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ABSTRACT

We present LKRDet: a framework based on a Trusted Execution
Environment to detect kernel rootkits in IoT devices. LKRDet checks
the consistency of hardware events, occurring in specific system
call routines, to detect abnormalities caused by the kernel rootkits.
LKRDet relies on Hardware Performance Counters to efficiently
and safely count the hardware events occurring in the system.

We implement a prototype of LKRDet for the ARM TrustZone
architecture, on top of the Open Portable Trusted Execution Envi-
ronment and evaluate our prototype with four popular rootkits. Our
evaluation reveals that LKRDet can accurately detect the presence
of all the rootkits in the device.
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1 INTRODUCTION

The rapid development of Internet of Things (IoT) technologies
and their introduction into critical applications, makes IoT devices
inviting targets for malwares and attacks [12]. Rootkits are a partic-
ular category of malware that may provide authentication rights to
illegitimate users, or hide traces of other attacks. Kernel rootkits are
a special kind of stealthy rootkits able to gain the same privileges
as the operating system’s kernel [17]. They achieve their malicious
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purposes by hijacking Linux’s system calls. They can alter ker-
nel control-flow by using apparently legitimate routines. System
utilities (e.g., 1s, ps, netstat) can be spoofed making the system
unaware of the existence of malicious software. For instance, Adore-
ng redirects the execution of system calls to its malicious code by
replacing the function pointers in the virtual file systems [10]. The
Suterusu rootkit redirects the execution flow to malicious handlers
by inline hooking the function pointers during a specific system call
routine [6]. A large amount of IoT devices now relies on a common
operating system (e.g., Linux), making easier migrating rootkits to
target ARM-based devices [11, 24], and IoT devices [3, 13].

We present LKRDet: a rootkit detection framework for IoT devices
exploiting hardware features of modern architectures, and running
on a Trusted Execution Environment (TEE). It exploits the infor-
mation provided by the Hardware Performance Counters (HPCs)
available in modern processors to check the kernel’s control-flow
consistency during a system call. The approach profiles the kernel
space during the execution of system calls in a secured environment
to gather data about each system call execution. The information is
used to monitor the system after being deployed to detect rootkits.
LKRDet is highly secure as its detection part is implemented in a
TEE, thanks to the maturity reached by TEEs for IoT devices.

Non-deterministic approaches based on machine learning tech-
niques are prominent in the state-of-the-art of rootkit detection [20,
26]. However, these techniques cannot reach complete accuracy.
Furthermore, being them based on classification algorithms they
must be trained by using both benign and malicious traces. These
problems are mitigated by deterministic approaches monitoring
hardware events [23]. However, this requires resources that are
usually not available in IoT devices. We aim at reaching the accu-
racy of deterministic methods while using the resources provided
by today’s IoT devices. Moreover, the presented approach relies
only on traces generated by non-infected systems, making it more
effective for detecting still unknown rootkits. Moreover, LKRDet is
the first kernel rootkit detection mechanism explicitly thought for
ARM architectures and IoT devices in general. Since existing rootkit
detection solutions cannot be directly ported for IoT devices, we
show how to design and implement a light-weight rootkit detection
framework for low-end IoT devices relying on a TEE.

2 BACKGROUND AND RELATED WORK

Rkhunter [2] and Kstat [1] are two fundamental in-the-box software-
based detection approaches. They validate the kernel control-flow
by comparing the kernel text or its hash to the contents of critical
jump tables in a previously observed clean state. However, they
may be spoofed by advanced rootkits because kernel rootkits have
the same level of authority as the Linux kernel. Virtual Machine
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Monitor (VMM)-based out-of-the-box rootkit detection methods
are isolated from the target environment target, and they monitor
the static or dynamic kernel objects of a guest Virtual Machine
(VM) at the VMM level. However, the semantic gap between the
external and internal observation makes complicated acquiring the
semantics of the tasks running in the guest VM [5]. Also, attacks
in the guest operating system may modify the layout of the guest
kernel data structures, compromising the detection.

Hardware events (e.g., instructions and branches) occurring while
executing a kernel routine can be exploited to detect abnormalities
in the kernel control-flow. HPCs provided by modern processors
allow counting such events. HPC-based detection methods can be
divided into two categories [26]: data-centric approaches check-
ing the kernel work-flow integrity by using statistical techniques;
program-centric approaches rely on machine learning methods to
analyze the dynamic features of a specific workload.

