
How to Secure Autonomous Mobile Robots? An Approach with
Fuzzing, Detection and Mitigation
Chundong Wanga,1, Yee Ching Tokb, Rohini Poolatc,1, Sudipta Chattopadhyayb,∗ and Mohan
Rajesh Elarab
aSchool of Information Science and Technology, ShanghaiTech University, China
bSingapore University of Technology and Design, Singapore
cNational University of Singapore, Singapore

ART ICLE INFO
Keywords:
Fuzzing, AutonomousMobile Robot, At-
tack Detection and Mitigation, Embed-
ded Systems

ABSTRACT
Autonomous mobile robots share social spaces with humans, usually working together for domestic or
professional tasks. Cyber security breaches in such robots undermine the trust between humans and
robots. In this paper, we investigate how to apprehend and inflict security threats at the design and
implementation stage of an autonomous mobile robot. To this end, we leverage the idea of directed
fuzzing and design ROBOFUZZ that systematically tests an autonomous mobile robot in line with the
robot’s states and the surrounding environment. The methodology of ROBOFUZZ is to study critical
environmental parameters affecting the robot’s state transitions and subject the robot control program
with rational but harmful sensor values so as to compromise the robot. Furthermore, we develop de-
tection and mitigation algorithms to counteract the impact of ROBOFUZZ. The difficulties mainly lie
in the trade-off among limited computation resources, timely detection and the retention of work effi-
ciency in mitigation. In particular, we propose detection and mitigation methods that take advantage
of historical records of obstacles to detect inconsistent obstacle appearances regarding untrustworthy
sensor values and navigate the movable robot to continue moving so as to carry on a planned task.
By doing so, we manage to maintain a low cost for detection and mitigation but also retain the robot’s
work efficacy. We have prototyped the bundle of ROBOFUZZ, detection and mitigation algorithms in
a real-world movable robot. Experimental results confirm that ROBOFUZZ makes a success rate of up
to 93.3% in imposing concrete threats to the robot while the overall loss of work efficacy is merely
4.1% at the mitigation mode.

1. Introduction
Autonomous mobile robots are widely used to relieve

people from dirty, monotonous, and dull tasks, and also re-
duce economic costs [16, 13, 19, 14, 40]. For example, clean-
ing robots gain wide popularity in tidying private apartments
and public places. Some airports have deployed cleaning
robots to replace human cleaners save housekeeping man-
powers [26, 28]. Since autonomous mobile robots are shar-
ing social spaces with humans at home, in the offices and
even in critical infrastructures like airports and banks, their
security and safety are of paramount importance, especially
concerning they are autonomous without human attendance.

Robotics are generally categorized as cyber-physical sys-
tems (CPS). A robot typically has 1) a digital controller, e.g.,
Raspberry Pi, to manage the system, 2) physical compo-
nents, such as sensors and actuators, to sense the surround-
ing environment (e.g., distance) and to manipulate physical
entities (e.g., wheels and robotic arms), respectively, and 3)
cyber components that connect the robot to networks (e.g.,
for remote control via smartphones). The robot control pro-

∗Corresponding author: S. Chattopadhyay.
cd_wang@outlook.com (C. Wang); yeeching_tok@mymail.sutd.edu.sg

(Y.C. Tok); rohini_poolat@yahoo.com (R. Poolat);
sudipta_chattopadhyay@sutd.edu.sg (S. Chattopadhyay);
rajeshelara@sutd.edu.sg (M.R. Elara)

ORCID(s): 0000-0001-9069-2650 (C. Wang); 0000-0002-4843-5391 (S.
Chattopadhyay); 0000-0001-6504-1530 (M.R. Elara)

1This work was partially done when Chundong Wang and Rohini
Poolat worked in Singapore University of Technology and Design.

gram is critical to the security and safety of a robot as it
decides how to manoeuvre actuators of the robot on read-
ing sensor values. A number of studies have revealed that
it is possible to compromise a CPS through fraudulent sen-
sor values, while mitigating such attacks usually requires the
involvement of a cloud server for remote computation or at-
testation [30, 38, 9, 15, 10]. However, such methods are not
applicable to autonomous mobile robot. Firstly, the com-
putational resource and battery capacity are relatively lim-
ited for an economical autonomous mobile robot compared
to large CPS, say, a power grid. Secondly, the vast popularity
of autonomous mobile robots imposes overwhelming diffi-
culty on security patches or remote attestation from time to
time. Thirdly, many autonomous mobile robots move them-
selves to complete planned tasks, which differentiates them
from stationary CPS like power grid or 3D printer and neces-
sitates a mitigation method that replenishes the movement
of autonomous mobile robot. As a result, it is preferable and
practical to secure an autonomous mobile robot as early as
at its design and implementation stage.

In this paper, we aim to enhance the security and safety
of autonomousmobile robots, particularly ones that aremov-
able because they would be physically detrimental to hu-
man beings once compromised. On one hand, we attempt to
systematically scrutinize the security threats to autonomous
mobile robot through investigating the values of critical sen-
sors, since these sensor values, as inputs to the robot control
program, determine the next states of robot. On the other

C Wang et al.: Preprint submitted to Elsevier Page 1 of 14

hand, with regard to the uncovered threats, we develop an
efficient algorithm to mitigate their impacts while retaining
most of the robot’s work efficacy.

Without loss of generality, we illustrate with an autonomous
mobile robot cruising bymeans of an ultrasonic distance sen-
sor to avoid obstacles. Once the distance sensor indicates a
close obstacle ahead, the robot control program ought to di-
rect the robot to turn left or right. Otherwise, the robot would
crash into the obstacle. As a result, altering the sensor value
to be malicious for the robot control program would inflict
serious threats to the robot. We hence employ the idea of
software fuzzing to test the robot control program. In soft-
ware testing, fuzzing is used to identify security vulnera-
bilities or bugs in a program by subjecting the program to
various kinds of input, and the program may crash or yield
absurd outputs [37, 20, 7]. By fuzzing the robot control pro-
gram, we aim to discover as many flaws as possible in the
robot control program and secure the robot.

We use a state-of-the-art fuzzing tool, i.e., Radamsa [20],
to generate and feed a series of distance sensor values to the
robot control program replacing real-world distances when
the robot is moving. The robot trembles because the fuzzed
sensor values, as intended to maximally uncover bugs of a
program, fluctuate significantly. We can easily patch the
robot control program with a filter to rule out such volatile
sensor values, since distance sensor values fall in a reason-
able range in line with the environment and the state of robot.
For instance, a robot moving towards a wall continuously re-
ceive decreasing distance sensor values.

The analysis over arbitrary and irregular sensor values,
however, implies us to test the control program with ratio-
nal and regular sensor values in a directed fuzzing way. The
distance is a critical environmental parameter for a moving
mobile robot as it triggers state transitions for the robot. For
example, a moving robot receiving decreasing distance sen-
sor values would turn left or right if the distance gradually
drops below a threshold. Given a dynamic obstacle, say, an
automatic sliding door, it may move out of the robot’s path
and the distance sensor value suddenly increases to a large
value, after which the robot keeps moving forward. Whereas
the robot control program is unable to ascertain if an obsta-
cle is truly dynamic or static solely depending on distance
sensor values, because the scenarios where the distance ei-
ther monotonically decreases or abruptly increases are both
possible in the real world. Assume that the robot is moving
towards a hard wall, but we instead replace the distance sen-
sor values with ones that resemble the getaway of a dynamic
obstacle. The robot shall collide with the wall.

The aforementioned example addresses the essence of
our directed fuzzing strategy, namely ROBOFUZZ. In a nut-
shell, by investigating the state transitions and environmental
parameters an autonomous mobile robot, ROBOFUZZ gener-
ates rational but harmful sensor values so as to mislead the
robot for concrete threats.

Adversaries can implement ROBOFUZZ with realistic at-
tack models, like suspending or fabricating sensor values,
to compromise an autonomous mobile robot. As develop-

ers, we move forward and defend against the attacks entailed
via ROBOFUZZ by detecting and mitigating them. There are
two concerns in doing so. First, the detection and mitigation
should not be heavyweight regarding the limited computa-
tional resources of an autonomous mobile robot. Secondly,
once an attack is detected, the mitigation cannot barely shut
down the robot but maximally retain the robot’s work ef-
ficacy. Nevertheless, as mentioned, the robot control pro-
gram alone cannot rule out rational but anomalous sensor
values. We need further information that can be used to
counteract ROBOFUZZ. We note that, for a mobile robot,
such as a cleaning robot, it is supposed to repeatedly cruise
in a certain and steady place. Consequently, the robot is
able to make and maintain a historical record of obstacles
for the place [39]. Such a historical record is an exploitable
resource for us to detect the attacks initiated through ROBO-
FUZZ. Concerning that ROBOFUZZ that fuzzs distance sen-
sor values to emulate fake obstacles, a historical record helps
the robot control program to cross-check if the obstacle is re-
ally dynamic or not to protect the robot.

The historical record is also effectual for us to mitigate
the impact caused by ROBOFUZZ. A movable autonomous
robot must keep moving to complete the task planned for
it even in the presence of an untrustworthy distance sensor.
However, it can utilize the historical record to circumvent
obstacles and navigate the robot. Doing so not only retains
the robot’s work efficacy, but also gains high cost efficiency
in mitigating for an economical robot.

The main ideas of this paper are summarized as follows.
• We propose ROBOFUZZ which tests an autonomous mo-

bile robot by fuzzing rational but harmful sensor values
so as to mislead the robot’s control program;

• To defend against the attacks initiated by ROBOFUZZ, we
develop detection and mitigation methods which lever-
age historical records to maximally protect the robot and
efficiently accomplish planned tasks.

ROBOFUZZ and strategies of detection andmitigation to con-
tract ROBOFUZZ form a self-contained and systematic scheme
that help to develop a secure autonomous mobile robot. We
have prototyped them with a real-world movable robot, i.e.,
iRobot Create 2 with an HC-SR04 distance sensor. Experi-
mental results confirm that ROBOFUZZ attains up to 93.3%
success rate in imposing threats onto a moving iRobot Cre-
ate 2. Our detection and mitigation methods also efficiently
detect attacks at a very high rate and make the robot being
under attack accomplish scheduled tasks with an insignifi-
cant loss of work efficacy, i.e., 4.1% overall.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the background of autonomous mobile
robot. We conduct a motivational study to incur concrete
threats to a mobile robot in Section 3. In Section 4, we detail
the design of ROBOFUZZ. In Section 5 and 6, respectively,
we show our algorithms for detecting and mitigating threats
incurred by ROBOFUZZ. We present experiments with a pro-
totype built with iRobot Create 2 in Section 7. We brief re-
lated works in Section 8. We discuss threats to validity in
Section 9 and conclude the paper in Section 10.

C Wang et al.: Preprint submitted to Elsevier Page 2 of 14

Sensors Controller Motor,
actuator, etc.

