to detect the objects
on roads, including vehicles, pedestrians and animals; all
with fairly high accuracy. Failure to do so may lead to
severe consequences, resulting in accidents. Indeed, image
classification software have shown significant biases towards
certain class(es), e.g., dark-skinned people were more likely
to be misclassified [2] and women were usually associated
with activities such as cooking, shopping etc [3]. Disparities
between class-level accuracy of a given image classification
task may have several societal, legal and safety concerns.
Therefore, systematic testing of image classification task,
to detect potential bias against certain classes, is of critical
importance.

∗Corresponding author
Email addresses: sai_rajan@mymail.sutd.edu.sg (S.S. Rajan);

ezekiel.soremekun@rhul.ac.uk (E. Soremekun); yves.letraon@uni.lu (Y.
Le Traon); sudipta_chattopadhyay@sutd.edu.sg (S. Chattopadhyay)

URL: https://ezekiel-soremekun.github.io/ (E. Soremekun);
https://sites.google.com/site/yvesletraon/ (Y. Le Traon);
http://sudiptac.bitbucket.io/ (S. Chattopadhyay)

ORCID(s): 0000-0002-4491-2605 (S.S. Rajan); 0000-0002-0039-8106 (E.
Soremekun); 0000-0002-1045-4861 (Y. Le Traon); 0000-0002-4843-5391 (S.
Chattopadhyay)

In this paper, we study the fairness of class-level accuracy
in image classification tasks, specifically in MLC tasks. We
choose MLC due to its applicability in several safety critical,
autonomous applications e.g., driving and robotics. Given an
arbitrary MLC model (system under test (𝑆𝑈𝑇)) and a set of
initial images, our fairness test generation approach (called
DISTROFAIR) highlights the classes that face unusually high
error rates for the 𝑆𝑈𝑇 to reveal an unfair treatment of
one class as compared to others. Additionally, each error is
associated with concrete test images that can be used by the
developer to further investigate the errors.

Our approach employs out-of-distribution (OOD) testing.
By learning the distribution of objects detected in an initial
set of images, DISTROFAIR systematically generates a set of
images that portrays a distributional shift in the image dataset,
such that the generated images are “outside” the learned
distribution of objects in the initial sample. The generated
images are called OOD images. The key insight behind
our approach is to ensure that the fairness properties of an
MLC system generalize to unlikely, yet possible scenarios via
OOD images. We hypothesize that developers may ascertain
fairness properties on likely scenarios (aka in-distribution)
but ignore the unlikely scenarios, i.e., OOD. For instance,
consider a scenario where we generate a crowded road scene
e.g., by inserting many pedestrians in an image that contained
only a few pedestrian objects. Suppose we find that the
accuracy of the “traffic light" class in such an OOD image
is significantly lower than the accuracy of the “car" class.
Then, this implies that the prediction of the “traffic light"
class is unfair in comparison to the “car" class. Such a

Rajan et al.: Preprint submitted to Elsevier Page 1 of 19

https://ezekiel-soremekun.github.io/
https://sites.google.com/site/yvesletraon/
http://sudiptac.bitbucket.io/

Distribution-aware Fairness Test Generation

SUT

Fairness
Error for
Person
Class

Clustering

Compute
Object

Distribution

…

Distribution
Person: [1, 4]
Car: [2,4]
Dog: [0, 1]
…

OOD Image
Generator

Image
Dataset

Clusters
DISTROFAIR

Fairness Error Analyzer

Distribution of Errors
Person: 0.6 (> 0.33)
Car: 0.2
Dog: 0.2
…
Mean Error Rate: 0.33

OOD Test
Suite

OOD Person (5)

OOD Dog (2)

OOD Car (5)

…

Figure 1: An illustration of our DistroFair approach.

different treatment for the two classes violates statistical
parity [4]. DISTROFAIR works both in the presence and
absence of ground truth, making it general and applicable
also to unlabelled/partially labeled datasets. To the best of
our knowledge, we present the first OOD testing approach to
discover and analyze the class-level fairness errors in image
classification tasks.

Figure 1 illustrates the different steps of our DISTROFAIR
approach. DISTROFAIR starts with randomly sampled images
from a dataset. This sample set of images are then clustered
into different similar sub-groups to take into account the
diversity of images in the initial sample. For each sub-
group/cluster, DISTROFAIR then computes a distribution of
objects detected by the 𝑆𝑈𝑇 . Such distribution includes
information about the minimum and maximum number
of objects detected for each class and their orientation.
Subsequently, OOD images are generated by leveraging
this information and using semantic-preserving mutation
operators (e.g., insertion, deletion and rotation of objects).
For instance, three OOD images are shown in Figure 1, each
one exceeds the maximum number of “Person”, “Car” or
“Dog” objects detected by the 𝑆𝑈𝑇 in the respective cluster.
Finally, the 𝑆𝑈𝑇 is subject to analysis on the generated OOD
images. As observed in Figure 1, if a class (e.g., “Person”) is
detected with an error rate (i.e., 0.6) more than the mean error
rate across all classes (i.e., 0.33), then DISTROFAIR highlights
the class (i.e., “person”) as facing a fairness error. Although
we target our evaluation for MLC tasks, our OOD testing
approach is general and can be applied to other multi-label
image classification tasks.

Despite several approaches on fairness testing [5, 6, 7]
and functional testing [8, 9] of machine-learning based
systems, systematic fairness testing of class-level errors is
relatively less explored. Our approach is complementary
to recent effort in detecting class-level confusion and bias
errors in deep learning models [10]. In particular, while the
aforementioned work presented new metrics for confusion
and bias detection for a class [10], we propose an OOD
test generation approach to complement the detection of
class-level fairness errors. Recent works on image fuzzing
are focused on generating semantically valid images [11]

Figure 2: Classes with higher than the mean error rate in original
sample vs. OOD sample generated from the original.

or detecting functional errors without evaluating semantic
validity [12] [13]. In contrast, we propose a novel OOD test
generation method for systematically discovering class-level
fairness errors. We also evaluate the semantic validity of
generated OOD images via a user study.

This paper makes the following contributions:
1. We formalize how to measure class-level fairness

errors in image recognition software and propose a
novel OOD test generation approach (DISTROFAIR) to
discover such errors (section 3).

2. We propose and implement three metamorphic OOD
transformations such that the resulting images are
semantically valid with high likelihood (section 3).

3. Based on the OOD images, we propose an automated
approach to detect the class-level fairness errors in
image classification tasks (section 3).

4. We implement our DISTROFAIR approach and evaluate
it with three image classification systems from major
vendors (Google, Amazon and Microsoft) using two
datasets (MS-COCO and CityScapes). Our evaluation
generates ≈24K error-inducing OOD images (out of a
total ≈ 112K OOD images), finding nearly 368 classes
(out of a total 879 classes) facing fairness errors across
different models, datasets, OOD style mutations and
fairness test oracles (section 5).

5. We compare our OOD test generation approach with
two main baselines, namely (a) fairness analysis using
only the original dataset, and (b) a test generation ap-
proach tailored to generating inputs within distribution
(ID). We show that our OOD test generation approach
improves the discovery of fairness error rate by up to
131.48% (section 5).

6. We conduct a user study to evaluate the semantic
validity of our OOD images. Our study reveals that
our generated OOD images are about 80% as realistic
as original, real-world images, on average (section 5).

We discuss threats to validity (section 6). We then
describe closely related work (section 7) before concluding
(section 8).

2. Overview
In this section, we outline the motivation behind our

approach and illustrate it with an example.
Rajan et al.: Preprint submitted to Elsevier Page 2 of 19

Distribution-aware Fairness Test Generation

Table 1
Outline of DistroFair: Inclusion errors [Inc.] are highlighted in blue, exclusion errors [Ex.] are highlighted in red, and GT errors
are underlined. The numbers within (parenthesis) in column 3 and column 5 capture respective ground truths.

Subject/
Mutation Original Image

Detected
Objects Mutated Image

Detected
Objects

MS (Insertion)
Cat

Car: 3 (15)
Person: 2 (7)
Taxi: 2 (2)

Traffic Light: 1 (5)

[Ex.] Car: 2 (15)
Person: 2 (7)
Taxi: 2 (2)

Traffic Light: 1 (5)

AWS (Deletion)
Person

Car: 3 (8)
Person: 7 (12)

Traffic Light: 2 (3)
Bus: 1(1)

Car: 3 (8)
[Inc.] Traffic Light: 3 (3)

[Inc.] Bus: 2 (1)

GCP (Rotation)
Person

Car: 2 (12)
Traffic Light: 2 (6)

[Inc.]Car: 3 (12)
[Ex.]Traffic Light: 1 (6)

[Inc.]Building: 1 (1)

Class-level fairness: In this work, we investigate and discover
class-level fairness errors in computer vision (CV) systems.
Class level fairness is directly related to the concept of
group fairness. Fundamentally, group fairness is concerned
with ensuring that different groups exhibit similar statistical
properties under similar stimuli [4]. For instance, a CV system
that recognizes different classes of objects (e.g., cars, people)
with a similar degree of precision and recall is said to be fair.
This formulation is appropriate in safety-critical situations
such as autonomous driving, where accurately identifying
all objects on the road is desirable. More concretely, an
autonomous car with a CV system that preferentially detects
vehicles when compared to pets or animals is unfair. We note
that such a formulation does not make any assumptions on
the protected group(s). Concretely, for two arbitrary class
labels 𝑎 and 𝑏, we expect that class-level fairness is satisfied
if and only if the following holds for a model 𝑓 with a set of
classes ℂ:

𝑃𝑟(𝑓 (𝑎)) ≊ 𝑃𝑟(𝑓 (𝑏)) ∀𝑎, 𝑏 ∈ ℂ (1)
where 𝑃𝑟(𝑓 (𝑎)) and 𝑃𝑟(𝑓 (𝑏)) capture the probability that
class 𝑎 and class 𝑏 are correctly classified by 𝑓 , respectively.
Key Insight (Why OOD samples?): OOD testing is in-
creasingly becoming popular to evaluate the capability of
an ML-based system beyond the training set [14, 15]. In
particular, significant manual effort has been put forward to
create OOD benchmark [16]. Moreover, we have observed a
line of research that focused on improving the accuracy of

ML models on OOD benchmark [17]. This is particularly
important in autonomous driving systems since the training
data is unlikely to capture the full set of scenarios that can
occur in the real world. In addition, certain scenarios might
not be easily obtained from real world testing on account
of it being dangerous or time consuming. For instance, the
likelihood of encountering a car that is being driven on the
wrong side of the road is comparatively low and the number
of such scenarios captured in the training set is likely to be
small. As such, we postulate that OOD generation approach
that seeks to generate these unseen scenarios is likely to
be effective at exposing weaknesses in image recognition
systems, including fairness issues.

In this paper, we propose a methodology to automatically
generate OOD images from arbitrary image samples to
validate class-level fairness of a target ML model. Our key
insight is driven by the observation of distributional shift in
class-level accuracy between an original dataset and their
corresponding OOD images. Figure 2 illustrates the set
of classes that have higher than the mean accuracy across
three widely used object recognition models from Microsoft,
Amazon (AWS), and Google (GCP). This is shown both for
a sample of original data (taken from an existing dataset) and
the OOD images created from this sample using DISTROFAIR.
Concretely, we observe that the accuracy of 21.8% of classes
drops below the mean accuracy only when considering the
OOD images. From this observation, we posit that inducing
distributional shifts (such as those illustrated in Figure 2) may
unmask hidden biases. Therefore, it is desirable to investigate

Rajan et al.: Preprint submitted to Elsevier Page 3 of 19

Distribution-aware Fairness Test Generation

class-level biases in the OOD dataset w.r.t. to its distributional
shift from the original dataset. Our generation of OOD
images considers scenarios that may occur in real world. Thus,
the class-level accuracy on the OOD images provides the
model developers useful debugging information. For instance,
such information may highlight the specific classes where the
model performs poorly when stressed with generated OOD
images.
An illustrative example: Table 1 shows an example illustrat-
ing our OOD-image generation and the class-level error detec-
tion. All the illustrated errors are taken from our evaluation on
real-world system from Microsoft (MS), Amazon (AWS) and
Google (GCP). The first column shows the targeted subject
(MS/AWS/GCP) and the mutation operation (e.g., insertion,
deletion, rotation of object). The second column captures the
original image and the third column highlights the class-level
detection on the original image by the respective subject.
The fourth column captures the OOD image based on the
mutation shown in the first column and the rightmost column
captures the subject output on the mutated images.