A recognized data-centric solution [23] verifies the kernel Control-
Flow Integrity (CFI) by counting the CPU hardware features during
the execution of a system call. This solution is implemented in a
VMM environment for enhancing security, and it has proved its
effectiveness when detecting a variety of kernel rootkits. However,
it increases design complexity and causes a waste of resources. As
such, the solution is not suitable for IoT devices that are usually con-
strained by reduced resources. Furthermore, the approach suffers
the possibility of the VMM itself being targeted by the attack [16].

Program-centric techniques use HPCs to model the dynamic
behavior of a specific workload, identifying occurrences. Kernel
rootkits can be detected by exploiting various machine learning
methods [9, 19]. Most machine learning methods reaches more than
80% accuracy (true-positive). However, 100% accurate detection of
the kernel rootkit cannot be achieved [20].

Most of the previous approaches target x86-based systems, whereas
IoT devices usually adopt resource-constrained processors, often
based on ARM architectures. Only [22] dealt with resource con-
strained embedded systems by embedding an additional software
module in the system bootloader. Such a module is stored in the
read-only memory of the device to not being tempered. As such, it
is more invasive with respect to the approach we propose.

3 THE LKRDET DETECTION FRAMEWORK

LKRDet monitors the control-flow of multiple system calls while
monitoring the HPCs. The HPC values must be comparable in
different operating states and time points in the life cycle of the
system. Therefore, a test application invokes a set of system calls
with constant inputs. Each system call impacts differently on the
monitored events. Thus, some event may be more effective than
others for detecting rootkits, as discussed in sections 4.1.

A kernel rootkit may tamper HPCs values to hide its effects.
Detection mechanisms for general-purpose computing systems mit-
igating such issue by relying on virtualization technologies and
out-of-the-box approaches. However, virtualization solutions for
IoT devices are still in their infancy. Although they can achieve
isolation between VM and VMM to improve security, the security
issues of VMM itself still exist as they do not provide standard
protection mechanisms [14, 18]. Furthermore, VMM-based solu-
tions require an amount of resources usually unavailable in IoT

devices. These limitations make VMM-based solution unviable for
IoT devices. For these reasons, LKRDet relies on a TEE, rather than
a VMM, to implement the application monitoring the HPCs.

TEE is a technology that guarantees confidentiality and integrity
of data and code running in a processor [15]. It is designed to be
isolated from the traditional system, called Rich Execution Envi-
ronment (REE), establishing a secure and trusted execution area
in the processor. Several TEE solutions are available in modern
processors, ARM TrustZone [15] is considered one of the most
promising technology for implementing TEE in mobile and IoT
devices. TrustZone is provided by ARM architectures, ranging from
the Cortex-A family of CPUs for high-end devices, to the Cortex-M
family of micro-controllers intended to be used in low cost IoT sys-
tems. A valid open-source TEE software solution is Open Portable
Trusted Execution Environment (OP-TEE) [4]. It provides all the
components needed to implement a completely secure operating
environment. It includes a secure privileged layer, a set of secure
user-space libraries, a REE based on the Linux kernel and drivers, a
Linux user-space library, a Linux userspace supplicant daemon, ec.
Moreover, OP-TEE supports many different hardware platforms.

LKRDet targets kernel rootkits which have the same privileges
as the Linux kernel. Thus, rootkits able to modify the control-flow
of the kernel through its read and write permissions in the ker-
nel space. We assume that the REE is not trustworthy, while the
TEE is trustworthy, that is a reasonable assumption due to TEEs
nature [15]. As such, the rootkit can only compromise the REE but
it is isolated from the TEE. Indeed, attacks able to compromise also
the TEE have been proposed [7]. This is an orthogonal issue with
respect to the addressed problem, that is out of scope of the paper.

LKRDet detects kernel rootkits by verifying the consistency of
each system call execution process, and it is structured into two
steps: the offline profiling step retrieves the information about the
system calls used by a test application running on a clean system; the
online monitoring step monitors the execution of the test application
and compares the values of the HPCs with the value stored at the
profiling step to determine whether there are abnormalities in the
system behavior. Whenever the values of the HPCs observed during
the monitoring phase differ from the values observed and stored
during the profiling phase, then different hardware primitives have
been used, and the system has been compromised. Recently, some
studies showed that HPCs values may be not trustworthy in certain
circumstances [25]. [8] identifies a set of guidelines to properly use
HPCs for security applications: LKRDet follows all the suggested
guidelines: it profiles small portions of software (i.e., individual
system calls), it considers the noise induced by other processes, and
it manages context switches that may eventually occurs.

We present our TEE-based implementation, which addresses
the challenges due to the scarce resources available in IoT devices.
Communication between the TEE and operating system must allow
efficient monitoring of the profiled primitives, while data storage
must be efficient due to the limited memory available in IoT devices.