Sensor
Value Command

Bluetooth
/Wi-Fi

Service Robot

Adversaries

Figure 1: A Illustration of Mobile Robot and Adversaries

2. Background

In contrast to robots used by manufacturers or special-
ists, mobile robots are close to people and easy to operate,
providing a variety of mobiles, such as housekeeping and en-
tertainment [19, 14]. According to ISO standard [1], a mo-
bile robot is a class of robots that “perform useful tasks for
humans or equipment excluding industrial automation appli-
cations”. An autonomous mobile robot, such as the typical
cleaning robot, has following components: 1) a digital con-
troller such as Raspberry Pi or Arduino Mega where a con-
trol program runs, 2) numerous sensors to sense surround-
ings, 3) wheels to move the robot around, and 4) cyber ac-
cessories for network connection. Autonomousmobile robot
puts reliance on the control program to decide the next move
of it in accordance with sensor values obtained from time to
time. Regarding sensors installed in a mobile robot, they
quantitatively measure and report the environmental param-
eters the robot is encountering. For example, a distance sen-
sor tells whether the robot is too close to any obstacle. Sen-
sors may work in different modes. A sensor working in the
proactive mode alerts the robot control program periodically
or in case of emergency while a sensor working in the pas-
sive mode pends the robot control program to ask for sensor
value.

Robots fall into the broad category of CPS. One out-
standing characteristic of CPS is the vast heterogeneity of
building blocks in different CPS for different usages [9, 21,
32, 4]. An autonomous mobile robot is significantly dis-
tinct from typical CPS such as power grids, handheld smart-
phones or 3D printer [43, 41, 42]. First, an autonomous mo-
bile robot is generally a simple system with an economical
micro-controller and a few hardware components including
sensors, actuators, and network modules. Figure 1 shows a
classic architecture of autonomous mobile robot. Secondly,
autonomous mobile robots gain worldwide popularity in our
daily life. For example, iRobot has sold more than 20 mil-
lion cleaning robots since its foundation [22] while the sales
volume of Xiaomi Mi robots has reached one million in 18
months since its release date [6]. Assuming that a criti-
cal flaw of cleaning robot is uncovered, a large population
of users would be affected. Thirdly, unlike CPS that un-
dergo frequent maintenance mobiles in subways, hospitals,

ControllerSensor Actuator
Actuator

command

Drop

Sensor value
(distance: 5cm)

(a) Suspension Attack
ControllerSensor Actuator

Actuator
command

Alter: 5cm100cm

Sensor value
(distance: 5cm)

(b) Fabrication Attack

Figure 2: An Illustration of Typical Attacks Models

and power stations [8, 42, 46], many mobile robots are un-
likely to be promptly upgraded with security patches. To
update a large number of robots or do remote attestation for
each of them is also challenging and costly for a manufac-
turer. Finally, a mobile robot is not stationary like 3D printer
or handheld smartphone. Once compromised, it might be
manipluated to incur physical damages to surrounding peo-
ple.

In summary, the demand to study security-related issues
for autonomous mobile robots is actual and critical. Re-
cently, researchers have looked into the cyber security of
robots [35, 25, 34, 24]. The security issues should be con-
sidered in the design phase of a mobile robot due to the ever-
increasing popularity of mobile robots and the ever-growing
strengths of adversaries. In this paper, we first proceed at the
standpoint of developers to explore how to reveal as many
flaws as possible for an autonomous mobile robot. Then we
continue to contemplate cost-efficient methods for detection
and mitigation while retaining the robot’s work efficacy.

3. Motivation and Overview
3.1. Security Treats for Autonomous Mobile Robot

Recently, Bonaci et al. [8] investigated the vulnerabil-
ities of teleoperated surgical robots and Quarta et al. [33]
performed an empirical analysis on the security issues of in-
dustrial robots. These works draw the attention of research
community to the security of robots found in factories, oper-
ating rooms, and so on. Nevertheless, such awareness should
be extended to the security of autonomous mobile robots. In
practice, Giese and Wegemer have managed to hack a Xi-
aomi Mi cleaning robot [17]. Their success should not only
alert robot manufacturers, but also the users of such robots.

As mentioned, the robot control program maneuvers an
autonomous mobile robot by reading sensor values. On the
other hand, the network interface of robot widely provides
adversaries an exploitable attack surface, becausemany users
still use default or weak passwords today, especially for do-
mestic robots. As a result, adversaries are bound to manip-

C Wang et al.: Preprint submitted to Elsevier Page 3 of 14

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(a) A static obstacle (e.g., a wall)

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(b) A dynamic obstacle suddenly
moves in the same direction as robot

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(c) A dynamic obstacle suddenly
moves towards the robot

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(d) A dynamic obstacle suddenly
moves out of the path of robot

Figure 3: An Illustration of State Transitions for a Cleaning Robot upon Obstacles

ulate the robot’s sensor values through unauthorized remote
access so as to misguide the robot control program. In the
meantime, there are multiple attack models for adversaries
to follow. In this paper we consider two harmful and repre-
sentative ones that have been manifested recently [12, 34],
i.e., suspension attack and fabrication attack.
Suspension Attack As shown in Figure 2(a), attackers sus-
pend sensors from sending out information. A sensor at the
passive mode, once suspended, would leave a null response
to the robot control program, whichmisleads the control pro-
gram to conclude that the sensor malfunctions. If the sensor
works at the proactive mode, the impact of suspension attack
should be even worse. Consider a distance sensor that alerts
the robot control program only in case of a very close ob-
stacle. After a successful suspension attack, the control pro-
gram would no longer receive any alert. As a consequence,
the robot might crash into an obstacle.
Fabrication Attack With a fabrication attack, adversaries
fabricate harmful sensor values and feed them to the robot
control program. As shown by Figure 2(b), when the robot
is in motion, the control program asks for a distance sensor
value to decide whether an obstacle is nearby to the robot.
Noticing such a request, adversaries replace the normal sen-
sor valuewith an anomalous one. The control programwould
accordingly make a wrong decision and put the robot into a
concrete danger.
3.2. A Motivational Study

Without loss of generality, we choose a programmable
cleaning robot, i.e., iRobot Create 2 [23], for case study. We
run a control program in a Raspberry Pi 3 to maneuver the
robot and install an ultrasonic distance sensor (HC-SR04) to
enable the robot to avoid obstacles. As developers, we use
theWiFi interface shown in Figure 1 as the port to communi-
cate with the robot controller for monitoring and debugging.

The distance to obstacles is a crucial environmental pa-
rameter for a cleaning robot. The control program depends
on the distance sensor values received at runtime to decide
whether the robot moves forward or turns. As these sen-
sor values are the input to the control program, the first at-
tempt we did is leverage the idea of software fuzzing, which
generates various kinds of input values to a program so as
to inflict disorder or even crash to the program. We used
Radamsa [20], a state-of-the-art fuzzing tool, to make a se-
ries of 1,006 values within the distance range supported by

HC-SR04 (2cm to 400cm). A segment of the values fuzzed
by Radamsa are as follows:

{..., 26, 128, 5, 16, 3, 241, 107, 6, 255, 45, 240, 4, 18, ...}
We supposed that such distance sensor values, when fed to
the control program, should have compromised the robot.
However, after we delivered them to satisfy the requests raised
by the control program, the control program would refuse
them as anomalies. We then analyzed the failure of fuzzing
control program in isolation. The reason is mainly due to the
concept of software fuzzing and the mechanism of mobile
robot. Fuzzing a program is used to reveal bugs and secu-
rity vulnerabilities of a program. Hence the fuzzed inputs,
as shown in the above segment, fluctuate significantly so as
to traverse different code paths and generate as many corner
cases as possible. Therefore, fuzzing the control program is
a good approach to test the program alone but ignores the
mechanism of mobile robot. As mentioned, the control pro-
gram transits a cleaning robot among states depending on
sensor values it receives. A cleaning robot moving towards
a wall will receive decreasing sensor values and in the end it
should turn or stop, so the robot transits from a state of mov-
ing forward to the next state of turning or stopping. Given
sensor values fuzzed by Radamsa that change strikingly and
continually, they are easy to be distinguished since they ob-
viously deviate from what the control program expects in an
ordinary environment.

We thoroughly investigate the states of cleaning robot
and environmental parameters that drive the robot to do state
transitions. We find that, for a cleaning robot moving at a
stable velocity (e.g., 5cm/s), its state transitions are affected
by the distance to obstacles in four scenarios, as ideally il-
lustrated by Figure 3. In the four diagrams of Figure 3, the
Y axis is the distance to obstacles measured over time (cf.
X axis). In Figure 3(a), the robot is moving towards a fixed
obstacle (e.g., a wall), so the distance gradually decreases
to zero. The remaining three diagrams show a robot meets
three types of dynamic obstacles. In Figure 3(b), at a time,
a dynamic obstacle (e.g., a pet) suddenly moves away at a
higher velocity and in the same direction as the robot, so
the distance stops dropping but increases abruptly. In Fig-
ure 3(c), after 20s, the dynamic obstacle moves towards the
robot, which makes their distance decrease faster than be-
fore. Figure 3(d) represents another kind of obstacle that
has been on the path of the robot but, at one moment, moves
out of the robot’s path, like the prompt open of an automatic
sliding door. The distance thus migrates to another decreas-

C Wang et al.: Preprint submitted to Elsevier Page 4 of 14

ing linear curve.
The four cases capture normal scenarios where the dis-

tance to obstacles, as a critical environmental parameter, af-
fects a cleaning robot in transiting its states at runtime, say, to
keep moving forward or turn/stop. The four curves in Fig-
ure 3 help the control program rule out anomalous sensor
values like ones generated by Radamsa. More important,
they inspire us with the opportunities to mislead the control
program. Note that the control program relies on the dis-
tance sensor values to learn the distance to obstacles. Con-
sider a cleaning robot is steadily moving to a wall. We are
monitoring the robot’s state and the real distance by reading
sensor values. When the robot is close to the wall, we fuzz
increasing distance sensor values to emulate that the obsta-
cle is dynamic and moving away. If the control program asks
for distance sensor values, we will feed fuzzed values to it.
From the viewpoint of control program, such increasing sen-
sor values are absolutely rational regarding Figure 3(b). So
the robot is misled from the curve in Figure 3(a) to the one
in Figure 3(b). In the end, the robot shall crash into the wall.

We note that sensing modalities other than distance sen-
sors can also be used to detect various environmental pa-
rameters. For example, radar and lidar are used to detect
the presence, distance, and velocity of surrounding obsta-
cles. Given a radar that detects a moving obstacle at a con-
stant velocity, we can intentionally fuzz the velocity values
of the obstacles to pretend that the obstacle stays static. Con-
cretely, the autonomous mobile robot would react to a seem-
ingly static obstacle. This is also likely to impair the robot.
3.3. Overview

Figure 4 illustrates an overview of the three schemes pro-
posed in this paper. The preceding motivating example in-
dicates the essence of ROBOFUZZ (at the leftmost corner
of Figure 4). By closely monitoring the state of a robot and
its environmental parameters (1 in Figure 4), ROBOFUZZ
starts to deceive the robot’s control program at an appropri-
ate occasion with faked but rational sensor values (2 in Fig-
ure 4) so as to inflict concrete harm to the movable robot.