Intuitively, given a dataset 𝑆 and a model 𝑀 , we capture
the distribution of any class 𝑐 ∈ ℂ (ℂ being the set of all
classes) as follows: we record the minimum and maximum
occurrences of class 𝑐 detected by 𝑀 for any image 𝑠 ∈ 𝕊.
Additionally, we also record the orientation (angle) in a
similar fashion for all classes. The generation of OOD images
for model 𝑀 thus focuses on creating an image that deviates
from the captured distribution. For instance, consider the
insertion operation in Table 1 for MS. In our evaluation, we
observed that MS did not detect any cat class for our original
sample set. Thus, we consider the insertion of even a single
cat object will result in an OOD image. In the example shown
in Table 1, we insert two cat objects as shown in the mutated
image. As a consequence, MS fails to detect one of the car
objects that was detected in the original image. In general, we
consider two different test oracles as follows to detect errors
in the generated OOD images:
1. Ground Truth (GT) based Oracle: A class 𝑐 in an OOD

image faces error if and only if the detection accuracy of 𝑐
with respect to the ground truth drops below the detection
accuracy of 𝑐 in the corresponding original image. For
example, the insertion operation shown in Table 1 drops
the detection accuracy of the Car class in the OOD image
(from 3

15 to 2
15). Hence, one error is accounted for the Car

class. In contrast, the detection accuracy of Traffic Light
class improves with the deletion operation for AWS. As
the detection accuracy improves with respect to ground
truth, we do not count such phenomenon as an error.
Nonetheless, we also account for such improvement in
accuracy, as our approach is targeted to compute fairness
metrics across classes. Hence, our approach allows for
negative errors to consider cases where the detection of
a class improves with mutation. Formally, the number
of errors for an unmodified class 𝑐 (via the mutation
operation) is accounted as follows:

𝐸𝑟𝑟𝑐 = |

|

𝑛𝑢𝑚𝑜𝑜𝑑(𝑐) − 𝐺𝑇𝑐||−
|

|

|

𝑛𝑢𝑚𝑜𝑟𝑖𝑔(𝑐) − 𝐺𝑇𝑐
|

|

|

(2)

where 𝑛𝑢𝑚𝑜𝑜𝑑(𝑐), 𝑛𝑢𝑚𝑜𝑟𝑖𝑔(𝑐) and 𝐺𝑇𝑐 capture the number
of class 𝑐 objects detected in the OOD image, in the
corresponding original image and the ground truth for
class 𝑐 in the original image, respectively.

2. Metamorphic (MT) Oracle: It is often infeasible in prac-
tice to use the ground truth data due to the unavailabil-
ity of perfectly labeled data. Moreover, class detection
varies across subjects, tasks and contexts. For example,
a speed camera detects only license plates, whereas
surveillance systems track multiple objects. Similarly,
even for the same class, models might prioritize fore-
ground objects over background objects. Consequently,
a universal ground truth may not capture the intent of
the model under test. To address this, we also design
a metamorphic (MT) oracle that considers changes in
detection accuracy with respect to the detection accuracy
in the original image. In other words, we capture the
intent of the targeted model in line with its accuracy
in the original, unmodified image. Then, we investigate
whether the prediction of different classes are consistent
with respect to OOD style mutations.
Concretely, we consider errors in two categories: (i)
Inclusion error means that some object from a given
class was not detected in the original image, but it is
detected in the corresponding OOD image. (i) Exclusion
error means that some object from a given class was
detected in the original image, but it is not detected in
the corresponding OOD image. As illustrated in Table 1,
the deletion operation leads to one inclusion error for the
classes Traffic Light and Bus in AWS. On the contrary, the
insertion operation results in one exclusion error in MS
for the Car class, whereas the rotation operation leads to
an exclusion error in GCP for the Traffic Light class. We
compare the effectiveness of both the GT and MT oracles
in RQ1.
We exclude any errors due to the mutated class (i.e., the

cat class for insertion operation). This is to eliminate the
potential impact of bias in our experiments, as the mutated
class is often likely to have more errors than the unmodified
classes.

Our OOD image mutation is carefully engineered to gen-
erate semantically valid images. For example, while inserting
an object, DISTROFAIR tries to compute the appropriate size
of the respective object in the image. This is accomplished
by heuristically estimating the size of the inserted object
with respect to the size of existing objects in the image. For
example, as observed from Table 1, our mutation inserts
appropriately sized cat objects. Likewise, the other mutations
keep the classes in the OOD image recognizable.
Computing fairness errors: Starting with a dataset 𝑆, we
apply all the operations (insertion/deletion/rotation) to get
the set of OOD images 𝑆′. For a given model 𝑀 , we then
compute the number of exclusion and inclusion errors for
each class 𝑐 ∈ ℂ over the dataset 𝑆′. Such errors provide an
overall distribution of errors across all classes in the OOD

Rajan et al.: Preprint submitted to Elsevier Page 4 of 19

Distribution-aware Fairness Test Generation

image set. We consider that a class 𝑐 ∈ ℂ exhibits fairness
errors when its error rate exceeds the mean error rate across
all classes. For example, if 𝐸𝑟𝑟𝑐 captures the error rate for
class 𝑐, then a class 𝑐′ exhibits fairness error if and only if
𝐸𝑟𝑟𝑐′ >

∑

𝑐∈ℂ 𝐸𝑟𝑟𝑐
|ℂ| . We note that 𝐸𝑟𝑟𝑐 is computed as the

ratio between the total number of errors faced by class 𝑐 in
𝑆′ and the total number of objects of class 𝑐, in dataset 𝑆.
In Table 1, using the MT oracle, the car class has an error
rate of 33% (=1/3) for MS considering just one image in 𝑆′.
Likewise for AWS, the classes Traffic Light and Bus have
error rates of 50% and 100%, respectively.

3. Methodology
In this section, we first formally define the notion of

OOD images considered within DISTROFAIR. Then we
discuss DISTROFAIR in detail. DISTROFAIR can broadly be
considered to have three components, namely, clustering, an
OOD image generator and a fairness error analyzer. In the
following, we elaborate each of the three components.
Definition 1. (OOD Image) Let us assume an initial set
of images 𝐼𝑚𝑔𝑙𝑖𝑠𝑡 where the number of objects of a given
class 𝑐 is bounded by ⟨𝑚𝑖𝑛𝑐 , 𝑚𝑎𝑥𝑐⟩. Additionally, the set of
orientations (angles) for any object of class 𝑐 within 𝐼𝑚𝑔𝑙𝑖𝑠𝑡
is captured by Θ𝑐 . We call an image ′ an OOD image with
respect to the initial set of images 𝐼𝑚𝑔𝑙𝑖𝑠𝑡 and the given
class 𝑐 if and only if one of the following conditions hold:
(i) ′

𝑐 < 𝑚𝑖𝑛𝑐 (ii) ′
𝑐 > 𝑚𝑎𝑥𝑐 (iii) Θ(′

𝑐) ∉ Θ𝑐 . ′
𝑐 captures

the number of objects of class 𝑐 in image ′ whereas Θ(′
𝑐)

captures the set of orientations of class 𝑐 objects in ′.

3.1. Clustering
Our DISTROFAIR approach starts with an arbitrary sample

of images. We first employ clustering on the initial sample to
create smaller groups of images. This grouping is performed
for images with similar objects and scenery. Additionally,
the clustering handles variance of images/objects and the
mixture of distributions in our initial sample. Specifically,
our DISTROFAIR approach determines, for each image in
the initial sample, the number of objects for each class.
We leverage a state-of-the-art detection and segmentation
library i.e., Detectron2 [18] for this purpose. The class-level
information for all images is then fed to a clustering algorithm
to divide the initial sample into similar subgroups. In general,
our approach can leverage any clustering algorithm. We use K-
Means clustering algorithm [19] within DISTROFAIR. Once
the clusters of images are computed, OOD image generation
is employed on each cluster of images independently. In the
following, we discuss OOD image generation for an arbitrary
cluster of images.
3.2. OOD Image Generation

Algorithm 1 outlines our OOD image generation process
for a target ML model 𝑆𝑈𝑇 . In the beginning, DISTROFAIR
learns a distribution, 𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡, for the set of images 𝐼𝑚𝑔𝐿𝑖𝑠𝑡under test. The knowledge of this distribution is leveraged for
OOD image generation process. Concretely, for each class

Algorithm 1 OOD Image Generation.
1: procedure OOD_IMAGE_GENERATION(𝐼𝑚𝑔𝐿𝑖𝑠𝑡, 𝑂𝑃𝐿𝑖𝑠𝑡, 𝐿𝐵𝐿𝐿𝑖𝑠𝑡)2: 𝑂𝑂𝐷_𝑆𝑒𝑡 ← ∅
3: 𝑀𝑈𝑇 𝐿𝑖𝑠𝑡 ← {𝑥, 𝑦}∶ 𝑥 ∈ (𝑂𝑃𝐿𝑖𝑠𝑡), 𝑦 ∈ (𝐿𝐵𝐿𝐿𝑖𝑠𝑡)4: ⊳ computes the distribution of the set of images in 𝐼𝑚𝑔𝐿𝑖𝑠𝑡5: ⊳ 𝑆𝑈𝑇 is the ML model under test
6: 𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡 ← (𝐼𝑚𝑔𝐿𝑖𝑠𝑡, 𝑆𝑈𝑇)
7: for 𝑀 ∈ 𝑀𝑈𝑇 𝐿𝑖𝑠𝑡 do
8: for 𝐼𝑚𝑔 ∈ 𝐼𝑚𝑔𝐿𝑖𝑠𝑡 do
9: 𝐷𝑖𝑠𝑡𝐼𝑚𝑔 ← 𝐹𝐼𝑚𝑔 (𝐼𝑚𝑔, 𝑆𝑈𝑇)

10: 𝑀𝑢𝑡𝑁𝑢𝑚 ← 𝑀𝑢𝑡𝐺𝑒𝑛(𝐷𝑖𝑠𝑡𝐼𝑚𝑔 , 𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡)11: 𝐺𝑒𝑛𝐼𝑚𝑔 ← 𝐼𝑚𝑎𝑔𝑒𝐺𝑒𝑛(𝐼𝑚𝑔,𝑀,𝑀𝑢𝑡𝑁𝑢𝑚)12: 𝑂𝑂𝐷_𝑆𝑒𝑡∪= {(𝐺𝑒𝑛𝐼𝑚𝑔 , 𝐼𝑚𝑔,𝑀)}
13: end for
14: end for
15: return 𝑂𝑂𝐷_𝑆𝑒𝑡
16: end procedure

𝑐 ∈ ℂ, the distribution captures a triplet ⟨Θ𝑐 , 𝑚𝑖𝑛𝑐 , 𝑚𝑎𝑥𝑐⟩.Θ𝑐captures the set of orientations (angles) for objects in class 𝑐
and 𝑚𝑖𝑛𝑐 (respectively, 𝑚𝑎𝑥𝑐) captures the minimum (respec-
tively, maximum) number of objects of class 𝑐 detected by the
𝑆𝑈𝑇 in 𝐼𝑚𝑔𝐿𝑖𝑠𝑡. After computing the distribution 𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡,DISTROFAIR aims to generate OOD images for each image
in the 𝐼𝑚𝑔𝐿𝑖𝑠𝑡. To this end, we consider a list of mutation
operators 𝑀𝑈𝑇 𝐿𝑖𝑠𝑡 where each 𝑀 ∈ 𝑀𝑈𝑇 𝐿𝑖𝑠𝑡 is a pair,
containing the operation (insertion/deletion/rotation) and the
target class for mutation. For generating an OOD image,
DISTROFAIR identifies the distribution for a single image,
𝐷𝑖𝑠𝑡𝐼𝑚𝑔 . 𝐷𝑖𝑠𝑡𝐼𝑚𝑔 is used to compute the exact characteristics
of the mutation for an OOD transformation. For example,
given 𝐷𝑖𝑠𝑡𝐼𝑚𝑔 and 𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡, we compute the possible number
insertions (e.g., 𝑀𝑈𝑇 𝑛𝑢𝑚 in Algorithm 1) of class 𝑐 objects
such that the total number of class 𝑐 objects exceeds 𝑚𝑎𝑥𝑐 .This is then used to produce the OOD image 𝐺𝑒𝑛𝐼𝑚𝑔 via
the procedure 𝐼𝑚𝑎𝑔𝑒𝐺𝑒𝑛. All successfully generated OOD
images are stored for subsequent analysis of class-level
fairness errors.
3.3. Mutation Operators
Semantic-preserving Mutations: In this work, mutation
operators are designed to preserve the image semantics i.e.,
the meaning of the image in the real world [11]. The goal
is to preserve the perception of the original image, except
for the mutated object(s). Our mutation operators rely on
state-of-the-art tools for fine-grained image modifications.
However, due to the current limitations of these tools, there
is no guarantee that the semantics are always preserved in
the OOD images. To mitigate this, we conducted a user study
(RQ4) to check the semantic validity of generated images.
In the following, we discuss the design details of the three
mutation operators (see Table 1).
Insertion: The insertion operation of DISTROFAIR employs
several heuristics to ensure semantic correctness. We describe
and illustrate this operation using Table 2.

We first determine the relative size of each object to
be inserted by comparing it to a reference object. As an
example, let us consider a “car” to be the reference object.
We first find relative heights, w.r.t. the number of pixels,
for all the other objects (e.g., “person” or “bicycles”) to be
inserted by determining how much larger or smaller they are

Rajan et al.: Preprint submitted to Elsevier Page 5 of 19

Distribution-aware Fairness Test Generation

Table 2
Table illustrating the different steps present in the insertion operation. First, the heights of the objects in the image are obtained
and rate at which the size changes as the position changes is noted. We then determine whether the object can be safely placed
on the ground in the chosen location and reject it in cases where it would not be on the ground. We then show the final result of
the insertion operation.

Original Image Resizing Process

Insertion Locations Final Image

in comparison to the reference object (“car”). We determine
these relative sizes via initial experimentation. This is a one
time effort that is leveraged for all insertion operations going
forward.

DISTROFAIR then leverages a technique named panoptic
segmentation [20] [18] on the original image to find the class
label of each pixel. This is used to determine the size and
location of the object to be inserted. In particular, we aim to
determine what size the reference object would be if it were
to be inserted in the middle of the image. In addition, we
also determine how the size of the reference object would
vary if the object were moved one pixel up or down. For
instance, consider the image in Table 2. We observe that there
are multiple cars and a person present in the image. Let us
consider the person in the red box (top right image in Table 2
(Resizing Process)). DISTROFAIR uses our segmentation map
to determine the height of the person in terms of the number of
pixels. It then leverages our pre-computed relative reference
sizes to determine the height of a hypothetical car in the same
position. Similarly, it measures the height of the car in the
green box. Next, it combines these information to compute

the scaling factor, i.e., how the height of the car changes with
respect to the changes in y-coordinate of a two-dimensional
image. The scaling factor is employed to find the size of the
reference “car” if it were to be situated in the center of the
image. By passing this information along with the scaling
factor, DISTROFAIR is able to easily determine the size of any
object to be inserted in the original image, irrespective of its
type or location with the aid of our knowledge of relative sizes.
We further note that computing the scaling factor for each
original image is a one-time effort, i.e., it is not recomputed
for future insertion operations.

To identify appropriate locations for each insertion opera-
tion, DISTROFAIR implements checks to ensure that the object
is placed at an appropriate location. For instance, it ensures
that a person is placed on the ground (road, pavement, or dirt)
by checking whether the pixels that will be occupied by the
bottom portion of the object are classified as belonging to the
ground. Table 2 (bottom left image) illustrates appropriate
(✓) and inappropriate (×) locations for the insertion operation.
In addition, it ensures that objects that are further away
from the perspective of the observer are placed before

Rajan et al.: Preprint submitted to Elsevier Page 6 of 19

Distribution-aware Fairness Test Generation

Algorithm 2 Fairness Error Analysis.
1: procedure FAIRNESS_ERROR_COUNTER(𝑂𝑂𝐷_𝑆𝑒𝑡, 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒, 𝐸𝑟𝑟_𝑇 𝑦𝑝𝑒)
2: 𝑇 𝑜𝑡_𝐶𝑜𝑢𝑛𝑡 ← ∅
3: 𝐸𝑟𝑟_𝐶𝑜𝑢𝑛𝑡 ← ∅
4: for 𝑇𝑈𝑃 ∈ 𝑂𝑂𝐷_𝑆𝑒𝑡 do
5: ⊳ number and type of objects in the image as found by 𝑂𝑅𝐴𝐶𝐿𝐸 and

𝑆𝑈𝑇
6: 𝑂𝑟𝑎𝑐𝑙𝑒 ← 𝑂𝑅𝐴𝐶𝐿𝐸(𝑇𝑈𝑃 , 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒, 𝐸𝑟𝑟𝑜𝑟𝑇 𝑦𝑝𝑒)7: Let 𝑂𝑟𝑎𝑐𝑙𝑒 = (𝐺𝑇 ,𝐷𝑖𝑓𝑓)
8: for do(−, 𝑂𝑏𝑗𝐿) ∈ 𝐷𝑖𝑓𝑓
9: ⊳ Accumulate the total number of objects and errors for each class

10: 𝑇 𝑜𝑡_𝐶𝑜𝑢𝑛𝑡[𝑂𝑏𝑗𝐿] += 𝐺𝑇 [𝑂𝑏𝑗𝐿]11: 𝐸𝑟𝑟_𝐶𝑜𝑢𝑛𝑡[𝑂𝑏𝑗𝐿] += 𝐷𝑖𝑓𝑓 [𝑂𝑏𝑗𝐿]12: ⊳ Increment error count for class 𝑂𝑏𝑗𝐿13: if 𝐷𝑖𝑓𝑓 [𝑂𝑏𝑗𝐿] > 0 then
14: 𝐸𝑟𝑟_𝐼𝑚𝑔𝐷𝑖𝑐𝑡[𝑂𝑏𝑗𝐿] = 𝐸𝑟𝑟_𝐼𝑚𝑔𝐷𝑖𝑐𝑡[𝑂𝑏𝑗𝐿] + 1
15: end if
16: end for
17: end for
18: end procedure

objects that are nearer to the observer. This is to avoid
objects in the background inadvertently obscuring objects in
the foreground. Furthermore, DISTROFAIR determines the
feasibility of placing the requisite number of objects into the
original image. In the event that DISTROFAIR is unable to
place enough objects to generate an OOD image, the insertion
operation is not performed on the image. DISTROFAIR skips
the image and attempts mutating the next image in the
dataset. This prevents us from forcibly inserting objects into
a crowded image that might be unable to accommodate the
additional objects.
Deletion: During deletion, DISTROFAIR deletes all object
instances that belong to the class being mutated. We note
that such deletion operation is an extreme case of OOD
mutation when object deletion is considered for a given class.
We choose this option to keep our test generation simple.
DISTROFAIR leverages the panoptic segmentation map to
identify the objects before applying a mask. It then uses
inpainting [21] [22] to delete the masked objects.
Rotation: For rotation, DISTROFAIR first identifies an object
belonging to the target class, taking care to ensure that said
object is not obstructed by another object. It then extracts the
image level information for the object being rotated in that lo-
cation before deleting the object through inpainting [21] [22].
Finally, it rotates the extracted image (i.e., the target object)
and inserts it back into the original image. During insertion,
we ensure that the physical dimensions such as height and
width remain unchanged for the rotated object.
3.4. Fairness Error Analysis

Algorithm 2 outlines our fairness error analysis. Given a
set of OOD images (computed via Algorithm 1), Algorithm 2
computes, for each class, the total number of detected objects
(𝑇 𝑜𝑡_𝐶𝑜𝑢𝑛𝑡) and the number of errors in the detection
(𝐸𝑟𝑟_𝐶𝑜𝑢𝑛𝑡). To compute the number of errors, it relies on
Algorithm 3 to find the expected number of objects in each
class. Algorithm 3 takes the type of error being computed,
and returns the appropriate number of errors for each class
along with the initial reference.

Algorithm 3 Fairness Error Oracle.
1: procedure ORACLE(𝑇𝑈𝑃 , 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒, 𝐸𝑟𝑟_𝑇 𝑦𝑝𝑒)
2: if 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒 = }}𝑆𝑈𝑇 ε then
3: ⊳ number and type of objects in the image as found by 𝑆𝑈𝑇
4: 𝐺𝑇 _𝑃𝑟𝑒𝑑 ← 𝑆𝑈𝑇 (𝑇𝑈𝑃 .𝐼𝑚𝑔)
5: else if 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒 = }}𝐺𝑇 ε then
6: ⊳ 𝐺𝑇 is the union of all SUT results and the dataset ground truth
7: 𝐺𝑇 _𝑃𝑟𝑒𝑑 ← 𝐺𝑇 (𝑇𝑈𝑃 .𝐼𝑚𝑔)
8: end if
9: 𝑂𝑟𝑔_𝑃𝑟𝑒𝑑 ← 𝑆𝑈𝑇 (𝑇𝑈𝑃 .𝐼𝑚𝑔)

10: 𝐺𝑒𝑛_𝑃𝑟𝑒𝑑 ← 𝑆𝑈𝑇 (𝑇𝑈𝑃 .𝐺𝑒𝑛𝐼𝑚𝑔)11: Let 𝑇𝑈𝑃 .𝑀 = (−, 𝐿𝐵𝐿)
12: 𝐷𝑖𝑓𝑓_𝑃𝑟𝑒𝑑[𝐿𝐵𝐿] ← ∅
13: 𝐺𝑇 _𝑃𝑟𝑒𝑑[𝐿𝐵𝐿] ← ∅
14: 𝑂𝑟𝑔_𝑃𝑟𝑒𝑑[𝐿𝐵𝐿] ← ∅
15: 𝐺𝑒𝑛_𝑃𝑟𝑒𝑑[𝐿𝐵𝐿] ← ∅
16: for (−, 𝑂𝑏𝑗𝐿) ∈ 𝐺𝑇 _𝑃𝑟𝑒𝑑 do
17: 𝑂𝑟𝑔_𝐸𝑟𝑟 ← |

|

𝑂𝑟𝑔_𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿] − 𝐺𝑇 _𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿]||18: 𝑁𝑒𝑤_𝐸𝑟𝑟 ← 𝐺𝑒𝑛_𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿] − 𝐺𝑇 _𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿]19: if 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒 = }}𝐺𝑇 ε then
20: 𝐷𝑖𝑓𝑓_𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿] = |𝑁𝑒𝑤_𝐸𝑟𝑟| − 𝑂𝑟𝑔_𝐸𝑟𝑟
21: else if 𝐶𝑎𝑠𝑒_𝑇 𝑦𝑝𝑒 = }}𝑆𝑈𝑇 ε then
22: if 𝐸𝑟𝑟_𝑇 𝑦𝑝𝑒 = }}𝐼𝑁𝐶ε then
23: if 𝐶ℎ𝑎𝑛𝑔𝑒_𝐸𝑟𝑟𝑜𝑟 > 0 then
24: 𝐷𝑖𝑓𝑓_𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿] = 𝑁𝑒𝑤_𝐸𝑟𝑟
25: end if
26: else if 𝐸𝑟𝑟_𝑇 𝑦𝑝𝑒 = }}𝐸𝑋𝐶ε then
27: if 𝐶ℎ𝑎𝑛𝑔𝑒_𝐸𝑟𝑟𝑜𝑟 < 0 then
28: 𝐷𝑖𝑓𝑓_𝑃𝑟𝑒𝑑[𝑂𝑏𝑗𝐿] = −1 ⋅𝑁𝑒𝑤_𝐸𝑟𝑟
29: end if
30: end if
31: end if
32: end for
33: 𝑂𝑟𝑎𝑐𝑙𝑒_𝑅𝑒𝑡 = {𝐺𝑇 _𝑃𝑟𝑒𝑑,𝐷𝑖𝑓𝑓_𝑃𝑟𝑒𝑑}
34: return 𝑂𝑟𝑎𝑐𝑙𝑒_𝑅𝑒𝑡
35: end procedure

To obtain the ground truth reference i.e., 𝐺𝑇𝑅𝑒𝑓 for each
image, we use the following equation:

𝐺𝑇𝑅𝑒𝑓 (𝐼𝑚𝑔) = 𝐺𝑇𝐷𝑎𝑡𝑎(𝐼𝑚𝑔)∪
⋃

𝑖∈𝐴𝑙𝑙_𝑆𝑈𝑇
𝑆𝑈𝑇 (𝑖)(𝐼𝑚𝑔)

(3)
In essence, we take the reference to be the multiset union of
the results from each subject under test and the ground truth
from the provided data (𝐺𝑇𝐷𝑎𝑡𝑎). We then set the expected
count for the class of object being mutated to be zero, both
in the original image and the corresponding OOD image
(Line 11-Line 15). This prevents us from inadvertently
including errors that were directly introduced by the mutated
objects themselves. Intuitively, in the absence of errors, we
expect the original and corresponding OOD image to detect
the same number of objects for each class, except the mutated
class. We then find the degree to which the detected output
for the mutated images has changed from the original output.
(Line 16-Line 18). This is used to compute the errors (Line 19-
Line 28). Algorithm 2 then accumulates the error counts for
all the images in the set of OOD images (Line 9-Line 11). It
also calculates the number of images in which a particular
class is exhibiting errors.