The sensor values fuzzed by ROBOFUZZ should impose
concrete security breaches to autonomousmobile robots. Be-
cause our intention is to enhance the security and safety of
autonomous mobile robots at their design and implemen-
tation stage, we need to defend against ROBOFUZZ. We
subsequently develop detection and mitigation schemes, i.e.,
Shade and Remit at the top of Figure 4, to counteract ROBO-
FUZZ. The detection and mitigation reside within the robot
control program. As a result, they can learn the robot’s states
and historical records of the environment in which the robot
is working. Using such information (3 in Figure 4), the
detection module would report whether the sensor values
are compromised or not (4 in Figure 4). Upon an alert
of detected attacks, the robot control program cannot rely on
the sensor values to proceed moving. Instead, the mitigation
module would be activated to leverage historical records (5
in Figure 4) of obstacles in the environment so as to navigate
the robot to complete planned tasks (6 in Figure 4).

Sensor
Value Command

RoboFuzz (Fuzzing)

Shade (Detection)
Remit (Mitigation)

Control program

Robot
Controller

Detected?

①

②

③
④

⑥

⑤

Robot’s
states

Records of
environment

Figure 4: An Overview of RoboFuzz, Detection & Mitigation

4. ROBOFUZZ for Autonomous Mobile Robot
In this section, we first model the state transitions of au-

tonomous mobile robot and explain the feasibility and pro-
cedure of ROBOFUZZ through state composition (cf. Sec-
tion 4.1). Then we model ROBOFUZZ, a systematic scheme
that effectively damages autonomousmobile robot by fuzzing
sensor values (cf. Section 4.2).
4.1. State Compositions of ROBOFUZZ

An autonomous mobile robot can be modeled as a finite
state machine (FSM). The upper-left part of Figure 5 cap-
tures a segment of a simplified FSM for a cleaning robot.
This segment applies to all four scenarios mentioned in Sec-
tion 3 as it shows how the cleaning robot proceeds on meet-
ing an obstacle that can be either fixed or movable. Mean-
while, as developers of the robot, we maintain the FSM (cf.
Figure 5) and continuously observe the environmental pa-
rameters from time to time. The outcome of ROBOFUZZ
hence can be viewed as a composition of two FSMs (1 in
Figure 5). In particular, once ROBOFUZZ notices a signifi-
cant change of an environmental parameter that is to incur
a state transition, like the distance to an obstacle decreasing
to be very small, ROBOFUZZ will fabricate a series of ratio-
nal sensor values and feed them to the robot control program
to make an illusion (2 in Figure 5), e.g., the obstacle mov-
ing away. By doing so, ROBOFUZZ misleads the robot into
the FSM intended by ROBOFUZZ, which, however, the robot
control program will not be aware of. Eventually the robot is
supposed to be wrecked because of hitting the obstacle (3
in Figure 5).

We note that the main purpose of ROBOFUZZ is to un-
veil the vulnerability of robot control program and in turn
compromise the robot through fuzzing sensor values. ROBO-
FUZZ is an automated procedure. It keeps monitoring the
states of robot and environmental parameters. At a proper
occasion, it activates the state composition with faked but
rational sensor values to deceive the robot control program.
4.2. Fuzzing Autonomous Mobile Robots with

ROBOFUZZ

How ROBOFUZZ compromises an autonomous mobile
robot is modeled as follows. Because ROBOFUZZ works in

C Wang et al.: Preprint submitted to Elsevier Page 5 of 14

Operational States
of an Adversary

Move
forward

Turn/stop

Operational States
of Cleaning Robot

Compose
Obstacle is

close
Obstacle

moves away

Move
forward

Obstacle
moves away

Obstacle is
close

Turn/stop

Move
Forward

Obstacle
moves away

Robot to be
wrecked

1

2

Obstacle is
far away

3

Move
forward

Turn/stop

Obstacle is
close

Obstacle
moves away

Figure 5: An Illustration of State Composition of RoboFuzz

line with the state of an autonomous mobile robot and the
environment, it falls into the category of directed fuzzing.
Directed fuzzing starts off with a given target, such as dam-
aging the robot or reducing the robot’s work efficacy. Let
these targets form a set,

T = {�0, �1, ..., �i, ..., �n−1},
where �i (0 ≤ i < n) is one independent target, e.g., to dam-
age the robot, and the value of n depends on the intention of
adversaries. Before fuzzing, we, at the standpoint of adver-
saries, assume that the physical states of the robot monitored
at runtime form a set, i.e.,

Z = {�0, �1, ..., �k, ..., �p−1}.
We also assume a thorough understanding of the robot, par-
ticularly all the components embodied in the robot, say,

C = {s0, s1, ..., sl−1, a0, a1, ..., am−1},
in which there exist all l sensors and m actuators. ROBO-
FUZZ relies on the l sensors to spot the environment. In ad-
dition, ROBOFUZZ can also utilize actuators for a target al-
though we use sensors for illustration in preceding sections,
e.g., by driving wheels faster than usual towards an obstacle.

To attain a specific target, ROBOFUZZ must formulate 1)
what states and environmental parameters should be moni-
tored, 2) which sensors and actuators in C are useful for the
target, and 3) when (i.e., the aforementioned ‘appropriate’
occasion) and how to alter sensor values or actuator com-
mands for a detrimental state transition (e.g., transiting be-
tween different curves shown in Figure 3).

Hence, for a target �i, we need 1) a subset ofZ, i.e., Z i,which subsumes states that are useful for �i, 2) a subset of
C , say, C i, which is a list of essential sensors and actuators
for �i, and 3) a set V i in which each element includes a tuple
for the j-th (0 ≤ j < |C i|) sensor or actuator in C i, i.e.,

⟨

v(i)j ,

(i)
j , f

(i)
j

⟩

.

v(i)j is a normal sensor value/actuator command while
 (i)jis a fuzzed sensor value/actuator command. For instance,
v(i)j and
 (i)j fall into the range of [2, 400] (cm) for an HC-
SR04 ultrasonic distance sensor. Note that both of them can
also be a special value ∅ which stands for the non-existence
of sensor value/actuator command. ∅ is useful when there
ought to be no sensor value/actuator command or adversaries
intentionally drop a sensor value/actuator command. The

third element in the tuple, i.e., f (i)
j , is a function,

f (i)
j ∶ Z i ×Dom

(

v(i)j
)

→ Dom
(

 (i)j
)

, (1)
where Dom(x) means the domain of x. Assuming that the
robot is at a state � ∈ Z i (e.g., moving forward) and one or
multiple environmental parameters are to change, like when
the distance to obstacles, i.e., v(i)j , is going to decrease to be
6cm, f (i)

j alters v(i)j to
 (i)j , say, from 6cm to 60cm (i.e., mak-
ing a fixed obstacle ‘move’). f (i)

j hence converts a normal
sensor value/actuator command or∅ to be a still rational but
harmful value. Also it may replace a sensor value/actuator
command with ∅ to hinder the robot control process from
interacting with corresponding sensors/actuators. f (i)

j keeps
affecting the robot control process until the achievement of
target �i.Finally, we capture a successful fuzzing procedure for
target �i as:

Gi ⊨ �i, (2)
in which Gi is defined as

Gi =
⋃

�∈Zi

{

⟨v(i),
 (i), f (i)
⟩ | ⟨v(i),
 (i), f (i)

⟩ ∈ V i

∧ Dom
(

f (i)) = � ×Dom
(

v(i)
)}

.
(3)

Gi means that, for every state � ∈ Z i, ROBOFUZZ discovers
all tuples related to � and calls the respective function f (i)

to fabricate and/or drop one or multiple sensor values and/or
actuator commands for the success of �i.
Implementing Gi The implementation of Gi is based on
the rationale discussed in the preceding section (cf. Sec-
tion 3). Algorithm 1 shows the implementation of Gi for adistance sensor while the target �i is either to crash the robotor reduce the robot’s work efficacy. ROBOFUZZ continu-
ously tracks running states of an autonomous mobile robot
and waits for a proper time to fuzz the robot ((Lines 1 to 2
in Algorithm 1)). For instance, when the sensor value v(i)j is
gradually decreasing (Line 4), ROBOFUZZ realizes that there
is a fixed obstacle ahead. Therefore, to crash the robot (�i atLine 3), the Gi function would generate sensor values, i.e.,

 (i)j , which continue increasing to resemble a leaving obsta-
cle (Line 7). By doing so, ROBOFUZZ aims to use faked
sensor values to change the scenario shown by Figure 3(a)
to the one in Figure 3(b). Algorithms 1 also shows how to
convert scenarios for other types of obstacles (Lines 8 to 10,
Lines 12 to 15, and Lines 16 to 18).

5. Attack Detection with Shade
ROBOFUZZ provides a way to initiate successful attacks

to an autonomous mobile robot. In this section we will con-
sider how to efficiently detect attacks. We first investigate
possible attack models which, once integrated with ROBO-
FUZZ, would carry the robot into misbehaving states. Ac-
cordingly we look into three classic detection methods, and
develop a hybrid one with wider coverage, higher accuracy
and less overhead.

C Wang et al.: Preprint submitted to Elsevier Page 6 of 14

Algorithm 1 The Gi for a Distance Sensor
Input: The target �i for fuzzing;
Ensure:
 (i)j for the distance sensor si;
1: while (the robot is working) do
2: Get the current state �k, and sensor value v(i)j ;
3: if (�i is to crash the robot) then
4: if (v(i)j is decreasing) then ∕∕Approaching an obstacle
5: if (v(i)j gradually decreasing) then
6: ∕∕Figure 3(a)⇒ Figure 3(b)
7: When v(i)j is small enough, e.g., v(i)j < 20cm,

v(i)j
f (i)
←←←←←←←←←←←←→
 (i)j (
 (i)j continues to increase);

8: else if (v(i)j decreasing more sharply) then
9: ∕∕Figure 3(c)⇒ Figure 3(b)
10: v(i)j

f (i)
←←←←←←←←←←←←→
 (i)j (
 (i)j no longer decreases but

gradually increases);
11: end if
12: else if (�i is to reduce the robot’s work efficacy) then
13: if (v(i)j increases and continue increasing) then
14: ∕∕Figure 3(b)⇒ Figure 3(a)
15: v(i)j

f (i)
←←←←←←←←←←←←→
 (i)j (
 (i)j continues to decrease);

16: else if (v(i)j suddenly increases but then drops) then
17: ∕∕Figure 3(d)⇒ Figure 3(a)
18: When v(i)j suddenly increase, v(i)j

f (i)
←←←←←←←←←←←←→
 (i)j

(
 (i)j continues to decrease);
19: end if
20: end if
21: end if
22: end while
23: Return
 (i)j to replace v(i)j for �i;

5.1. Classic Detection Methods
Fingerprinting Hardware devices have their unique phys-
ical characteristics [12], i.e., fingerprints, such as the sensor
latency (i.e., response time). Assuming that attackers fab-
ricate and send fake sensor values via Wi-Fi, the sensor la-
tency observed by the control process should be extraordi-
nary as network latencies are generally one or two orders of
magnitude longer than typical sensor latencies. Take the ul-
trasonic distance sensor (HC-SR04) for example. Its sensor
latency mostly falls in a range of 2ms to 12ms. By contrast,
the network latency under TCP and UDP protocols varies
between 200ms and 250ms. If the robot control process has
learned a sensor’s normal latency, it is able to detect an at-
tack that delivers sensor values through the network.