Once the errors for each class is computed in 𝐸𝑟𝑟_𝐶𝑜𝑢𝑛𝑡,
we can compute the error rate for each class as follows:

𝐸𝑟𝑟𝑐 =
𝐸𝑟𝑟_𝐶𝑜𝑢𝑛𝑡[𝑐]
𝑇 𝑜𝑡_𝐶𝑜𝑢𝑛𝑡[𝑐]

, ∀𝑐 ∈ ℂ (4)

Rajan et al.: Preprint submitted to Elsevier Page 7 of 19

Distribution-aware Fairness Test Generation

Finally, a class 𝑐 faces a fairness error when its detection
error rate exceeds the mean error rate across all classes:

𝐸𝑟𝑟𝑐 >
∑

𝑖∈ℂ 𝐸𝑟𝑟𝑖
|ℂ|

(5)

In summary, the developer can use our framework to in-
vestigate the distribution of errors faced by each class and
observe the classes exhibiting unusually high error rates.
Additionally, each error is associated with a test case that
allows the developer to investigate and reproduce the error.
Usage of the OOD Tests: Given the set of classes that
induce fairness errors, developers can direct their efforts
towards improving model performance for unfair classes. This
could be achieved in several ways. For instance, developers
could direct their data collection teams to obtain more
instances of the unfair classes to augment their training data.
Developers could also augment the training set with the
error-inducing images generated by DISTROFAIR. Recent
research [8, 9] has shown that the addition of error-inducing
inputs to the training data improves the accuracy of computer
vision models. We further note that our technique inherently
generates scenarios that are previously unseen in the initial
dataset. As such, the addition of the error-inducing inputs to
the training data could conceivably improve the epistemic
uncertainty [23, 24] of the models since they represent
rare scenarios. This is particularly important in the case of
autonomous driving where replicating these scenarios in the
real world might be too dangerous or time consuming.

4. Evaluation Setup
We evaluate the following research questions (RQs):
• RQ1 Effectiveness: How effective is DISTROFAIR in

generating error-inducing inputs that induce class-level
fairness violations in image recognition software?

• RQ2 Baseline Comparison: How effective is the OOD
mutation in comparison to the baselines?

• RQ3 Efficiency: What is the efficiency (time perfor-
mance) of DISTROFAIR to generate fairness test cases?

• RQ4 Semantic Validity: Are the images generated by
DISTROFAIR semantically valid, in terms of realism
and likelihood of the depicted scenario occurring in
real life? Are they comparable to real-world images?

• RQ5 Generated images vs. Real-World OOD im-
ages: What is the model accuracy of our SUT (image
classifiers) on images generated by DISTROFAIR versus
real-world OOD images?

• RQ6 Original images vs. Error-inducing OOD
images: What is the accuracy of our SUT (image
classifiers) on the error-inducing images generated by
DISTROFAIR versus the corresponding original images
from the dataset?

Table 3
Details of Experimental Datasets.

Dataset Description #Images #Classes First
Published

MS-COCO [30]
Microsoft Common

Objects images 300 183 2014

CityScapes [31]
TU Darmstadt’s Urban
Street Scenes images 315 30 2015

Table 4
Details of Subject Programs.

Subject Programs Description (No. of
labels supported)

#Classes (Our
Experiments)

Availability
Date

GCP [32] 9000 89 2017
AWS [33] 2000+ 76 2016
MS [34] 10000 58 2016

Datasets and Subject Programs: We selected MS-COCO
and CityScapes (see Table 3) due to the large number of
classes (thus, appropriate for testing class-level fairness)
present, and their high prevalence in practice (e.g., au-
tonomous cars) and the research community [25, 26, 27, 28,
29]. In particular, we randomly select 300 images containing
traffic lights from MS-COCO. For CityScapes, we select 315
road scene images taken in Bremen. Restricting the choice
of images in this manner allows us to limit the classes being
considered for mutation to the set of objects that are most
relevant in road scenes. In the absence of such filtering, we
could conceivably insert a car into an image of the sky. Such
an insertion would be inappropriate due to the low likelihood
of such an situation occurring. Additionally, our chosen
evaluation subjects (see Table 4) are the most prominent
cloud-based image recognition systems supporting thousands
of objects and scenes.
Metrics and Measures: These are defined as follows:
• Class-level Violations & Violation Rate: We detect

biased classes via Equation 5. The class-level violation
rate is the proportion of biased classes out of all considered
classes (see RQ1/RQ2).

• Error-inducing Inputs & Fairness Error Rate: We
consider a generated input (image) to be error-inducing if
(1) it leads to an error for a subject and (2) it contributes
to the number of errors for a class-level violation. The
fairness error rate is the proportion of error-inducing
inputs out of all generated inputs (section 5).

• Test Generation Time: This refers to the time-taken to
generate a test suite for class-level group fairness (see RQ3
section 5).

4.1. Research Protocol
We describe the experimental protocol for 18 different

settings (two datasets, three subjects, and three mutations) in
our experiments.

Rajan et al.: Preprint submitted to Elsevier Page 8 of 19

Distribution-aware Fairness Test Generation

Table 5
Details of Images in the User Study Dataset.

Images (# Error-inducing images)
Dataset Real Mutated Insertion Deletion Rotation
MS-COCO 20 20 (17) 6 (6) 9 (7) 5 (4)
CityScapes 10 10 (7) 4 (4) 1 (0) 5 (3)
Total 30 30 (24) 10 (10) 10 (7) 10 (7)

Clustering and Distribution of Objects: For finding the
distribution of objects in our initial dataset, we use state-of-
the-art library Detectron2 [18] to detect objects, whereas
K-Means algorithm from SciKitLearn [35] was used for
clustering. We have selected K-Means since it scales to large
data sets, guarantees convergence and generalizes to clusters
of different shapes and sizes [19].
Image Generation: For all mutations, DISTROFAIR attempts
to generate one image for each selected class for each given
image. All experiments except deletion were conducted five
times to account for randomness in the position, orientation
and type of mutated objects. Experiments for deletion were
performed once since deletion is deterministic: We delete all
objects of a class for all images.
Mutated Objects: Due to time constraints, in our experi-
ments, DISTROFAIR applies the mutations to a subset of
all the classes present in the dataset. Developers can extend
the technique to more classes by obtaining suitable images
belonging to each class in question and expending more time
to generate OOD images for each class in question. We do,
however, consider all the classes present in ℂ in our fairness
error analysis. In particular, DISTROFAIR attempts to delete or
rotate objects belonging to four class labels (namely people,
cars, motorcycles, and trucks). These classes were selected
due to their prevalence in the datasets. For insertion operation,
apart from the four aforementioned classes, we also insert
three additional classes (namely birds, cats and dogs), as
these three classes are common in road scenes.
Image Caching: We cache the generated images for test
efficiency. For a fair evaluation (RQ3), we only report the
results for the initial runs for each subject, i.e., MS-COCO
using Amazon Rekognition and CityScapes with Google
Vision.
Baseline: We use two baselines to compare the effectiveness
of our OOD mutations: 1) Original data, and 2) ID Mutations.
In the first case, a developer aims to find class-level fairness
violations only using the original data and not having access
to DISTROFAIR. Meanwhile, ID mutations aim to transform
an image in such a fashion that the distribution of objects
(i.e., maximum and minimum number of occurrences and
the angle of orientations) in the transformed image remains
within the learned distribution in the respective cluster (i.e.,
𝐷𝑖𝑠𝑡𝐿𝑖𝑠𝑡 in Algorithm 1).
Baseline Comparison: For the baseline only using original
data, we use the ground truth information (Equation 3) to
compute the accuracy of each class. Then, the unfair/biased
classes are detected as the set of classes whose accuracy
is below the mean accuracy across all classes (in line with

Equation 5). For ID mutations, we compare it with the OOD
mutation in DISTROFAIR for insertion operations. This is
because most mutated classes in our experiments have a
minimum object count of zero, thus deleting all objects of a
class may often generate an image that is ID. Thus, there
is no clear boundary between our OOD and an ID style
deletion operation. Additionally, classes in our dataset have
such orientation that any rotation of an object will result in
an OOD image. Thus, for rotation, the only ID equivalent
image is the original image. In the insertion experiment, we
generate ID images by replacing the OOD constraints in
DISTROFAIR with ID constraints, such that object insertions
are only performed within the range of the distribution of the
object in each cluster. However, due to the small range of
ID vs. OOD, the generated ID inputs beyond first iterations
are significantly smaller or already seen in the first. Hence,
for a balanced evaluation, we compare only the first iteration
of DISTROFAIR with OOD to the single run of ID. For both
OOD and ID, we use the same set of images in the initial
datasets with an unlimited time budget.
OOD Image Accuracy: We investigate the impact of our
OOD style mutations on model accuracy. To this end, we
compare the accuracy of each SUT on our generated OOD
images versus their model accuracy on corresponding real
OOD images. In particular, for a given class 𝑐, we design an
experiment to first compute the accuracy on an OOD image
𝐼𝑚𝑔 generated for class 𝑐. This accuracy is then compared
with the accuracy on a real image 𝐼𝑚𝑔′ that contains the same
number of objects for all classes being considered as in the
OOD image 𝐼𝑚𝑔. Similar to the baseline comparisons, we
also use the insertion mutation operation in this experiment.
RQ5 presents the results of this experiment.

Specifically, we implement this experiment as follows: Us-
ing the dataset ground truth, (𝐺𝑇𝐷𝑎𝑡𝑎(𝐼𝑚𝑔) from Equation 3),
we determine the number of objects for each considered class
present in an original image, i.e., the classes considered for
the insertion operation. We then use the dataset ground truth
as a common oracle across all subject programs and for the
original images. Additionally, the oracle is modified accord-
ingly for generated OOD images, specifically, taking into
account the number of inserted objects. Algorithm 4 details
the procedures involved in implementing this oracle. Given
the OOD image, 𝐼𝑚𝑔, the list of classes to be considered,
𝐿𝐵𝐿𝐿𝑖𝑠𝑡, the class of object to be inserted, 𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒, and
the number of objects of said class inserted, 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑢𝑛𝑡,Algorithm 4 returns the oracle for the number of objects
present in the corresponding OOD image (𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒).
We restrict the set of objects present to the list of classes
being considered (Line 5-Line 7) for insertion. We then find
the expected number of objects in the OOD image for each
such class (Line 10-Line 14).

For each OOD image with respect to a class 𝑐 (∈
𝐿𝐵𝐿𝐿𝑖𝑠𝑡), we identify original images from our dataset that
have identical number of objects for all classes in 𝐿𝐵𝐿𝐿𝑖𝑠𝑡(according to ground truth𝐺𝑇𝐷𝑎𝑡𝑎). We note that it is possible
for multiple images in the dataset to satisfy such a criteria.
Thus, we ensure that each generated OOD image is paired

Rajan et al.: Preprint submitted to Elsevier Page 9 of 19

Distribution-aware Fairness Test Generation

Algorithm 4 OOD oracle for comparison.
1: procedure OOD_ORACLE(𝐼𝑚𝑔, 𝐿𝐵𝐿𝐿𝑖𝑠𝑡, 𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒, 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑢𝑛𝑡)2: ⊳ returns the dataset ground truth for the image, 𝐼𝑚𝑔
3: 𝐺𝑇𝐷𝑎𝑡𝑎 ← (𝐼𝑚𝑔)
4: 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒 ← ∅
5: for (𝑂𝑏𝑗𝐿,−) ∈ 𝐺𝑇𝐷𝑎𝑡𝑎 do
6: if 𝑂𝑏𝑗𝐿 ∈ 𝐿𝐵𝐿𝐿𝑖𝑠𝑡 then
7: 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒[𝑂𝑏𝑗𝐿] ← 𝐺𝑇𝐷𝑎𝑡𝑎[𝑂𝑏𝑗𝐿]8: end if
9: end for