Fingerprinting is advantageous with its simplicity and
low overhead. But it has limited usages. Given a sensor
working in a periodical or proactive mode, the robot control
process cannot measure its sensor latency for validation.
Cross-reference Validation (CRV) CRV leverages in-
formation from two or more sources to cross-check for veri-
fication. The challenge in using CRV for an autonomousmo-
bile robot is that every sensor might be compromised and us-
ing different sensors for cross-checking is unreliable. Also,
not many sensors are installed in a small mobile robot for
similar purposes. CRV must use some information that at-

Controller

Sensor
value

Shade
Process

Runtime
information

Attack Alert

Sensor Fingerprinting

CRV

NID

Figure 6: An Illustration of Shade with Robot Controller

tackers are unaware of. Let us still use the distance sensor
for example. A cleaning robot can make historical records
of the positions of stationary obstacles in a normal working
routine. In fact, some iRobot Roomba robots draw a map of
the space they have cleaned [39]. Such historical records can
be secured and used as the norm to validate distance sensor
values. If the distance sensor gives a value that badly vio-
lates historical records, CRV can indicate the occurrence of
an attack.

Compared to fingerprinting, CRV can detect attacks that
compromise sensors working in the proactive mode since
CRV cross-checks by exploiting extra historical records. How-
ever, CRV requires continually tracking the robot’s motion
so as to refer to the correct record. Also, the accuracy of
CRV is not very high because records have been approxi-
mately made [18].
Network intrusion detection (NID) NID performs an
analysis over the behavior, payload and contents of inbound
and outbound network packets [36]. As attackers remotely
attack the robot via network, NID should be practical. Given
amobile robot working in a normal routine, packets exchanged
between it and a legitimate user must follow a regular pat-
tern and the network payload should not change largely. But
when attackers undertake to obtain and alter sensor values,
they would bring about unusual network packets, either in a
large quantity or with abnormal contents. An independent
process monitoring the network traffic should detect such
breaches.

A major drawback of NID is its high cost in computa-
tion and energy. Therefore, in an autonomous mobile robot
powered by a battery, NID should be periodically called for
energy-efficiency [44]. Also, NID cannot capture all attacks
although they go through the network interface. Consider
suspension attacks. If attackers manage to compromise a
sensor just at the first try with few packets, NID might ne-
glect such an attack.
5.2. The Design of Shade

Each of the aforementioned methods has its strengths
and limitations. We have developed a hybrid method called
the shadow detector (Shade). Shade acts as a shadow pro-
cess of the robot control process and closely communicates
with the latter to avoid missing any attack imprint. Fig-
ure 6 illustrates how the Shade process collaborates with
robot control process through inter-process communication.
The control process provides runtime information to Shade,
such as the motion trace, sensor values, sensor latencies, etc.
On the other side, Shade swiftly informs the control process
in case of attacks.

Shade is a hybrid mechanism of fingerprinting, CRV and

C Wang et al.: Preprint submitted to Elsevier Page 7 of 14

Algorithm 2 The Shade Process (Shade())
Input: A request for attack detection p with runtime information;

∕∕ p may contain the sensor mode �, the sensor latency �, the current
location of robot � , etc.

Ensure: An attack alert
 ∕∕
 will be either True or False
1: if (p is with sensor information) then
2: if (� isPASSIVE) then ∕∕Robot actively demands sensor value
3: ∕∕ Shade calls fingerprinting method with sensor latency
4:
 ∶= fingerprinting_check(�);
5: else ∕∕ The sensor reports to robot periodically or in emergency
6: ∕∕ Shade calls CRV first with robot location, then NID
7:
 ∶= CRV_check(�) Or NID_check();
8: end if
9: else ∕∕ Robot controller queries without sensor information
10: ∕∕ Shade calls NID method
11:
 ∶= NID_check();
12: end if
13: Return
 to the robot controller process;

NID so as to achieve wide coverage, high accuracy and low
overhead. Algorithm 2 describes themain procedure of Shade.
The robot control process sends a request for attack detec-
tion either in an on-demand or periodical way and the Shade
process returns whether an attack is happening or not. If
Shade receives a request with sensor information (Lines 1 to
8 in Algorithm 2), it first determines the working mode of
the sensor. Given a sensor working at a passive mode with a
measurable latency, Shade prefers the fingerprinting method
that comes with low cost but high accuracy (Lines 2 to 4).
However, as to a sensor working in a proactive or periodical
mode, Shade calls CRV to validate the sensor value against
historical records (Lines 5 to 8); nevertheless, due to the ac-
curacy of CRV, Shade may use NID for double check with
a short-circuiting logical Or operator (Line 7). Moreover,
the robot control process may ask Shade without any sensor
information. For example, the control process can consult
Shade every five seconds. In this case, Shade needs to ex-
ecute NID that finds out abnormal network traffics (Lines 9
to 11). In the end, Shade timely notifies the robot control
process with a detection result (Line 13).

Shade can detect various attacks and it is beyond just in-
tegrating threemethods in one process. First, Shade explores
the context provided by the robot control process for attack
detection. Generic NID can also detect the most attacks but
with high cost for self-learning and frequent computations.
Shade, however, gains legitimate network behaviors shared
by the robot control process, which surely entails higher ac-
curacy and less overhead. Second, Shade considers the pros
and cons of three methods and complement them for wider
coverage. Like at Line 7 of Algorithm 2, Shade makes NID
recheck if CRV generates a false result because of the latter’s
accuracy.

6. Mitigation with Remit
Once Shade detects any attack affecting an autonomous

mobile robot, wemustmitigate the attack’s impact. A straight-
forward solution is to halt the robot immediately. However,

Algorithm 3 The Mitigation Process (Remit())
Input: A switch from normal mode to safe mode for mitigation.
Ensure: A completion of task, or a switch back to normal mode.
1: repeat
2: Change/keep the robot moving at a lower speed;
3: ∕∕Navigate the robot with historical records used by CRV_check()

4: Call Navigate_with_historical_records();
5: Try to reset corresponding sensor;
6: Call Network_block_attacks() to block attackers;
7: if (attackers are successfully blocked) then
8: Return back to normal mode;
9: end if
10: ∕∕ A dynamic obstacle (e.g., a pet) might appear
11: if (Robot cannot move with no obstacle recorded) then
12: Play sound to drive the person/pet, and wait 1 second;
13: end if
14: Continue moving with historical records;
15: if (the scheduled task is completed) then
16: Return a completion to the robot control process;
17: end if
18: until (Shade() returns False); ∕∕ No attack any longer
19: Switch back to the normal mode of robot control process;

a shutdown of the robot badly loses its work efficacy because
the robot is supposed to have a scheduled task, like tidying a
room. Thus, we need a mitigation algorithm that retains as
much work efficacy as possible for the robot being attacked.
In particular, the mitigation algorithm ought to take into ac-
count two issues. First, an autonomous mobile robot sig-
nificantly differs from stationary CPS and handheld smart-
phones as the robot needs to move itself to work. Since the
distance sensor is not reliable due to attacks, how to navigate
the robot to continue its motion must be resolved. Second,
due to the limited resources of a small mobile robot, includ-
ing the computation capability and energy supply, the miti-
gation algorithm should be lightweight and cost-efficient.

Regarding the two challenges, we have designed a miti-
gation algorithm, namely retaining-oriented mitigation (Re-
mit), to achieve the least loss of work efficacy for an au-
tonomous mobile robot. One noteworthy point of Remit is
that, it reuses the historical records used by Shade in detect-
ing attacks with CRV,which not only preserves themotion of
robot, but also avoids any extra cost for enabling the naviga-
tion. Algorithm 3 captures the procedure of Remit. We de-
fine the robot without being attacked is in the normal mode.
Remit switches the robot to mitigationmode once Shade de-
tects an attack. On entering the safe mode, the robot first de-
celerates its speed (Line 2 of Algorithm 3). This helps it have
more time to respond to an emergent object, say, an obstacle.
Then, Remit leverages the historical records to navigate the
robot (Lines 3 to 4). Since these records are not very accu-
rate, Remit tries to repair the compromised sensor through
resetting (Line 5) and calls the network module to block at-
tackers (Line 6). If the attackers are successfully blocked,
Remit will switch the robot back to the normal mode (Lines
7 to 8). Remit also needs to deal with a dynamic obstacle
(e.g., a pet or person) if the robot cannot move at a time but
no obstacle was recorded (Lines 10 to 13). Remit alerts the
pet or person by playing a sound (Line 12) and continues

C Wang et al.: Preprint submitted to Elsevier Page 8 of 14

remote_read(𝑣);
𝑓(𝑣  𝛾);

send_back (𝛾);

𝑣 = read_sensor();
…

do_act(𝑣); // 𝛾

② 𝑣  𝛾

WiFi WiFi

④ 𝑣  𝛾

Memory Memory

Network

① Sensor value 𝑣

③Altered sensor value 𝛾

Figure 7: An Illustration of Initiating an Attack

moving (Line 14). If the robot completes the scheduled task,
Remit stops the robot (Lines 15 to 17). Otherwise, Remit re-
peats the aforementioned steps until Shade detects no attack
any more (Line 18).

Remit attempts to guarantee thework efficacy of the robot.
Since the robot needs to move at a lower velocity, the time
needed to complete a planned task might become longer.
However, with regard to the robot being under attack, such
additional time cost is insignificant and acceptable.

7. Evaluation
In this section, we would evaluate ROBOFUZZ, Shade,

and Remit to answer following questions.
1) Does ROBOFUZZ manage to compromise an autonomous

mobile robot? Compared to other fuzzing approaches,
does ROBOFUZZ embrace a higher success rate?

2) Is Shade able to detectmost of the attacks initiated through
ROBOFUZZ?

3) Can Remit retain the work efficacy of mobile robot when
mitigating the attacks detected by Shade?

We first present experimental setup and evaluation results
regarding the competence of ROBOFUZZ in compromising a
real-world cleaning robot with two attack targets. Then we
test Shade and Remit to show their effectiveness in detecting
two attack models and retaining the work efficacy of robot.
7.1. Evaluation Setup
Platform We use the aforementioned iRobot Create 2 [23]
as the platform for evaluation. We have prepared a control
program in Python 3 that runs in the Raspberry Pi 3 Model
B+. The default velocity of the robot is set to be 50mm/s.
The path planning of the robot follows the classic zigzag
fashion. The main sensor used for the path planning is an
ultrasonic distance sensor (HC-SR04) installed in front of
the robot. The sensor can detect an obstacle from 2cm to
400cm. As mentioned in Section 2, in the robot control pro-
gram, we configure the sensor to work in different modes to
suit different attack models. In the passive sensor mode, the
control program asks for the sensor value. In the proactive
sensor mode, the sensor warns the control process if an ob-
stacle is nearby or periodically.

As to the attacker side,. we have implemented ROBO-
FUZZ with two attack models (cf. Section 3.1). In light of

Robot
Table

Chair Chair

Auto
sliding
door

Cabinet/shelf

(a) The Use Case Scenario for Testing ROBOFUZZ

200cm

Robot
Obstacle

Obstacle

Wall Wall

(b) The Use Case Scenario for Testing Shade and Remit

Figure 8: An Illustration of Use Case Scenarios for Evaluation

the analyses in Section 3.1, we set the sensor mode to be pas-
sive for fabrication attack model. For the suspension attack
model, we choose the proactive mode.
Implementation In order to manipulate the iRobot Create
2, wemake attack programs in a computer withUbuntu 18.04.
We first exploit the attack vector of WiFi interface of Rasp-
berry Pi as the attack surface to invade the robot. Today
many users still use default or simple passwords or their cre-
dentials are stored in plain text [33, 17]. For a Raspberry Pi
with Raspbian, its default username/password are ‘pi/rasp-
berry’. After we successfully access the robot, we start to
compromise it. Figure 7 exemplifies the process of altering
one sensor value. As adversaries, we fetch the sensor value v
through network (1 in Figure 7), and then alter it to be
 via
the function f (2 in Figure 7). After sending back
 and re-
placing v (3 and 4 in Figure 7), the robot control program
would proceed with
 instead of v. At runtime, ROBOFUZZ
frequently reads v, but only when it perceives an appropriate
opportunity, like the robot approaching a wall, will it call f
and send faked
 back to mislead the robot control program.
Configuration We have made two scenarios to test ROBO-
FUZZ, Shade and Remit, respectively. Figure 8(a) shows the
scenario we have used for testing ROBOFUZZ. It has two
rooms that are connected by an automatic sliding door. The
cleaning robot needs to clean both rooms starting from the
top-left corner. When the robot is working, we try to com-
promise it using three fuzzing methods with two attack tar-
gets: 1) to damage the robot by crashing it to a hard ob-
stacle (e.g., wall or cabinet), and 2) to reduce the robot’s
work efficacy by preventing it from entering and cleaning
the right room. As to three fuzzing methods, the first one
is Radamsa fuzzing sensor values for the control program,
the second one is random fuzzing that initiates an attack at
a random time with a hazardous alteration of sensor values
(e.g., changing v of 10cm to
 of 60cm), and the third one
is ROBOFUZZ. For both attack targets, we conducted 30 tri-
als for a fuzzing method. We define the success rate as the
fraction of the number of successful attacks to 30 trials in
percentage. We note that besides Shade, the robot control
program can rule out anomalous distance sensor values, e.g.,
ones that fluctuate greatly, and subsequently reset the sensor.

C Wang et al.: Preprint submitted to Elsevier Page 9 of 14

Table 1
The number of successful trials and success rates of three
fuzzing methods to achieve the 1st target

Fuzzing Method Radamsa Random fuzzing RoboFuzz

The number of successful trials 0 5 30
Success rate 0% 16.7% 100%

Figure 8(b) captures the scenario we would use to test
Shade and Remit. The reason why we evaluate them in a
scenario different from Figure 8(a) is that we need a quanti-
tative presentation to measure the work efficacy of robot in
case of attacks. As mentioned, we use the quantitative suc-
cess rate to show the effectiveness of ROBOFUZZ. On the
other hand, the width of the room in Figure 8(b) is 200cm
that falls into the range of HC-SR04 (≤400cm); the clean-
ing robot would cruise in the room, so we can record the
exact distance a robot cleans with and without attacks. To
avoid physically crashing the robot into walls or obstacles
due to attacks, we set a safe distance to be 20cm. In other
words, without any attack, when the distance to a wall or ob-
stacle drops below 20cm, the robot should stop moving and
turn left or right; however, on a successful attack, the robot
spins itself in front of an obstacle to indicate that it is being
attacked instead of really colliding with the obstacle. Con-
cerning the safe distance and the diameter of robot, the robot
would clean an estimate of 570cm overall in the room of Fig-
ure 8(b). In addition, for the use of fingerprinting and CRV,
we have run the robot without any attack to collect sensor
latencies and historical records of obstacles.
7.2. Target 1 for ROBOFUZZ: Damaging the Robot

In order to damage the robot, fuzzing methods must let
the robot crash into a fixed obstacle in Figure 8(a). Note that
the robot was not really damaged in trials but would play a
special sound to indicate it was enforced to be within 5cm to
an obstacle. Table 1 shows the number of successful attacks
out of overall 30 trials for three fuzzing methods when they
tried to achieve the target of damaging the robot. Radamsa
failed in all trials because the robot control process certainly
refused sensor values fuzzed by it as they evidently devi-
ate from normal sensor values expected in the environment
shown in Figure 8(a). As to random fuzzing, with regards
to multiple stationary walls and furnitures in Figure 8(a), if
it launched an attack at a moment when, though being ran-
domly picked, the robot was approaching closely to any wall
or furniture, the fuzzed sensor values might make the robot
hit the obstacle and in turn attain the attack target. Whereas,
since random fuzzing acts based on randomization, the suc-
cess rate is low as confirmed by the experimental results (5
out of 30 trials).

On the other hand, ROBOFUZZ successfully damaged the
robot in all 30 trials. Because ROBOFUZZ continued to ob-
serve the environment and monitor the state of robot, at a
proper occasion, it would generate sensor values that brought
the robot from the curve in Figure 3(a) to the one in Fig-
ure 3(b). For a thorough comparison, we have collected dis-
tance sensor values in a normal routine without any attack

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(a) Robot moving towards a wall
without any attack

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(b) Robot deceived with the appear-
ance of dynamic obstacle

Figure 9: A Comparison between Distance Sensor Values with
and without RoboFuzz when damaging the robot

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(a) Robot moving towards automatic
sliding door

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

D
is

ta
nc

e
to

 O
bs

ta
cl

e
(c

m
)

Time (second)

(b) Robot stopped with auto sliding
door changed to be an immovable
wall

Figure 10: A Comparison between Distance Sensor Values with
and without RoboFuzz when prematurely stopping the robot

and when ROBOFUZZ took effect in one trial. Figure 9(a)
indicates that the sensor values from the normal routine well
fit in a decreasing linear curve. On the other hand, in Fig-
ure 9(b), the solid linear curve links genuine sensor values
before the attack initiated by ROBOFUZZ and the dashed line
fits sensor values that impaired the robot. The two diagrams
in Figure 9 clearly verify the capability of ROBOFUZZ.
7.3. Target 2 for ROBOFUZZ: Reducing the Work

Efficacy of Robot

To reduce the robot’s work efficacy, we called three fuzzing
methods to hinder the robot from tidying the right room. Af-
ter the robot finished cleaning up the left room, the robot
should not cross the automatic sliding door due to attacks.
Table 2 shows that ROBOFUZZ achieves a success rate of
93.3% while the rates for Radamsa and random fuzzing are
still low. Note that the success rates for both random fuzzing
and ROBOFUZZ drop compared to that with the first target.
The reason is, on damaging the robot, both fuzzing methods
could find a number of static obstacles to leverage, but there
is only one automatic sliding door connecting two rooms.
Even so, ROBOFUZZ managed to sense the existence of au-
tomatic sliding door, and successfully changed sensor values
in the most trials (28 out of 30) to be decreasing ones that
emulated the door as an immovable wall.

We again tracked sensor values when the robot was going
through the sliding door without attack (cf. Figure 10(a)).
Also in one successful trial, we recorded sensor values the
control process received before and after ROBOFUZZ launched
the attack (cf. Figure 10(b)). As observed in Figure 10, after
12s, ROBOFUZZ effectively deceived the robot which subse-
quently stopped in front of the automatic sliding door.

C Wang et al.: Preprint submitted to Elsevier Page 10 of 14

Table 2
The number of successful trials and success rates of three
fuzzing methods to achieve the 2nd target

Fuzzing Method Radamsa Random fuzzing RoboFuzz

The number of successful trials 0 3 28
Success rate 0% 10.0% 93.3%

 0
 5

 10
 15
 20
 25
 30

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(a) Suspension Attack

 0

 1

 2

 3

 4

 5

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(b) Extended Suspension Attack

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(c) Fabrication Attack

 0

 1

 2

 3

 4

 5

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(d) Masquerade Attack

(a) Suspension Attack Model

 0
 5

 10
 15
 20
 25
 30

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(a) Suspension Attack

 0

 1

 2

 3

 4

 5

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(b) Extended Suspension Attack

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(c) Fabrication Attack

 0

 1

 2

 3

 4

 5

25 50 75 100 125 150 175 200

R
ea

ct
io

n
T

im
e

(s
)

Distance to Obstacle (cm)

(d) Masquerade Attack

(b) Fabrication Attack Model

Figure 11: The Reaction Time of Shade to Attacks at Different
Distances to Obstacle with Two Attack Models

7.4. Detection Results of Shade
We compared Shade to fingerprinting, CRV and NID

methods. We used ROBOFUZZ to initiate attacks in line with
two aforementioned attack models, i.e., suspension and fab-
rication attacks. For each attack model, a detection method
underwent ten trials of attacks. So in all we performed 2 ×
4 × 10 = 80 trials regarding the composition of detection
methods and attack models. Every trial was triggered at the
startup of the robot, which means the robot is at the top-
right corner as shown in Figure 8(b). We did so because an
attack at the very beginning may incur the most challenges
for a detection method, especially when the sensor works at
a proactive mode reporting boolean values. We use two met-
rics to evaluate the effect of detection. One is the number of
trials that a detection method successfully detected under an
attack model. The other one is the average reaction time of
ten trials for a detection method under each attack model.

Table 3 summarizes the results collected in 80 trials.
Shade has successfully detected all trials while the limita-
tions of other three methods are evident. For example, fin-
gerprinting is competent only when the sensor works in the
passive mode because the sensor latency is measurable. NID
is not suitable for a suspension attack as such an attackmodel
manages to suspend the sensor at the first attempt, which
hardly leaves any hint for NID to take effect. Comparatively,
Shade, as a hybrid detectionmethod that closely collaborates
with the robot control program, is not hindered by the work-
ing mode of sensors or attack models.