10: for (𝑂𝑏𝑗𝐿,−) ∈ 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒 do
11: if 𝑂𝑏𝑗𝐿 = 𝐶𝑙𝑎𝑠𝑠𝑁𝑎𝑚𝑒 then
12: 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒[𝑂𝑏𝑗𝐿] ← 𝐺𝑇𝐷𝑎𝑡𝑎[𝑂𝑏𝑗𝐿] + 𝐼𝑛𝑠𝑒𝑟𝑡𝐶𝑜𝑢𝑛𝑡13: else
14: 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒[𝑂𝑏𝑗𝐿] ← 𝐺𝑇𝐷𝑎𝑡𝑎[𝑂𝑏𝑗𝐿]15: end if
16: end for
17: return 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒
18: end procedure

with exactly one such image (randomly taken) from the
dataset. We then compare the accuracy with which the classes
being considered, 𝐿𝐵𝐿𝐿𝑖𝑠𝑡, are detected in the OOD image
(using the oracle 𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒) and the accuracy with which
the classes being considered, 𝐿𝐵𝐿𝐿𝑖𝑠𝑡, are detected in the
corresponding original image (using the 𝐺𝑇𝐷𝑎𝑡𝑎 oracle). We
also note that the total number of objects present in both
𝑂𝑂𝐷_𝑂𝑟𝑎𝑐𝑙𝑒 and 𝐺𝑇𝐷𝑎𝑡𝑎 oracle is necessarily equivalent
since we specifically find images that contain the same
number of objects.
Fairness Error Analysis: To determine class-level fairness
violations, we first filter our classes that are not prominent
(occurs <10 times) in our (sub-)datasets to avoid skewness.
We perform filtering for all experiments, except for the
baseline comparison (see RQ2 section 5). This is due to the
relatively smaller set of images involved in baseline (original
data and ID generation).
Implementation Details and Platforms: DISTROFAIR con-
tains 5K lines of Python code using Python 3.7. It uses
(machine learning and image processing) packages such as
PyTorch 1.9, CUDA 110, scikit-learn, numpy and Pillow. In
addition, we also used the Detectron2 [18] and LaMa [22] to
aid in the image generation. For evaluation, we use APIs (with
default settings) for each of our subject programs (Table 4).
All experiments were conducted on a Google Cloud Platform
VM using an N1 series machine with one vCPU, 20 GB of
memory and one attached Nvidia Tesla K80 GPU.
4.2. User Study Design

Our study had 105 users and 60 images to examine if the
generated images are realistic to humans and likely to occur
in the real world.
Study Dataset: We first randomly selected 30 mutated im-
ages from DISTROFAIR such that all three mutation operators
were equally represented. We also took additional care to
ensure that images from both datasets were included. In
particular, we selected 20 images from MS-COCO (vs 10
from CityScapes) due its significantly larger number of class
labels in comparison to CityScapes (183 vs. 20, see Table 3).
We also ensure that most of the selected images (24 out
of 30) induce errors for at least one subject program (see

Table 5). We then select the corresponding 30 real images
for comparison.
Survey Questionnaire: We provide participants a randomly
ordered set of 60 images in our study dataset. To avoid bias,
we ensure that all consecutive images do not have the same
mutation operation, and a mutated image is not next to its
corresponding original image. To validate the soundness of
participant responses, we ask participants to also provide the
number of vehicles in each image. Specifically, the following
questions were posed:
• Image Realism: “On a scale of 0 to 10, how realistic is

the image? “Realistic” means the image depicts or seems
to depict real people, objects or scenarios.”

• Scene Likelihood: “On a scale of 0 to 10, how likely is
the scenario depicted in the image to occur in real life?”

• Validation: “How many vehicles (e.g., cars) are in this
image?”
The questionnaire is available here: https://bit.ly/

3B1Qc12

Participants: We conducted this study on Amazon Mechan-
ical Turk (MTurk) [36]. We received 105 responses in 11.25
hours. Each participant took about 66 minutes to complete
the study, on average.
Response Data Validation: We validated 81 responses by
checking the answers for the number of vehicles in the images.
We randomly chose five unambiguous images (with few and
clear number of vehicles) for validation. We also ensured that
the user agreement for the number of vehicles in the images
is high (above 75%). Then we set a 60% (3 out 5) correctness
threshold for these five images.
Response Data Analysis: To determine semantic validity
of our images, we collated the Likert scale scores for the
81 valid responses using the two questions on the realism
of the images and the likelihood of the depicted scenarios.
We analyse semantic validity using both scores for original
versus mutated images across different mutations, datasets
and error-inducing images (see RQ4 in section 5).

5. Evaluation Results
RQ1 Effectiveness: We evaluate the effectiveness of DIS-
TROFAIR using both the GT and MT oracle (Table 6 and
Table 7), as discussed in section 2. The choice of GT test
oracle is useful when practitioners have access to ground
truth information on the dataset, whereas the MT oracle is
useful when practitioners lack access to detailed information
on the dataset or other subject programs.
Using Ground Truth Oracle: Table 6 shows that DISTRO-
FAIR is effective in exposing class-level fairness violations
using ground truth information. In particular, DISTROFAIR
reveals 32% class-level fairness violations w.r.t. ground truth
information. About one in five inputs (21%) generated by
DISTROFAIR exposed a class-level fairness violation. We
observed that MS-COCO dataset and the Microsoft Vision
subject program are more error-prone than other datasets (i.e.,

Rajan et al.: Preprint submitted to Elsevier Page 10 of 19

https://bit.ly/3B1Qc12
https://bit.ly/3B1Qc12

Distribution-aware Fairness Test Generation

Table 6
Effectiveness of DistroFair using GT oracle (maximum fairness error rate and violation rate for each (sub)category are in bold).

#Class Violations Violative Rate Error Inputs Fairness Error Rate

Subject Datasets Mutation Ops #Classes Err Classes Violative Rate Inputs #Gen Inputs Error Rate

GCP

MS-COCO
Insert 61 16 0.26 1233 6027 0.205

Deletion 28 15 0.54 230 572 0.402
Rotation 49 13 0.27 317 1425 0.222

CityScapes
Insert 22 2 0.09 377 8486 0.044

Deletion 14 4 0.29 99 620 0.160
Rotation 19 8 0.42 297 2500 0.119

MS

MS-COCO
Insert 46 16 0.35 2895 5908 0.490

Deletion 19 7 0.37 253 572 0.442
Rotation 31 14 0.45 762 1425 0.535

CityScapes
Insert 17 7 0.41 3305 9085 0.364

Deletion 10 4 0.40 182 620 0.294
Rotation 17 5 0.29 493 2500 0.197

AWS

MS-COCO
Insert 35 6 0.17 716 4583 0.156

Deletion 17 8 0.47 96 572 0.168
Rotation 27 10 0.37 124 1425 0.087

CityScapes
Insert 15 2 0.13 139 7104 0.020

Deletion 11 5 0.45 293 620 0.473
Rotation 13 1 0.08 18 2500 0.007

Dataset MS-COCO All 313 105 0.34 6626 22509 0.294
CityScapes All 138 38 0.28 5203 34035 0.153

Subject
GCP All 193 58 0.30 2553 19630 0.130
MS All 140 53 0.38 7890 20110 0.392
AWS All 118 32 0.27 1386 16804 0.082

Total All All 451 143 0.32 11829 56544 0.209

CityScapes) and other subject programs (GCP and AWS). For
instance, DISTROFAIR exposed more fairness violations (0.34
vs. 0.28) and generated more error-inducing inputs (0.294
vs. 0.153) for MS-COCO than CityScapes (see Table 6).
Overall, DISTROFAIR effectively exposes class-level fairness
violations with GT oracle.
21% of the OOD images generated by DISTROFAIR reveal

class-level fairness violations in 32% of classes, using
ground truth oracle.

Using Metamorphic Oracle: Table 7 shows that DISTRO-
FAIR revealed 32% class-level fairness violations relating to
exclusion errors and 21% class-level fairness violations for
inclusion errors. In addition, we observed that up to one in
five inputs generated by our approach reveals a class-level
fairness violation. For instance, 21% of the generated inputs
exposed class-level fairness violations relating to inclusion
errors across all settings (see Table 7). Although DISTROFAIR
is effective across all settings, we found that it finds more
errors using CityScapes dataset than using MS-COCO. We
attribute the effectiveness to the use of distribution-aware
mutations, which drive the input generation to induce class-
level fairness violations.

Using the metamorphic oracle, one-fifth of the inputs
generated by DISTROFAIR revealed fairness errors in

one-third of classes.

Test Oracle Comparisons: Figure 3a illustrates that the MT
oracle exposed most (91% =69/76) of the fairness violations
found by the GT oracle. Besides, two-third (67% = 69/103)
of all violated classes are found by both oracles. We also
observed that almost 7% the violated classes found by the
GT oracle are missed by the MT oracle. This is due to
the difference in the number of classes identified by both
oracles. In our setting, the GT oracle identifies more classes
than the MT oracle, since it obtains image recognition data
from multiple sources (i.e., all subjects and dataset labels) in
comparison to the MT oracle (a single subject). This directly
influences the mean error rate and the found violated classes.
Finally, we observed that the MT oracle exposed 26% of
fairness violations that are missed by the GT oracle. Unlike
the GT oracle, the MT oracle accounts for errors where the
subject performs better on the mutated image (e.g., AWS in
Table 1). This is useful to expose weaknesses in a subject.

The MT oracle is a good (proxy) estimator of the GT
oracle. MT revealed most (69/76 ≈ 91%) of the fairness

violations found by GT.

RQ2 Baseline Comparison: We compare DISTROFAIR to
fairness analysis with (a) only original data (DISTROFAIR
vs. Original Data) and (b) only in-distribution (ID) mutation
(DISTROFAIR vs. ID).
DISTROFAIR vs. Original Data: In this experiment, we
consider an approach with developers inspecting fairness
violations only in the original dataset and without access

Rajan et al.: Preprint submitted to Elsevier Page 11 of 19

Distribution-aware Fairness Test Generation

Table 7
Effectiveness of DistroFair using MT oracle (maximum fairness error rate and violation rate for each (sub)category are in bold).
Ex.: Exclusion, Inc.: Inclusion.

#ClassViolations Violative Rate #Error-inducing inputs Fairness Error Rate

Subject Datasets Mutation Ops #Class Ex. Inc. Ex. Inc. Ex. Inc. #gen-Inputs Ex. Inc.
Insertion 61 13 12 0.21 0.2 354 1072 6027 0.059 0.178
Deletion 23 9 7 0.39 0.3 124 193 572 0.217 0.337MS-COCO
Rotation 49 12 8 0.24 0.16 144 240 1425 0.101 0.168

Insertion 22 11 2 0.5 0.09 2354 418 8486 0.277 0.049
Deletion 11 4 4 0.36 0.36 159 195 620 0.256 0.315

GCP

CityScapes
Rotation 18 7 4 0.39 0.22 269 50 2500 0.108 0.020

Insertion 43 16 5 0.37 0.12 1731 1640 5908 0.293 0.278
Deletion 14 6 6 0.43 0.43 221 192 572 0.386 0.336MS-COCO
Rotation 29 10 8 0.34 0.28 348 672 1425 0.244 0.472

Insertion 17 7 5 0.41 0.29 416 2712 9085 0.046 0.299
Deletion 9 3 3 0.33 0.33 129 70 620 0.208 0.113

MS

CityScapes
Rotation 17 3 5 0.18 0.29 213 291 2500 0.085 0.116

Insertion 34 9 1 0.26 0.03 245 156 4583 0.053 0.034
Deletion 16 5 6 0.31 0.38 74 49 572 0.129 0.086MS-COCO
Rotation 26 7 6 0.27 0.23 100 223 1425 0.070 0.156

Insertion 15 7 2 0.47 0.13 842 3886 7104 0.119 0.547
Deletion 11 4 4 0.36 0.36 300 27 620 0.484 0.044

AWS

CityScapes
Rotation 13 3 1 0.23 0.08 566 18 2500 0.226 0.007

MS-COCO All 295 87 59 0.29 0.20 3341 4437 22509 0.148 0.197Dataset CityScapes All 133 49 30 0.37 0.23 5248 7667 34035 0.154 0.225

GCP All 184 56 37 0.30 0.20 3404 2168 19630 0.173 0.110
MS All 129 45 32 0.35 0.25 3058 5577 20110 0.152 0.277Subject
AWS All 115 35 20 0.30 0.17 2127 4359 16804 0.127 0.259

Total All All 428 136 89 0.32 0.21 8589 12104 56544 0.152 0.214

Table 8
Comparison of DistroFair, i.e., out-of-distibution (OOD) mutation-based fairness test generation approach to the baseline, i.e.,
in-distribution (ID) mutation-based fairness test generation. Ex.: Exclusion, Inc.: Inclusion.

#ClassViolations Violative Rate #Error-inducing inputs Fairness Error Rate

Distribution Subject Datasets #Class Ex. Inc. Ex. Inc. Ex. Inc. #gen-Inputs Ex. Inc.
GCP All 81 13 14 0.16 0.17 24 121 1100 0.022 0.11
MS All 58 17 11 0.29 0.19 144 222 917 0.157 0.242ID
AWS All 54 7 4 0.13 0.07 14 161 1355 0.01 0.119

GCP All 78 25 11 0.32 0.14 503 466 2896 0.174 0.161
MS All 56 23 11 0.41 0.2 453 834 3005 0.151 0.278DistroFair
AWS All 37 8 4 0.22 0.11 73 92 2343 0.031 0.039

ID All All 193 37 29 0.19 0.15 182 504 3372 0.054 0.149
DistroFair All All 171 56 26 0.33 0.15 1029 1392 8244 0.125 0.169

Improvement (%) NA NA NA 73.68 0 NA NA NA 131.48 13.42

(a) Unfair Classes found by
GT vs. MT oracles.

(b) Unfair classes (GT & MT
Oracles vs. Original Data).

Figure 3: Illustration of DistroFair effectiveness.

to OOD test suite. Figure 3b highlights the similarity and
differences in the class-level fairness violations exposed by
such an approach with respect to DISTROFAIR.

We found that DISTROFAIR exposes (30%) more class-
level fairness violations than the original data (103 vs. 79)
(see Figure 3b). More importantly, a developer using only the
original dataset will miss 39.2% (51 out of 130) of the class-
level fairness violations exposed. In addition, DISTROFAIR
is a good proxy for determining the class-level fairness
violations found in the original dataset, since it exposes 66%
(52 out of 79) of the class-level fairness violations exposed
by the original dataset. These results highlight the need for
generating OOD data, as they demonstrate that DISTROFAIR
is effective in exposing fairness violations missed by the
original dataset.

In addition, we performed a statistical analysis on both
sets of images. We calculate the error rates for each image

Rajan et al.: Preprint submitted to Elsevier Page 12 of 19

Distribution-aware Fairness Test Generation

based on our ground truth reference, 𝐺𝑇𝑅𝑒𝑓 , taking care to
exclude the class being mutated from the error calculation.
More specifically, we conducted a Mann–Whitney U-test
to determine whether the original images from the dataset
were distinguishable from generated OOD images using their
error rates. The Mann-Whitney U test shows that there is a
significant difference between the two sets of images; it yields
a test statistic of 41951407.5 and a p-value of ≈ 1 ⋅ 10−46

Class-level fairness analysis with DISTROFAIR is more
effective than using only the original dataset. DISTROFAIR
exposes (30%) more class-level fairness violations than the

original dataset and 39.2% of all found violations were
exposed by DISTROFAIR only.

DISTROFAIR vs. ID: In this experiment, we compare the
OOD style mutation of DISTROFAIR with the alternative
in-distribution (ID) mutation. As discussed in subsection 4.1
(Baseline Comparison), we employ only the insertion opera-
tion for this comparison.

Our evaluation results show that OOD style mutation
outperforms the ID-based mutation approach in revealing
class-level group fairness violations (see Table 8). Specifi-
cally, DISTROFAIR reveals up to 74% more class-level fairness
violations than the baseline for exclusion errors (see Table 8).
In addition, we found that a developer is more than two times
likely (up to 131%) to find class-level fairness errors with
OOD than ID. Furthermore, OOD generates over 8K inputs
and 1029 error-inducing inputs for exclusion errors, while ID
generates only 182 error-inducing inputs and over 3K total
inputs. This is particularly due to the fact that the input space
for OOD is typically much larger than ID, since ID mutations
are constrained within a static range. These results suggest
that our use of OOD-based mutation contributes significantly
to the effectiveness of DISTROFAIR.

Similarly, we conducted a Mann–Whitney U-test to
determine whether the generated in-distribution images were
distinguishable from generated OOD images when using their
error rates. We found that there is a significant difference
between the two sets of images; it yields a test statistic of
86298859.0 and a p-value of ≈ 2 ⋅ 10−20.
OOD mutation significantly contributes to DISTROFAIR’s
effectiveness. It is up to 2.3X as effective as ID mutation.

RQ3 Efficiency: This RQ examines the efficiency (time
performance) of our approach (DISTROFAIR) in generating
fairness test suites. For a fair and balanced evaluation, we only
report the time-taken for DISTROFAIR during initial execution
without caching the generated images for each dataset. Hence,
we report the time-taken for the two initial experimental
settings with MSCOCO using Amazon Rekognition (aka
AWS) and the CityScapes dataset with Google Vision API
(aka GCP).

Table 9 reports the test generation time of DISTROFAIR.
It highlights that the two initial experimental setups took
about 39 hours to complete the generation of 18K inputs.
This implies that DISTROFAIR generates a fairness test case
in about 7.7 seconds, on average. Moreover, the number

Table 9
Test Generation Efficiency of DistroFair.

Time Taken in seconds (#Images Generated)

Dataset (subject) Insertion Deletion Rotation Total
MS-COCO (AWS) 38112 (4583) 2698 (572) 12502 (1425) 53312 (6580)
CityScapes (GCP) 54518 (8486) 5257 (620) 27118 (2500) 86893 (11606)

Total 92630 (13069) 7955 (1192) 39620 (3925) 140205 (18186)

of exposed fairness violations and generated error-inducing
inputs within the test generation time is reasonable for a
developer. For instance, DISTROFAIR generated hundreds
(847) of error-inducing inputs and exposed 34 class-level
fairness violations within 15 hours of fairness test generation,
when testing AWS using the MS-COCO dataset (see Table 7).
Further inspection shows that these results hold across
mutation operations. In particular, the deletion operation
is the fastest mutation operation (about 6.7 seconds) and
the rotation operation is the most expensive operation (10
seconds), on average. Deletion operation is cheaper due to
the single deterministic attempt at deleting all objects of the
class in the image. In contrast, rotation is more expensive
since it requires inpainting and insertion. The performance
of DISTROFAIR across the datasets is similar. Specifically,
DISTROFAIR took about 7.5-8 seconds to generate an input
across both datasets. We attribute this efficiency to the
lightweight and inexpensive nature of our distribution-aware
mutation operations.
On average, DISTROFAIR takes ≈ 7.7 sec to generate a test.

RQ4 Semantic Validity: To measure validity, we conduct
two experiments, namely (1) a qualitative user study, and (2)
a quantitative image quality experiment. Both of which are
accompanied with statistical analysis. In the following, we
report the settings and results of each experiment.
User Study: Firstly, we conducted a user study to evaluate
the semantic validity of the images generated by DISTRO-
FAIR. Our study involves 105 participants and 60 images
(see subsection 4.2). This qualitative user study allows to
accurately capture the realism of our images, especially from
the human perspective. We note that a user study continues
to be common practice in assessing the effectiveness of the
generated images [37, 38, 39]. In addition, most methods
used to assess image quality are based on learning-based
models where a quality prediction model is learned from data
that is labeled by humans [40, 41].

Our user study results show that images generated by our
test generator (DISTROFAIR) are semantically valid, when
compared to real-world images. Table 10 shows that our
mutation operations are (up to 91%) as realistic as real-world
images and (up to 92%) likely to occur in real life (see “Real
vs. Mut” deletion operation). We observed that the deletion
operation produces the most (up to 92%) semantically valid
images. Meanwhile, the insertion operation produces the
least realistic images, yet images resulting from the insertion
operation are (up to 71%) likely to occur in real life. We also
observed that these results are similar for the error-inducing
images, i.e., images that cause an error in at least one subject

Rajan et al.: Preprint submitted to Elsevier Page 13 of 19

Distribution-aware Fairness Test Generation

Table 10
Semantic validity (realism and likelihood) of real images versus DistroFair’s generated images.

Semantic Validity of All Images (only Error-inducing images)
Realism of Images Likelihood of Scenarios

Dataset Real Mutated Insertion Deletion Rotation Real Mutated Insertion Deletion Rotation
MS-COCO 7.83 6.56 (6.52) 5.66 (5.66) 7.14 (6.99) 6.59 (6.99) 8.08 6.89 (6.85) 6.12 (6.12) 7.44 (7.31) 6.81 (7.16)
CityScapes 8.02 5.93 (5.53) 4.67 (4.67) 7.84 (NA) 6.56 (6.67) 8.12 6.36 (6.03) 5.28 (5.28) 7.79 (NA) 6.95 (7.04)
Total 7.89 6.35 (6.23) 5.26 (5.26) 7.21 (6.99) 6.57 (6.85) 8.11 6.71 (6.61) 5.78 (5.78) 7.48 (7.31) 6.88 (7.11)
Real vs. Mut (%) NA 80.4 (78.9) 66.7 (66.7) 91.4 (88.6) 83.3 (86.7) NA 82.8 (81.6) 71.3 (71.3) 92.2 (90.1) 84.9 (87.7)

program. Furthermore, we found that both benign and error-
inducing images were seen as being similarly valid, realistic
and likely to occur. Overall results show that all tested images
generated by DISTROFAIR are 80% as realistic as real-world
images. Participants also report that generated images depict
scenarios that are 83% as likely to occur in real life when
compared to the original images. This suggests that the OOD
images generated by DISTROFAIR do not deviate significantly
from real-world expectations of humans. Additionally, such
results hold regardless of the error-inducing ability of the
images and type of mutation operators.
Statistical Analysis (User Study): In addition, we performed
a statistical analysis of our user study results. Specifically, we
conducted a Mann–Whitney U-test to determine whether the
original images from the dataset were indistinguishable from
their corresponding OOD images using the reported realism
scores of participants. The Mann-Whitney U test shows that
there is a clear difference in the realism of the two sets of
images, it yields a test statistic of 3791661.5 and a p-value
of zero. Figure 4 also provides an overlapping frequency
graph of the two sets of scores. It shows that the scores for
both real and OOD images mostly overlap. However, we also
observe that a portion of our OOD images have scores that
are very low (between one and three inclusive) indicating
that some of our generated images might be unrealistic. This
is primarily due to the current limitations of the state-of-the-
art software tools for image mutations (e.g., current object
insertions techniques are unable to perfectly blend inserted
objects into the original image). For instance, inserted objects
might not perfectly match the lighting conditions present in
the original image. As such tools become more mature in
the future, we expect to obtain more realistic images using
DISTROFAIR and our mutation operations.
Image Quality Analysis: Finally, we quantitatively evaluate
the overall quality of the generated images using the PyTorch
Image Quality (PIQ) library [42]. In particular, we evaluate
the image quality of the set of original images versus OOD
images (generated by DISTROFAIR) in our user study using
CLIP-IQA [43]. CLIP-IQA evaluates the quality of an image
using two antonym prompts. Antonym prompts allows it to
to accurately determine where on the spectrum a particular
image falls. In our experiments, we use CLIP-IQA to evaluate
the quality of the image by providing it with the custom
prompts, “Realistic photo” and “Unrealistic photo”. This
allows us to evaluate the realism of the image.

Our evaluation results show that the quality of the set
of OOD images, generated by DISTROFAIR, are similar to

Figure 4: Distribution of the number of images with a given
realism score, where 1 is the lowest possible score and 10 is the
highest possible score.

that of the original images. The CLIP-IQA score for the
original images is 0.695, while the CLIP-IQA score for the
OOD images, generated by DISTROFAIR, is 0.696, on average.
Using the Mann-Whitney U test, we also perform statistical
analysis to determine whether the two sets of images can
be differentiated on the basis of the CLIP-IQA score. We
found that the quality of the set of OOD images, generated
by DISTROFAIR, are statistically indistinguishable from the
original images. In particular, the Mann-Whitney U test yields
a test statistic of 448.5 and a p-value of 0.99. These results
show that DISTROFAIR and its mutation preserves the image
quality in the original images.

Generated images are (up to 91%) as realistic as real
images, and the depicted scenes are (up to 92%) likely to

occur in real life.

RQ5 Generated images vs. Real-World OOD image: In this
experiment, we compare the accuracy of our SUTs on 1) OOD
images generated by the insertion operation in DISTROFAIR,
versus 2) images from the dataset that contain equivalent
number of objects present. Table 11 highlights our results.

We found that the SUT accuracy on OOD images gen-
erated by DISTROFAIR is better than the accuracy on real
images containing similar number of objects (see Table 11).
In particular, we note that AWS achieves similar accuracy for
both generated images and real-world OOD images from the
CityScapes dataset: In this case, the model accuracy on the
images generated by DISTROFAIR are only 5.4% more than

Rajan et al.: Preprint submitted to Elsevier Page 14 of 19

Distribution-aware Fairness Test Generation

Table 11
Accuracy of our SUTs on OOD images generated by Distro-
Fair and similar images from the dataset.