A notable observation revealed by Table 3 is that the av-
erage reaction time of Shade is much shorter or comparable
than other detection methods. For suspension attacks, CRV
could detect them as well. Given a suspension attack initi-
ated at the startup of robot, only when the robot reached the
safe distance (20cm) would CRV find that the sensor did not
raise a ‘True’ warning. This is why the average reaction time
for CRV and Shade is about 27s. For fabrication attacks,
fingerprinting could instantly detect them. Meanwhile, the
reaction time of CRV is much shorter for fabrication attack
model than two preceding attack models. It is because of
the passive sensor mode with fabrication attacks. Once the

0

100

200

300

400

500

600

Suspension Attack Fabrication Attack

C
le

an
ed

 D
is

ta
nc

e
(c

m
)

Normal routine (w/o attack) Remit (under attack)

(a) Cleaned Distance

0
20
40
60
80

100
120
140
160

Suspension Attack Fabrication Attack

R
un

ni
ng

 T
im

e

Normal routine (w/o attack) Remit (under attack)

(b) Running time

Figure 12: A Comparison between Remit with Attacks and
Normal Routine

robot control program obtains a sensor value, it asks CRV to
check the numeric distance, which facilitates CRV compared
to boolean values used in the preceding two attack models.

The default position to initiate an attack is when the robot
starts up, so the attack is issued at a distance of 200cm to the
obstacle. To further verify the efficiency of Shade, we did
more tests when ROBOFUZZ triggered attacks at eight dif-
ferent distances to the left wall. Figure 11 captures four
curves of reaction time for Shade. In particular, given an at-
tack occurring at a very short distance to the wall, say 25cm
in Figure 11, Shade manages to detect it at 0.6s to 3s, which
efficiently protects the robot from security threats.
7.5. Mitigation Results of Remit

We have also done experiments to evaluate Remit. The
measurement of its effectiveness is the distance cleaned by
the robot while its efficiency is measured in terms of run-
ning time to clean the use case in Figure 8(b). We first made
the robot clean the use case in a normal routine without any
attack and recorded the cleaned distance as well as running
time. Then, we ran Remit with the robot under attacks. Fig-
ure 12(a) and Figure 12(b) present the results of cleaned
distance and running time, respectively, for the normal rou-
tine and Remit. Since Remit leverages the historical records
maintained by Shade for cross-checking, it can navigate the
robot although the distance sensor is no longer reliable. Ow-
ing to the accuracy limitation of records in navigation, Remit
made losses of 3.3% and 4.9%, respectively, with two attack
models. The overall loss is 4.1%. Such insignificant losses
confirm the effectiveness of Remit. On the other hand, af-
ter the robot entered the mitigation mode, Remit reduced the
velocity of robot by 10%. Though, as the robot cleaned 4.1%
less distances under attacks, the total running time at the mit-
igation mode is eventually 5.0%more than that of the normal
routine. To sum up, Remit not only accomplishes scheduled
tasks but also restricts extra time cost to an acceptable extent.

8. Related Work
CPS must be highly secure, especially for autonomous

robotics [34, 25, 9, 2]. Researchers investigated the cyber
threats to teleoperated surgical robots [8, 3]. For the cyber-
security of industrial robots, Quarta et al. [33] performed a
thorough analysis. Comparatively, mobile robots are close to
human beings, usuallyworking together for service tasks [14].
Recently, Lera et al. [25] looked into the security threats
with a survey on the cyber-attacks associated to mobile ser-
vice robots as well as a taxonomy that classifies the risks

C Wang et al.: Preprint submitted to Elsevier Page 11 of 14

Table 3
Detection Results of Four Detection Methods under Two Attack Models

Attack Model Number of Trials Detected Average Reaction Time for Detection (unit: second)
Fingerprinting CRV NID Shade Fingerprinting CRV NID Shade

Suspension Attack Model 0 10 0 10 Nil 27.1 Nil 27.2
Fabrication Attack Model 10 10 10 10 0.6 0.8 10.1 0.6

in using them. However, not much work has been done to
compromise a mobile robot with rational but harmful sen-
sor values as ROBOFUZZ does. In particular, Sabaliauskaite
et al. [34] comprehensively developed methods to conduct
cyber-attacks to a specificmobile robot. Whereas, theirmeth-
ods were significantly different from ROBOFUZZ since they
tried to use irrational sensor values to crash the robot.

On the other hand, how to detect and mitigate attacks for
various CPS has been investigated [31, 45, 9, 12, 5]. For ex-
ample, Liu et al. [29] used partially observable Markov de-
cision process to monitor and protect a smart home against
pricing attacks. Dutta et al. [15] utilized the challenge re-
sponse authentication to detect attacks for active sensors and
the recursive least square algorithm to mitigate the impact
of attacks. Chhetri et al. [11] studied how to detect an at-
tack that could happen at various points of the digital process
chain of analog emissions in CPS like a 3D printer.

Researchers have also looked into security issues of mo-
bile robots in other aspects. For instance, Guerrero-Higueras
et al. [18] attended attacks to real time location systems for
autonomous mobile robots. Li et al. [27] proposed to up-
load the analysis of attack detection andmitigation to a cloud
server in the improved deep belief networks. Our Shade and
Remit differ from aforementioned approaches in that they
detect attacks within the computational resources of an au-
tonomous mobile robot and, furthermore, mitigate attacks
without badly losing the robot’s work efficacy.

9. Threats to Validity

We focus on protecting autonomous mobile robots. We
use ROBOFUZZ to fuzz sensor values that would impact the
physicalmovement of robot. We leverage the historical records
of obstacles to detect fuzzed sensor values and navigate the
robot to retain work efficacy. The limits of our proposals
are twofold. First, they are not directly applicable to non-
movable autonomous robots. Second, ROBOFUZZ fuzzes
sensor values which are related to the movement of a robot;
therefore, ROBOFUZZ does not cover how to fuzz values for
other types of sensors, e.g., the detectors for dust and water.

The two attack models considered in this paper, i.e., sus-
pension attack and fabrication attack, are comprehensive and
representative. Adversaries have managed to conduct such
attacks to CPS [12]. These two attack models target com-
promising the sensor values and subsequently misguide the
robot control program. However, there exist other attack
models that are not discussed in this paper. For example,
a strong attacker may inject a malware in the control pro-

gram; consequently, the attacker does not rely on forging or
suspending sensor values to manipulate the robot.

The Shade and Remit schemes which detect and mitigate
attacks launched by ROBOFUZZ demand the support of his-
torical records of the environment. Thus, if a movable robot
is placed in a fresh environment, or new furnitures are in-
stalled in the original environment, Shade and Remit might
not function effectively as the records of such changed envi-
ronments have not been fully obtained yet.

10. Conclusion

We have considered security threats for autonomous mo-
bile robots in order to protect them. We propose ROBOFUZZ
that automatically performs directed fuzzing in line with the
normal state transitions of robot and the environment where
the robot works. By fuzzing sensor values at appropriate
occasions, ROBOFUZZ misleads the robot to a rational but
dangerous state so as to compromise it.

Moving even further, we develop Shade and Remit to
detect and mitigate attacks initiated through ROBOFUZZ, re-
spectively. Shade and Remit take advantage of historical
records of obstacles to detect inconsistent obstacle appear-
ances regarding untrustworthy sensor values and navigate
the mobile robot to continue working in motion. As a result,
we are able to efficiently detect and mitigate attacks but also
retain the robot’s work efficacy, which in turn enhances the
security and stability of autonomous mobile robot. Experi-
ments with a real-world cleaning robot show that, 1) ROBO-
FUZZ dramatically outperforms fuzzing robot control pro-
gram than state-of-the-art fuzzing tools, with much higher
success rates of compromising the robot, and 2) Shade and
Remit maintain a high work efficacy at the mitigation mode
with an insignificant loss.

Declaration of competing interest
We declare that we do not have any commercial or as-

sociative interest that represents a conflict of interest in con-
nection with the work submitted.

Acknowledgements
This work was jointly supported by grants RGAST1702

and MOE2018-T2-01-098, Singapore. C. Wang’s work was
partially supported by the Startup Funding of ShanghaiTech
University.

C Wang et al.: Preprint submitted to Elsevier Page 12 of 14

References
[1] ISO 8373:2012. Robots and robotic devices – vocabulary, March

2012. https://www.iso.org/standard/55890.html.
[2] K. Ahmad Yousef, A. AlMajali, S. Ghalyon, W. Dweik, and B. Mohd.

Analyzing cyber-physical threats on robotic platforms. Sensors,
18(5):1643, 2018.

[3] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk, and
R. K. Iyer. Targeted attacks on teleoperated surgical robots: Dynamic
model-based detection and mitigation. In 2016 46th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), pages 395–406, June 2016.

[4] E. Bartocci et al. Specification-Based Monitoring of Cyber-Physical
Systems: A Survey on Theory, Tools and Applications, pages 135–
175. Springer International Publishing, Cham, 2018.

[5] S. Belikovetsky et al. dr0wned – cyber-physical attack with additive
manufacturing. In 11th USENIXWorkshop on Offensive Technologies
(WOOT 17), Vancouver, BC, 2017. USENIX.

[6] bogdan-chub. Robot vacuum cleaner Xiaomi Mi robot
vacuum stepped over the milestone, February 2018.
http://gagadget.com/en/32219-robot-vacuum-cleaner-xiaomi-mi-
robot-vacuum-stepped-over-the-milestone/.

[7] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Di-
rected greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17,
pages 2329–2344, New York, NY, USA, 2017. ACM.

[8] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno, and H. J. Chizeck.
To make a robot secure: An experimental analysis of cyber security
threats against teleoperated surgical robots. CoRR, abs/1504.04339,
2015.

[9] A. Chattopadhyay, A. Prakash, and M. Shafique. Secure cyber-
physical systems: Current trends, tools and open research problems.
InDesign, Automation Test in Europe Conference Exhibition (DATE),
2017, pages 1104–1109, March 2017.

[10] L. Cheng, K. Tian, and D. (D.) Yao. Orpheus: Enforcing cyber-
physical execution semantics to defend against data-oriented attacks.
In Proceedings of the 33rd Annual Computer Security Applications
Conference, ACSAC 2017, pages 315–326, New York, NY, USA,
2017. ACM.

[11] S. R. Chhetri, A. Canedo, and M. A. Al Faruque. KCAD: Kinetic
cyber-attack detection method for cyber-physical additive manufac-
turing systems. In Proceedings of the 35th International Conference
on Computer-AidedDesign, ICCAD ’16, pages 74:1–74:8, NewYork,
NY, USA, 2016. ACM.

[12] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units
for vehicle intrusion detection. In 25th USENIX Security Symposium
(USENIX Security 16), pages 911–927, Austin, TX, 2016. USENIX.

[13] D. Lee,W. Chung, andM. Kim. A reliable position estimationmethod
of the service robot by map matching. In 2003 IEEE International
Conference on Robotics and Automation (ICRA), volume 2, pages
2830–2835 vol.2, Sep. 2003.

[14] M. Decker, M. Fischer, and I. Ott. Service robotics and human la-
bor: A first technology assessment of substitution and cooperation.
Robotics and Autonomous Systems, 87:348 – 354, 2017.

[15] R. G. Dutta, X. Guo, T. Zhang, K. Kwiat, C. Kamhoua, L. Njilla, and
Y. Jin. Estimation of safe sensor measurements of autonomous system
under attack. In Proceedings of the 54th Annual Design Automation
Conference 2017, DAC ’17, pages 46:1–46:6, New York, NY, USA,
2017. ACM.

[16] P. Fiorini and E. Prassler. Cleaning and household robots: A technol-
ogy survey. Autonomous Robots, 9(3):227–235, Dec 2000.

[17] D. Giese and D. Wegemer. Xiaomi smart home de-
vice reverse engineering and hacking, January 2018.
https://github.com/dgiese/dustcloud.

[18] Á. M. Guerrero-Higueras, N. DeCastro-García, and V. Matellán. De-
tection of cyber-attacks to indoor real time localization systems for
autonomous robots. Robotics and Autonomous Systems, 99:75 – 83,
2018.

[19] T. Haidegger, M. Barreto, P. Gonçalves, M. K. Habib, S. K. V. Ra-

gavan, H. Li, A. Vaccarella, R. Perrone, and E. Prestes. Applied on-
tologies and standards for service robots. Robotics and Autonomous
Systems, 61(11):1215 – 1223, 2013. Ubiquitous Robotics.

[20] A. Helin. Radamsa: a general-purpose fuzzer.
https://gitlab.com/akihe/radamsa, June 2018.

[21] A. Humayed, J. Lin, F. Li, and B. Luo. Cyber-physical systems se-
curity – a survey. IEEE Internet of Things Journal, 4(6):1802–1831,
2017.

[22] iRobot Corporation. Company information of iRobot, Septem-
ber 2018. http://www.irobot.com/About-iRobot/Company-Information.
aspx.

[23] iRobot Corporation. iRobot Create‸ 2 programmable robot, August
2018. http://www.irobot.com/About-iRobot/STEM/Create-2.aspx.

[24] L. A. Kirschgens, I. Z. Ugarte, E. Gil-Uriarte, A. M. Rosas, and
V. M. Vilches. Robot hazards: from safety to security. CoRR,
abs/1806.06681, 2018.

[25] F. J. R. Lera, C. F. Llamas, Á. M. Guerrero, and V. M. Olivera. Cy-
bersecurity of robotics and autonomous systems: Privacy and safety.
In George Dekoulis, editor, Robotics, chapter 5. IntechOpen, Rijeka,
2017.

[26] LG Electronics. LG airport robots take over korea’s largest
airport, July 2017. https://www.lg.com/sg/press-release/

lg-airport-robots-take-over-koreas-largest-airport.
[27] L. Li, L. Xie, W. Li, Z. Liu, and Z. Wang. Improved deep belief

networks (IDBN) dynamic model-based detection and mitigation for
targeted attacks on heavy-duty robots. Applied Sciences, 8(5), 2018.

[28] K. Lim. Changi airport turns to robots to keep T4 clean,
August 2017. https://www.channelnewsasia.com/news/singapore/

changi-airport-turns-to-robots-to-keep-t4-clean-9112610.
[29] Y. Liu, S. Hu, and T. Ho. Leveraging strategic detection techniques for

smart home pricing cyberattacks. IEEE Transactions on Dependable
and Secure Computing, 13(2):220–235, March 2016.

[30] Y. Liu, Pl Ning, and M. K. Reiter. False data injection attacks against
state estimation in electric power grids. In Proceedings of the 16th
ACM Conference on Computer and Communications Security, CCS
’09, pages 21–32, New York, NY, USA, 2009. ACM.

[31] R.Mitchell and I.-R. Chen. A survey of intrusion detection techniques
for cyber-physical systems. ACM Comput. Surv., 46(4):55:1–55:29,
March 2014.

[32] P. Moosbrugger, K. Y. Rozier, and J. Schumann. R2U2: monitoring
and diagnosis of security threats for unmanned aerial systems. Formal
Methods in System Design, 51(1):31–61, Aug 2017.

[33] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and
S. Zanero. An experimental security analysis of an industrial robot
controller. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 268–286, May 2017.

[34] G. Sabaliauskaite, G. S. Ng, J. Ruths, and A. Mathur. A compre-
hensive approach, and a case study, for conducting attack detection
experiments in cyber–physical systems. Robotics and Autonomous
Systems, 98:174 – 191, 2017.

[35] P. Salvini, G. Ciaravella, W. Yu, G. Ferri, A. Manzi, B. Mazzolai,
C. Laschi, S. R. Oh, and P. Dario. How safe are service robots in urban
environments? bullying a robot. In 19th International Symposium in
Robot and Human Interactive Communication, pages 1–7, Sep. 2010.

[36] R. Sommer and V. Paxson. Outside the closed world: On using ma-
chine learning for network intrusion detection. In 2010 IEEE Sympo-
sium on Security and Privacy, pages 305–316, May 2010.

[37] A. Takanen, J. D. Demott, and C. Miller. Fuzzing for Software Se-
curity Testing and Quality Assurance. Artech House, Inc., Norwood,
MA, USA, 1st edition, 2008.

[38] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Va-
lente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg. Limiting the
impact of stealthy attacks on industrial control systems. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’16, pages 1092–1105, New York, NY, USA,
2016. ACM.

[39] J. Vincent. iRobot’s latest roomba remembers
your home’s layout and empties itself. https:

C Wang et al.: Preprint submitted to Elsevier Page 13 of 14

http://www.irobot.com/About-iRobot/Company-Information.aspx
http://www.irobot.com/About-iRobot/Company-Information.aspx
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
https://www.lg.com/sg/press-release/lg-airport-robots-take-over-koreas-largest-airport
https://www.lg.com/sg/press-release/lg-airport-robots-take-over-koreas-largest-airport
https://www.channelnewsasia.com/news/singapore/changi-airport-turns-to-robots-to-keep-t4-clean-9112610
https://www.channelnewsasia.com/news/singapore/changi-airport-turns-to-robots-to-keep-t4-clean-9112610
https://www.theverge.com/circuitbreaker/2018/9/6/17817220/irobot-roomba-i7-robot-vacuum-empties-itself-maps-house
https://www.theverge.com/circuitbreaker/2018/9/6/17817220/irobot-roomba-i7-robot-vacuum-empties-itself-maps-house
https://www.theverge.com/circuitbreaker/2018/9/6/17817220/irobot-roomba-i7-robot-vacuum-empties-itself-maps-house

//www.theverge.com/circuitbreaker/2018/9/6/17817220/

irobot-roomba-i7-robot-vacuum-empties-itself-maps-house,
September 2018.

[40] S. Wang, X. Liu, J. Zhao, and H. I. Christensen. Rorg: Service
robot software management with linux containers. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pages 584–
590, May 2019.

[41] A. Wasicek, P. Derler, and E. A. Lee. Aspect-oriented modeling of
attacks in automotive cyber-physical systems. In Proceedings of the
51st Annual Design Automation Conference, DAC ’14, pages 21:1–
21:6, New York, NY, USA, 2014. ACM.

[42] T. Wei, B. Zheng, Q. Zhu, and S. Hu. Security analysis of proactive
participation of smart buildings in smart grid. In 2015 IEEE/ACM
International Conference onComputer-AidedDesign (ICCAD), pages
465–472, Nov 2015.

[43] Y. Liu and S. Hu and T. Ho. Vulnerability assessment and defense
technology for smart home cybersecurity considering pricing cyber-
attacks. In 2014 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 183–190, Nov 2014.

[44] K. Yan, L. Peng, M. Chen, and X. Fu. Exploring energy-efficient
cache design in emerging mobile platforms. ACM Trans. Des. Autom.
Electron. Syst., 22(4):58:1–58:20, July 2017.

[45] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti. Cross-
layer codesign for secure cyber-physical systems. Trans. Comp.-Aided
Des. Integ. Cir. Sys., 35(5):699–711, May 2016.

[46] B. Zheng,W. Li, P. Deng, L. Gérardy, Q. Zhu, andN. Shankar. Design
and verification for transportation system security. In Proceedings
of the 52nd Annual Design Automation Conference, DAC ’15, pages
96:1–96:6, New York, NY, USA, 2015. ACM.

Chundong Wang received the Bachelor’s degree in
computer science from Xi’an Jiaotong University
(2004-2008), and the Ph.D. degree in computer sci-
ence fromNational University of Singapore (2008-
2013). Currently he is a tenure-track assistant pro-
fessor in ShanghaiTech University, China. Pre-
viously, he worked in Singapore University of
Technology and Design and Data Storage Insti-
tute, A⋆STAR. Chundong has published a number
of papers in IEEE TC, ACM TOS, DAC, DATE,
USENIX FAST, etc. His research interests include
cyber-physical systems, data storage, non-volatile
memory and computer architecture.

Yee Ching Tok received the Master’s degree in in-
formation security from Royal Holloway, Univer-
sity of London, United Kingdom, in 2017. He
is currently a PhD Student with the Information
Systems Technology and Design Pillar, Singapore
University of Technology and Design, Singapore.
His current research interests are assessment of se-
curity in cyber-physical Systems, attack detection,
and malicious software. Before pursuing his PhD
degree, he worked as a Threat Hunter at Counter-
cept where he helped to detect, respond and reduce
impacts caused by malicious attackers to clients’
critical assets. He has also carried out responsible
disclosure of vulnerabilities to device manufactur-
ers (CVE-2017-13663 and CVE-2017-13664) in
professional and academic research activities.

Y. C. Tok serves as an executive committee
member in the Association of Information Security
Professionals in Singapore.

Rohini Poolat received the Master of Technology
in Software Engineering from the National Uni-
versity of Singapore, Singapore in 2009. She is
a research assistant in the cyber security research
team at Singapore University of Technology and
Design (SUTD), Singapore. She has worked on all
phases of the software development cycle in var-
ious industry projects before moving into the re-
search area. Her research interests include cyber-
attack detection, mitigation and solutions to pre-
vent attacks.

Sudipta Chattopadhyay received the Ph.D. degree
in computer science from the National University
of Singapore, Singapore, in 2013. He is an Assis-
tant Professor with the Information Systems Tech-
nology and Design Pillar, Singapore University of
Technology and Design, Singapore. In his doctoral
dissertation, he researched on Execution-Time Pre-
dictability, focusing on Multicore Platforms. He
seeks to understand the influence of execution plat-
form on critical software properties, such as per-
formance, energy, robustness, and security. His re-
search interests include program analysis, embed-
ded systems, and compilers.

Mr. Chattopadhyay serves in the review board
of the IEEETransactions on Software Engineering.