MSCOCO CityScapes
Dataset
Images

OOD
Images

OOD Acc.
Imp. (%)

Dataset
Images

OOD
Images

OOD Acc.
Imp. (%)

GCP 0.180 0.290 60.9 0.132 0.358 170.6

MS 0.182 0.284 56.2 0.138 0.275 99.3

AWS 0.584 0.736 26.0 0.602 0.635 5.4

that of real-world OOD images. In addition, the OOD images
produced by DISTROFAIR had a consistently higher accuracy
when compared to the real images from the dataset. The
difference in the accuracy can be attributed to our inserted
objects being placed in focus, e.g., because our insertion
operation does not place objects behind already existing
objects. Notably, images with object occlusion, which may
be present in the images in the dataset, are more difficult to
detect. However, for our approach, the increased likelihood
of generating images without occlusion leads to much higher
detection rates. Overall, these results indicate that (a) our
image mutations do not adversely impact the accuracy of
image recognition software, and (b) the errors exposed by
DISTROFAIR are not due to performance degradation in the
recognition of the image classifiers. This is evident for GCP
where SUT accuracy on generated images is 2.7x as much as
on real OOD images in the dataset.
SUT accuracy on OOD images generated by DISTROFAIR

is (up to 170%) more than real-world OOD images.

RQ6 Original Images vs. Error-inducing OOD images:
In this experiment, we compare the accuracy of our SUTs
(image classifiers) on the error-inducing images generated
by DISTROFAIR versus the corresponding original images
from the dataset. In particular, we examine whether the SUTs
correctly identify the objects from the non-mutated classes
that are present in the image. We then compare the relative
performance of each SUT across all non-mutated classes.

For non-mutated classes, we found that DISTROFAIR’s
mutation impairs SUT accuracy on the original images by up
to 24.2%, on average. Table 12 shows that the accuracy of
the SUT on error-inducing images is broadly lower than their
accuracy on the corresponding original images. Furthermore,
we find that the performance of our SUTs on CityScapes
is worse than the performance on MSCOCO. We attribute
this to the smaller set of classes found in CityScapes (30 as
opposed to 183 in MSCOCO). For instance, certain objects
(not present in the ground truth) recognised by the SUTs are
excluded from the calculation of accuracy in Table 12. Such
objects are present with higher frequency in CityScapes due
to the relatively smaller set of classes in the ground truth. As
such, the accuracy of our SUTs is lower for CityScapes as
compared to MSCOCO.

We also find instances where the accuracy of the error-
inducing images is similar to the accuracy on the original
images. For instance, we see that AWS actually performs

Table 12
Accuracy of our SUTs on non-mutated classes on error-inducing
OOD images generated by DistroFair and the corresponding
original images from the dataset.

MSCOCO CityScapes

Original
Images

OOD
Images

Relative
Acc. (%)

Original
Images

OOD
Images

Relative
Acc. (%)

GCP 0.469 0.434 92.5 0.345 0.262 75.8

MS 0.344 0.285 82.9 0.292 0.237 81.1

AWS 0.649 0.658 101.4 0.656 0.463 70.5

Average 0.487 0.459 92.3 0.431 0.321 75.8

slightly better (1.4%) on the error-inducing images generated
by DISTROFAIR on the MSCOCO dataset. The difference
in accuracy can be attributed to the fact that these images
are error-inducing and as such inherently contain classes
that the SUTs struggle to classify. In addition, our mutation
operators can introduce artifacts that affect the realism of
the generated images. In conjunction with these artifacts, our
insertion operator might also inadvertently cause occlusion
that prevent SUTs from performing to their fullest abilities.
However, considering sufficiently large samples of original
images, we note that these artifacts and occlusions ought to
affect the different classes to a similar extent. As such, we
should expect the performance of any particular class to drop
by a similar amount when subject to these mutations.
On average, DISTROFAIR’s mutation reduces the accuracy

of the SUT on the OOD generated images versus the
original images by up to 24.2% for non-mutated classes.

6. Limitations and Threats to Validity
Internal Validity: The main threat to internal validity is
whether our implementation indeed performs OOD-based
test generation. We mitigate this threat by conducting typical
software quality controls such as testing and code review. For
instance, we ran several tests to ensure our implementation
produced the expected outcome for each mutation, dataset
and subject program. We also manually inspected random
samples of generated images and compare them to the original
image to ensure our mutation operations are indeed OOD
and related to class-level fairness. Finally, we conducted a
user study to examine the semantic validity of OOD images
(RQ4).
Construct Validity: This relates to the metrics and measures
employed in our experimental analysis. We mitigate this by
employing standard measures of test generation effectiveness
such as the number/rate of generated inputs, error-inducing
inputs and fairness errors (or violations). Such measures are
employed in the literature to evaluate fairness testing and test
generation methods [44, 45, 46]. Additionally, our ground
truth (GT) oracle implicitly relies on the accuracy of the labels
in the dataset. These labels are typically labelled by humans.
We mitigate this threat by having an alternative metamorphic

Rajan et al.: Preprint submitted to Elsevier Page 15 of 19

Distribution-aware Fairness Test Generation

(MT) oracle. We find that there is a substantial (67%) overlap
between the unfair classes found by the two oracles.
External Validity: We acknowledge that DISTROFAIR may
not generalize to all image datasets and image classifiers.
However, we have evaluated our approach with well-known,
commonly used datasets [46] (see Table 3). In addition,
our subjects are off-the-shelf, mature, commercial image
classifiers provided by software companies such as Google,
Amazon and Microsoft (see Table 4).
Realism of Mutation Operators: The images generated
by DISTROFAIR can contain elements that are inconsistent
with the unmodified portions of the image. For instance,
the objects introduced by the insertion operator could have
been exposed to different lighting conditions than the objects
already in the image. The lack of appropriate shadow detail
could conceivably lead to more errors. We also note that
in some cases DISTROFAIR could conceivably attempt to
remove a large portion of the original image due to the
objects belonging to the mutating class making up most of the
image. In such cases, the images generated by DISTROFAIR
could be more unrealistic. We control for this by evaluating
against an in-distribution baseline in RQ2. We also evaluate
DISTROFAIR against OOD images present in the dataset in
RQ5 and find that our mutation does not adversely affect the
detection accuracy of the SUTs. This allows us to compare
whether the OOD nature of the images is indeed causing the
errors detected. Similarly, both the deletion and rotation can
introduce artifacts that affect the realism of the generated
images. Finally, our evaluation in RQ4 both subjectively (via
user study) and objectively (via CLIP-IQA [43]) shows that
our images are largely realistic, but we acknowledge that the
mutation operators could benefit from better techniques that
generate more realistic images.

7. Related Work
Fairness Test Generation: Recent surveys [46, 45, 44] on
software fairness show that researchers employ different
software analysis and model analysis methods to expose
bias in ML systems. On one hand, white box fairness
testing approaches employ ML techniques (e.g., gradient
computation, and clustering) to generate discriminatory test
cases (e.g., ADF [6, 47] and EIDIG [48]). On the other
hand, black-box approaches leverage the input space and
search algorithms to generate discriminatory inputs, e.g.,
using schemas, grammar, mutation or search algorithms
to drive fairness test generation [5, 49, 7, 50]. Grey-box
fairness testing approaches [51] employ both input space
exploration and model analysis for test generation. Besides,
some methods employ program analysis techniques, e.g.,
symbolic execution [52] and combinatorial testing [53] to
expose bias in ML systems. Likewise, we propose a black-box
fairness test generation approach. Albeit, unlike prior works,
we focus on fairness test generation for image recognition
systems using distribution-aware and semantic-preserving
mutations.

OOD Sampling, Distribution-aware & OOD Testing:
Empirical studies on OOD testing have shown that it is
important for test generation and revealing faults in ML
systems. For instance, Berend et al. [54] found that data
distribution awareness in both testing and enhancement
phases outperforms distribution unaware retraining. Likewise,
Zhou et al. [55] showed that OOD-aware detection modules
have better performance and are more robust against random
noises. Similar to these works, we show that OOD testing is
important for automatically revealing faults in ML systems.
Berend et al. [56] proposed a distribution aware robustness
testing tool to generate unseen test cases for ML task and
recommends that ML testing tools should be aware of dis-
tribution. Besides, Huang et al. [57] proposed a distribution-
aware robustness testing approach for detecting adversarial
examples using the input distribution and the perceptual
quality of inputs. This work, unlike DISTROFAIR, focused on
adversarial testing of ML, and not fairness testing.

Besides, Ackerman et al. [58] proposed an approach to
find explainable data slices where a model underperforms.
In contrast to this work, the objective of DISTROFAIR is
to generate test inputs (images) for finding fairness errors.
Additionally, the work by Ackerman et al. [58] neither

generates tests beyond the dataset nor does it focus on fairness.
Finally, Vernekar et al. [59] proposes an approach to generate
OOD samples with the objective of improving the accuracy
of classifiers on MNIST and Fashion-MNIST datasets. Our
objective is orthogonal to this work. Specifically, we aim to
generate tests that uncover fairness violations in commercial
image recognition software. As such, DISTROFAIR proposes
an efficient algorithm to generate class-level OOD images
based on the occurrences and orientations of the class in an
existing dataset. Moreover, the work proposed by Vernekar
et al. [59] does not target fairness and only involves simple
background and object pixel manipulations. In contrast, we
employ insertion, deletion and rotation of arbitrary objects in
an image, as such is crucial to detect the statistical disparity
among class-level accuracy (i.e., fairness).
Testing of Image Recognition Systems: Researchers have
leveraged traditional software testing approaches to test
image recognition systems in recent years. For instance,
MetaOD leverages an insertion operation to surface errors in
object detection systems [12]. Studies have also demonstrated
the benefits of applying image modification techniques to
computer vision systems [11, 60, 13]. Similarly, we propose
an automated testing system focused on object recognition.
However, we seek to uncover fairness errors as opposed to
the functional errors uncovered by previous works.
Fairness Analysis of Image Recognition Systems: Several
works have studied and analysed bias in image recogni-
tion systems [61, 62, 63, 64, 65, 66, 67]. For instance,
DeepFAIT [68] is a white-box fairness testing approach
that requires access to the software at hand, which is not
applicable for real-world commercial software systems such
as our subject programs. Similar to our work, Guehairia et
al. [69] also proposed an OOD detection approach for fairness
analysis of facial recognition systems. The focus of this work

Rajan et al.: Preprint submitted to Elsevier Page 16 of 19

Distribution-aware Fairness Test Generation

is to enable fair dataset curation and data augmentation rather
than test generation. In addition, DeepInspect [10] exposes
class-level confusion and bias errors in image classifiers.
Unlike DISTROFAIR, DeepInspect is a white-box approach
that does not generate a new test suite for image classifiers.
Instead, it analyzes image classifiers using only an existing
dataset to determine class-level violations.

8. Conclusion
In this paper, we propose DISTROFAIR, a systematic

approach to discover class-level fairness violations in image
classification tasks. The crux of DISTROFAIR is OOD test
generation, which is synergistically combined with semantic
preserving mutation operations. We show that such an
approach is highly effective in revealing class-level fairness
violations (at least 21% of generated tests reveal fairness
errors) and it significantly outperforms test generation within
the distribution (2.3x more effective). Additionally, we show
that our generated tests (OOD images) are 80% as realistic
as real world images. Even though we apply our approach
for image classification tasks, we believe that our approach
is generally applicable for validating multi-label object
classification tasks in other domains. We hope that our open
source OOD testing platform unfolds new opportunities for
simple, yet effective class-level fairness testing for a variety
of ML software systems.

9. Data Availability
We will make the experimental data and source code

publicly available on acceptance. In line with that, we
provide DISTROFAIR and our experimental data for easy
reproducibility, reuse and scrutiny:

https://storage.googleapis.com/

jss-2023-distrofair-gen-images/DistroFair.zip

References
[1] J. Wu, V. S. Sheng, J. Zhang, H. Li, T. Dadakova, C. L. Swisher, Z. Cui,

P. Zhao, Multi-label active learning algorithms for image classification:
Overview and future promise, ACM Computing Surveys (CSUR) 53
(2020) 1–35.

[2] A. Rose, Are face-detection cameras racist?, http://content.time.com/
time/business/article/0,8599,1954643,00.html, 2010.

[3] J. Zhao, T. Wang, M. Yatskar, V. Ordonez, K. Chang, Men also
like shopping: Reducing gender bias amplification using corpus-level
constraints, in: M. Palmer, R. Hwa, S. Riedel (Eds.), Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11,
2017, Association for Computational Linguistics, 2017, pp. 2979–
2989.

[4] S. Verma, J. Rubin, Fairness definitions explained, in: 2018 ieee/acm
international workshop on software fairness (fairware), IEEE, 2018,
pp. 1–7.

[5] S. Udeshi, P. Arora, S. Chattopadhyay, Automated directed fairness
testing, in: M. Huchard, C. Kästner, G. Fraser (Eds.), Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018,
ACM, 2018, pp. 98–108.

[6] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
T. Dai, White-box fairness testing through adversarial sampling, in:
ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, ACM, 2020, pp. 949–960.

[7] E. Soremekun, S. S. Udeshi, S. Chattopadhyay, Astraea: Grammar-
based fairness testing, IEEE Transactions on Software Engineering
(2022).

[8] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated whitebox
testing of deep learning systems, in: Proceedings of the 26th Sym-
posium on Operating Systems Principles, Shanghai, China, October
28-31, 2017, ACM, 2017, pp. 1–18.

[9] Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: automated testing of
deep-neural-network-driven autonomous cars, in: M. Chaudron,
I. Crnkovic, M. Chechik, M. Harman (Eds.), Proceedings of the
40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, ACM, 2018, pp. 303–
314.

[10] Y. Tian, Z. Zhong, V. Ordonez, G. E. Kaiser, B. Ray, Testing
DNN image classifiers for confusion & bias errors, in: ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, ACM, 2020, pp. 1122–1134.

[11] T. Woodlief, S. G. Elbaum, K. Sullivan, Semantic image fuzzing of AI
perception systems, in: 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022, ACM, 2022, pp. 1958–1969.

[12] S. Wang, Z. Su, Metamorphic object insertion for testing object
detection systems, in: 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020, IEEE, 2020, pp. 1053–1065.

[13] B. Yu, Z. Zhong, X. Qin, J. Yao, Y. Wang, P. He, Automated testing
of image captioning systems, in: ISSTA, ACM, 2022, pp. 467–479.

[14] D. Teney, E. Abbasnejad, K. Kafle, R. Shrestha, C. Kanan, A. van den
Hengel, On the value of out-of-distribution testing: An example
of goodhart’s law, in: Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing
Systems 2020, 2020.

[15] N. Ye, K. Li, H. Bai, R. Yu, L. Hong, F. Zhou, Z. Li, J. Zhu, Ood-bench:
Quantifying and understanding two dimensions of out-of-distribution
generalization, in: CVPR, IEEE, 2022, pp. 7937–7948.

[16] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, D. Parikh, Making the
V in VQA matter: Elevating the role of image understanding in visual
question answering, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, IEEE Computer Society, 2017, pp. 6325–6334.

[17] A. Agrawal, D. Batra, D. Parikh, A. Kembhavi, Don’t just assume;
look and answer: Overcoming priors for visual question answering, in:
2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, Computer
Vision Foundation / IEEE Computer Society, 2018, pp. 4971–4980.

[18] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, Detectron2,
https://github.com/facebookresearch/detectron2, 2019.

[19] J. MacQueen, Classification and analysis of multivariate observations,
in: 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281–297.

[20] A. Kirillov, K. He, R. Girshick, C. Rother, P. Dollar, Panoptic
segmentation, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[21] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting,
in: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, 2000, pp. 417–424.

[22] R. Suvorov, E. Logacheva, A. Mashikhin, A. Remizova, A. Ashukha,
A. Silvestrov, N. Kong, H. Goka, K. Park, V. Lempitsky, Resolution-
robust large mask inpainting with fourier convolutions, in: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2022, pp. 2149–2159.

[23] Y. Gal, Uncertainty in Deep Learning, Ph.D. thesis, University of
Cambridge, 2016.

[24] C. M. Jiang, M. Najibi, C. R. Qi, Y. Zhou, D. Anguelov, Improving
the intra-class long-tail in 3d detection via rare example mining, in:
European Conference on Computer Vision, Springer, 2022, pp. 158–
175.

Rajan et al.: Preprint submitted to Elsevier Page 17 of 19

https://storage.googleapis.com/jss-2023-distrofair-gen-images/DistroFair.zip
https://storage.googleapis.com/jss-2023-distrofair-gen-images/DistroFair.zip
http://content.time.com/time/business/article/0,8599,1954643,00.html
http://content.time.com/time/business/article/0,8599,1954643,00.html
https://github.com/facebookresearch/detectron2

Distribution-aware Fairness Test Generation

[25] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[26] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, R. Urtasun,
Upsnet: A unified panoptic segmentation network, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8818–8826.

[27] C.-j. Li, Z. Qu, S.-y. Wang, L. Liu, A method of cross-layer fusion
multi-object detection and recognition based on improved faster r-cnn
model in complex traffic environment, Pattern Recognition Letters
145 (2021) 127–134.

[28] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Friedmann,
P. Schuberth, A. Mayr, M. Heusel, M. Hofmarcher, M. Widrich, et al.,
Speeding up semantic segmentation for autonomous driving (2016).

[29] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S.
Ecker, M. Bethge, W. Brendel, Benchmarking robustness in object
detection: Autonomous driving when winter is coming, arXiv preprint
arXiv:1907.07484 (2019).

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, C. L. Zitnick, Microsoft coco: Common objects in context,
in: European conference on computer vision, Springer, 2014, pp. 740–
755.

[31] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, B. Schiele, The cityscapes dataset for
semantic urban scene understanding, in: Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[32] Google, Google cloud vision api, 2023. URL: https://cloud.google.
com/vision.

[33] Amazon, Amazon rekognition api, 2023. URL: https://aws.amazon.
com/rekognition/.

[34] Microsoft, Azure computer vision api, 2023. URL: https:

//azure.microsoft.com/en-us/services/cognitive-services/

computer-vision/.
[35] scikit learn:, scikit-learn: Machine learning in python, 2023. URL:

https://scikit-learn.org/stable/.
[36] A. MTurk, Amazon mechanical turk, 2023. URL: https://www.mturk.

com/.
[37] R. Gadde, Q. Feng, A. M. Martinez, Detail me more: Improving gan’s

photo-realism of complex scenes, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 13950–13959.

[38] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, S. Lucey, St-gan: Spatial
transformer generative adversarial networks for image compositing, in:
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 9455–9464.

[39] S. Fan, T.-T. Ng, J. S. Herberg, B. L. Koenig, C. Y.-C. Tan, R. Wang,
An automated estimator of image visual realism based on human
cognition, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 4201–4208.

[40] K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, W. Zuo, End-to-end
blind image quality assessment using deep neural networks, IEEE
Transactions on Image Processing 27 (2017) 1202–1213.

[41] X. Jin, H. Lou, H. Huang, X. Li, X. Li, S. Cui, X. Zhang, X. Li,
Pseudo-labeling and meta reweighting learning for image aesthetic
quality assessment, IEEE Transactions on Intelligent Transportation
Systems 23 (2022) 25226–25235.

[42] S. Kastryulin, J. Zakirov, D. Prokopenko, D. V. Dylov, Pytorch image
quality: Metrics for image quality assessment, 2022. URL: https:

//arxiv.org/abs/2208.14818. doi:10.48550/ARXIV.2208.14818.
[43] J. Wang, K. C. Chan, C. C. Loy, Exploring clip for assessing the

look and feel of images, in: Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, 2023, pp. 2555–2563.

[44] Z. Chen, J. M. Zhang, M. Hort, F. Sarro, M. Harman, Fairness
testing: A comprehensive survey and analysis of trends, arXiv preprint
arXiv:2207.10223 (2022).

[45] M. Hort, Z. Chen, J. M. Zhang, F. Sarro, M. Harman, Bias mitigation
for machine learning classifiers: A comprehensive survey, arXiv
preprint arXiv:2207.07068 (2022).

[46] E. Soremekun, M. Papadakis, M. Cordy, Y. L. Traon, Software fairness:
An analysis and survey, arXiv preprint arXiv:2205.08809 (2022).

[47] P. Zhang, J. Wang, J. Sun, X. Wang, G. Dong, X. Wang, T. Dai,
J. S. Dong, Automatic fairness testing of neural classifiers through
adversarial sampling, IEEE Transactions on Software Engineering
(2021).

[48] L. Zhang, Y. Zhang, M. Zhang, Efficient white-box fairness testing
through gradient search, in: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
103–114.

[49] Z. Yang, M. H. Asyrofi, D. Lo, Biasrv: Uncovering biased sentiment
predictions at runtime, in: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2021, pp. 1540–1544.

[50] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, L. Zhang, Automatic
testing and improvement of machine translation, in: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 974–985.

[51] S. Tizpaz-Niari, A. Kumar, G. Tan, A. Trivedi, Fairness-aware
configuration of machine learning libraries, in: 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), IEEE,
2022.

[52] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, D. Saha, Black box fairness
testing of machine learning models, in: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019,
pp. 625–635.

[53] D. P. Morales, T. Kitamura, S. Takada, Coverage-guided fairness
testing, in: International Conference on Intelligence Science, Springer,
2021, pp. 183–199.

[54] D. Berend, X. Xie, L. Ma, L. Zhou, Y. Liu, C. Xu, J. Zhao, Cats are
not fish: Deep learning testing calls for out-of-distribution awareness,
in: Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 1041–1052.

[55] L. Zhou, B. Yu, D. Berend, X. Xie, X. Li, J. Zhao, X. Liu, An empirical
study on robustness of dnns with out-of-distribution awareness, in:
2020 27th Asia-Pacific Software Engineering Conference (APSEC),
IEEE, 2020, pp. 266–275.

[56] D. Berend, Distribution awareness for ai system testing, in: 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), IEEE, 2021, pp. 96–98.

[57] W. Huang, X. Zhao, A. Banks, V. Cox, X. Huang, Hierarchi-
cal distribution-aware testing of deep learning, arXiv preprint
arXiv:2205.08589 (2022).

[58] S. Ackerman, O. Raz, M. Zalmanovici, Freaai: Automated extraction
of data slices to test machine learning models, in: Engineering De-
pendable and Secure Machine Learning Systems: Third International
Workshop, EDSMLS 2020, New York City, NY, USA, February 7,
2020, Revised Selected Papers, Springer, 2020, pp. 67–83.

[59] S. Vernekar, A. Gaurav, V. Abdelzad, T. Denouden, R. Salay, K. Czar-
necki, Out-of-distribution detection in classifiers via generation (2019).

[60] F. Wotawa, L. Klampfl, L. Jahaj, A framework for the automation of
testing computer vision systems, in: 2021 IEEE/ACM International
Conference on Automation of Software Test (AST), IEEE, 2021, pp.
121–124.

[61] J. Yu, X. Hao, H. Xie, Y. Yu, Fair face recognition using data balancing,
enhancement and fusion, in: European Conference on Computer
Vision, Springer, 2020, pp. 492–505.

[62] Z. Wang, K. Qinami, I. C. Karakozis, K. Genova, P. Nair, K. Hata,
O. Russakovsky, Towards fairness in visual recognition: Effective
strategies for bias mitigation, in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 8919–
8928.

[63] B. Kim, H. Kim, K. Kim, S. Kim, J. Kim, Learning not to learn:
Training deep neural networks with biased data, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 9012–9020.

[64] M. Brandao, Age and gender bias in pedestrian detection algorithms,
arXiv preprint arXiv:1906.10490 (2019).

Rajan et al.: Preprint submitted to Elsevier Page 18 of 19

https://cloud.google.com/vision
https://cloud.google.com/vision
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
https://scikit-learn.org/stable/
https://www.mturk.com/
https://www.mturk.com/
https://arxiv.org/abs/2208.14818
https://arxiv.org/abs/2208.14818
http://dx.doi.org/10.48550/ARXIV.2208.14818

Distribution-aware Fairness Test Generation

[65] T. De Vries, I. Misra, C. Wang, L. Van der Maaten, Does object
recognition work for everyone?, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2019, pp. 52–59.

[66] E. Denton, B. Hutchinson, M. Mitchell, T. Gebru, Detecting bias with
generative counterfactual face attribute augmentation (2019).

[67] T. Wang, J. Zhao, M. Yatskar, K.-W. Chang, V. Ordonez, Balanced
datasets are not enough: Estimating and mitigating gender bias in deep

image representations, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 5310–5319.

[68] P. Zhang, J. Wang, J. Sun, X. Wang, Fairness testing of deep image
classification with adequacy metrics, arXiv preprint arXiv:2111.08856
(2021).

[69] O. Guehairia, F. Dornaika, A. Ouamane, A. Taleb-Ahmed, Facial
age estimation using tensor based subspace learning and deep random
forests, Information Sciences (2022).

Rajan et al.: Preprint submitted to Elsevier Page 19 of 19