P. Veerajagadheswar et al.: Tiling-Theoretic Approach to Efficient Area Coverage in a Tetris-Inspired Floor Cleaning Robot

[10] D. Sakamoto, K. Honda, M. Inami, and T. Igarashi, ‘‘Sketch and run:
A stroke-based interface for home robots,’’ in Proc. ACM SIGCHI Conf.
Hum. Factors Comput. Syst., Apr. 2009, pp. 197–200 .

[11] C. Luo and S. X. Yang, ‘‘A real-time cooperative sweeping strategy
for multiple cleaning robots,’’ in Proc. IEEE Int. Symp. Intell. Control,
Oct. 2002, pp. 660–665.

[12] A. Janchiv, D. Batsaikhan, G. H. Kim, and S.-G. Lee, ‘‘Complete coverage
path planning for multi-robots based on,’’ in Proc. IEEE 11th Int. Conf.
Control, Autom. Syst. (ICCAS), Oct. 2011, pp. 824–827.

[13] M.Ahmadi and P. Stone, ‘‘Amulti-robot system for continuous area sweep-
ing tasks,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2006,
pp. 1724–1729.

[14] M. Jager and B. Nebel, ‘‘Dynamic decentralized area partitioning
for cooperating cleaning robots,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), vol. 4, May 2002, pp. 3577–3582.

[15] Y. Wu and R. Lu, ‘‘Output synchronization and L2-gain analy-
sis for network systems,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
to be published.

[16] Y. Wu, R. Lu, P. Shi, H. Su, and Z.-G. Wu, ‘‘Adaptive output synchro-
nization of heterogeneous network with an uncertain leader,’’ Automatica,
vol. 76, pp. 183–192, Feb. 2017.

[17] S. Rhim, J.-C. Ryu, K.-H. Park, and S.-G. Lee, ‘‘Performance evalua-
tion criteria for autonomous cleaning robots,’’ in Proc. IEEE Int. Symp.
Comput. Intell. Robot. Automat. (CIRA), Jun. 2007, pp. 167–172.

[18] S. C. Wong, L. Middleton, B. A. MacDonald, and N. Auckland, ‘‘Perfor-
mance metrics for robot coverage tasks,’’ in Proc. Australas. Conf. Robot.
Autom., vol. 27, Nov. 2002, p. 29.

[19] N. Tan, N. Rojas, R. E. Mohan, V. Kee, and R. Sosa, ‘‘Nested reconfig-
urable robots: Theory, design, and realization,’’ Int. J. Adv. Robotic Syst.,
vol. 12, no. 7, p. 110, Jul. 2015.

[20] N. Tan, R. E. Mohan, and K. Elangovan, ‘‘A bio-inspired reconfigurable
robot,’’ in Advances in Reconfigurable Mechanisms and Robots II. Cham,
Switzerland: Springer, 2016, pp. 483–493.

[21] G. Wei, J. S. Dai, S. Wang, and H. Luo, ‘‘Kinematic analysis and prototype
of a metamorphic anthropomorphic hand with a reconfigurable palm,’’ Int.
J. Humanoid Robot., vol. 8, no. 3, pp. 459–479, 2011.

[22] S. Nansai, N. Rojas, M. R. Elara, and R. Sosa, ‘‘Exploration of adaptive
gait patterns with a reconfigurable linkagemechanism,’’ inProc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Nov. 2013, pp. 4661–4668.

[23] H. Wei, Y. Cai, H. Li, D. Li, and T. Wang, ‘‘Sambot: A self-assembly
modular robot for swarm robot,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2010, pp. 66–71.

[24] S. Mintchev et al., ‘‘An underwater reconfigurable robot with bioinspired
electric sense,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2012,
pp. 1149–1154.

[25] V. Kee, N. Rojas, M. R. Elara, and R. Sosa, ‘‘Hinged-Tetro: A self-
reconfigurable module for nested reconfiguration,’’ in Proc. IEEE/ASME
Int. Conf. Adv. Intell. Mechatronics (AIM), Jul. 2014, pp. 1539–1546.

[26] V. Prabakaran, R. E. Mohan, T. Pathmakumar, and S. Nansai, ‘‘hTetro:
A tetris inspired shape shifting floor cleaning robot,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2017, pp. 6105–6112.

[27] Allied Market Research. (Feb. 15, 2017). Cleaning Services Market
to Reach $74,299 Million, Globally, by 2022. [Online]. Available:
https://www.prnewswire.com/news-releases/cleaning-services-market-to-
reach-74299-million-globally-by-2022-613830813.html

[28] E. Galceran and M. Carreras, ‘‘A survey on coverage path planning for
robotics,’’ Robot. Auton. Syst., vol. 61, no. 12, pp. 1258–1276, 2013.

[29] C. S. Kaplan, Introductory Tiling Theory for Computer Graphics(Synthesis
Lectures on Computer Graphics and Animation), vol. 4. San Rafael, CA,
USA: Morgan & Claypool, 2009, pp. 1–113.

[30] V. Ostromoukhov, C. Donohue, and P.-M. Jodoin, ‘‘Fast hierarchical
importance sampling with blue noise properties,’’ ACM Trans. Graph.,
vol. 23, no. 3, pp. 488–495, Aug. 2004.

[31] Y. Takefuji andK.-C. Lee, ‘‘A parallel algorithm for tiling problems,’’ IEEE
Trans. Neural Netw., vol. 1, no. 1, pp. 143–145, Mar. 1990.

[32] C.-W. Jho and W.-H. Lee, ‘‘Video puzzle game application of polyomino
re-tiling,’’ in Embedded and Multimedia Computing Technology and Ser-
vice. Dordrecht, The Netherlands: Springer, 2012, pp. 363–369.

[33] K.-Y. Lo, C.-W. Fu, and H. Li, ‘‘3D polyomino puzzle,’’ ACM Trans.
Graph., vol. 28, no. 5, Dec. 2009, Art. no. 157.

[34] P. Chiu, ‘‘Generating polyomino video game pieces and puzzle pieces from
digital photos to create photominoes,’’ U.S. Patent 7 878 891, Feb. 1, 2011.

[35] G. N. Frederickson, Hinged Dissections: Swinging and Twisting.
Cambridge, U.K.: Cambridge Univ. Press, 2002.

[36] E. D. Demaine, M. L. Demaine, D. Eppstein, G. N. Frederickson, and
E. Friedman, ‘‘Hinged dissection of polyominoes and polyforms,’’ Com-
put. Geometry, vol. 31, no. 3, pp. 237–262, 2005.

[37] E. D. Demaine, M. L. Demaine, J. F. Lindy, and D. L. Souvaine, ‘‘Hinged
dissection of polypolyhedra,’’ in Proc. Workshop Algorithms Data Struct..
Berlin, Germany: Springer, pp. 205–217, Aug. 2005.

[38] R. Sarhangi, ‘‘Making patterns on the surfaces of swing-hinged dissec-
tions,’’ in Proc. Bridges Leeuwarden, 2008, pp. 251–258.

[39] D. Klarner, ‘‘Polyominoes,’’ in Handbook of Discrete and Computational
Geometry, J. E. Goodman and J. O’Rourke, Eds. Boca Raton, FL, USA:
CRC Press, 1997, ch. 12.

[40] C. Lester, ‘‘Tiling with T and skew tetrominoes,’’ Querqus, Linfield
J. Under, vol. 1, no. 1, p. 3, Oct. 2012.

[41] V. Nitica. (Feb. 2017). ‘‘The tilings of deficient squares by ribbon L-
tetrominoes are diagonally cracked.’’ [Online]. Available: https://arxiv.org/
abs/1701.00419

[42] Y. Wang, H. Shen, H. R. Karimi, and D. Duan, ‘‘Dissipativity-based fuzzy
integral slidingmode control of continuous-time T-S fuzzy systems,’’ IEEE
Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1164–1176, Jun. 2018.

[43] Y. Wang, Y. Xia, H. Shen, and P. Zhou, ‘‘SMC design for robust stabiliza-
tion of nonlinear Markovian jump singular systems,’’ IEEE Trans. Autom.
Control, vol. 63, no. 1, pp. 219–224, Jan. 2018.

PRABAKARAN VEERAJAGADHESWAR
received the bachelor’s degree in electronics
and instrumentation engineering fromSathyabama
University, India, in 2013, and the master’s degree
in information technology from Sikkim Manipal
University in 2017. He is currently a Research
Assistant with the ROARS Lab, Singapore Uni-
versity of Technology and Design. He is also a
Visiting Instructor for a design course with the
International Design Institute, Zhejiang Univer-

sity, China. His research interests include the development of complete
coverage path planning, SLAM framework, and embedded control for recon-
figurable robots. He received the SG Mark Design Award in 2017 for the
designing of hTetro, a self-reconfigurable cleaning robot.

MOHAN RAJESH ELARA received the B.E.
degree from the Bharathiar University, India,
in 2003, and the M.Sc. and Ph.D. degrees from
Nanyang Technological University in 2005 and
2012, respectively. He is currently an Assistant
Professor with the Engineering Product Develop-
ment Pillar, Singapore University of Technology
and Design. He is also a Visiting Faculty Member
with the International Design Institute, Zhejiang
University, China. He has published over 80 papers

in leading journals, books, and conferences. His research interests are
in robotics with an emphasis on self-reconfigurable platforms as well as
research problems related to robot ergonomics and autonomous systems.
He was a recipient of the SG Mark Design Award in 2016 and 2017,
the ASEE Best of Design in Engineering Award in 2012, and the Tan Kah
Kee Young Inventors’ Award in 2010.

35270 VOLUME 6, 2018

Mohan Rajesh Elara received the B.E. degree from
the Bharathiar University, India, in 2003, and the
M.Sc. and Ph.D. degrees from Nanyang Techno-
logical University in 2005 and 2012, respectively.
He is currently an Assistant Professor with the En-
gineering Product Development Pillar, Singapore
University of Technology and Design. He is also
a Visiting Faculty Member with the International
Design Institute, Zhejiang University, China. He
has published over 80 papers in leading journals,
books, and conferences. His research interests are
in robotics with an emphasis on self-reconfigurable
platforms as well as research problems related to
robot ergonomics and autonomous systems. He
was a recipient of the SG Mark Design Award in
2016 and 2017, the ASEE Best of Design in En-
gineering Award in 2012, and the Tan Kah Kee
Young Inventors’ Award in 2010.

C Wang et al.: Preprint submitted to Elsevier Page 14 of 14

https://www.theverge.com/circuitbreaker/2018/9/6/17817220/irobot-roomba-i7-robot-vacuum-empties-itself-maps-house
https://www.theverge.com/circuitbreaker/2018/9/6/17817220/irobot-roomba-i7-robot-vacuum-empties-itself-maps-house
https://www.theverge.com/circuitbreaker/2018/9/6/17817220/irobot-roomba-i7-robot-vacuum-empties-itself-maps-house