3.1 TEE-based implementation

During the offline profiling, a Client Application (CA) and the test
application execute in an uncontaminated REE environment run-
ning a clean Linux operating system installation. Meanwhile, a
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Figure 1: Execution flow of the offline profiling step.

Trusted Application (TA) is being executed in an isolated TEE envi-
ronment based on OP-TEE. The test application invokes the different
kinds of monitored system calls with constant inputs. The role of the
CA is twofold: it intercepts the monitored system calls at their entry
and return points, and it transfers the gathered information to the
TA. The TA is guided by the commands and information received
from the CA. The TA initializes the HPCs, starts and stops counting
saving the final results to the secure storage. Once the HPCs are
enabled, they automatically count the monitored hardware events
in the CPU without needing any software intervention.

In multicore systems a system call’s execution moves among
multiple cores, possibly making the HPCs inconsistent. To solve
this issue [23], whenever a system call execution “moves” from a
core to another, LKRDet stops the HPCs of the first from counting
the events, and starts the ones of the second. LKRDet keeps the sum
obtained by the values in all cores. Moreover, the test invokes each
system call multiple times to mitigate the effects of the noise due
to the operating systems running in the REE. The TA will consider
the average values of the HPCs as the final results to be stored.

Figure 1 illustrates the complete flow of the offline profiling phase.
The arrows and circled numbers outline the order of the operations.
The CA (i.e, 1kr_det_ca) starts executing in the REE. It sends to
the TA (i.e, 1kr_det_ta) the command to initialize the HPCs (step
@), and the TA initializes the HPCs setting which hardware events
must be counted. Then, it sets the relevant configuration registers
in the Performance Monitoring Unit (PMU). In our case, six HPCs
are used to record the six types of hardware events being monitored
simultaneously. The HPCs are configured to log only the events
happening in the REE kernel (i.e., the Linux kernel), thus avoiding
the noise generated by other user processes or switching tasks.
Then, the runtime switches back to REE continuing the execution
of the CA. The API interacts with the kernel drivers in the REE and
the TEE to switch to the Monitor Mode: a secure state that provides
to the CPU the ability to switch between REE and TEE.

The CA executes the test application as a child process (step 2)).
Thus, the CA can use the Linux ptrace() function to trace and
control the test application. Whenever the test application starts
calling a monitored system call, it will be intercepted by the CA
at the entry point (step 3). The execution switches from the CA
to the TA, and the HPCs start counting the hardware events. This
also requires to configure the relevant registers in the PMU. The
profiling targets the kernel space and is executed for each system
call, rather than for the entire program. This allows reducing as

REE
Kernel

Kernel = L
Rootkit

Secure Monitor Mode

TEE
Kernel

- Initialize] ~ [Enable Disable | Read |, TEE
”"—"‘CTAH HPCs HPCs | | HPCs m User

HPCs
| I o)

HPCs HPCs Storage

Figure 2: Execution flow of the online monitoring step.

much as possible the noise due to other operations that can be
executed by the CPU running the operating system on the REE.
The intercepted system call restores immediately after, the runtime
switches back to the REE and starts executing in the REE kernel
(step @). The HPCs will automatically count the hardware events
generated in the CPU during the control-flow of the system call.
Similarly, the system call is intercepted at its return point by the CA
(step (®). The runtime switches to the TEE and the TA disables the
HPCs to stop counting the hardware events. The values stored in
the HPCs are read and recorded as reference values for the executed
system call (step (©). The test application returns from the system
call routine after the runtime switches back to the REE (step (7).

During the lifetime of the test application, the loop between steps
® to ® is run multiple times to obtain the HPCs values of all the
types of monitored system call. Each system call is invoked multiple
times, and the average values of the HPCs will be stored. This is
necessary to eliminate random noise and enhance accuracy. Finally,
the TA saves the results to secure storage (step (9)). The values
are stored as a two-dimensional array having as many rows as the
monitored system calls, and as many columns as the traced events.

Figure 2 illustrates the work flow of the online monitoring phase.
The CA and the TA work almost the same as in the offline profiling
phase. During the monitoring phase, the TA gather the the HPCs
values from the CPU executing the system call. It compares the
HPCs values with those retrieved during the profiling (step (9 of
Figure 2). The compare results step calculates the deviation between
each HPC event value monitored and the one in the secure storage.
The monitored value is considered to be in a normal range if its
deviation is within a predefined threshold. A larger deviation is an
evidence of the existence of a kernel rootkit.

4 EXPERIMENTAL RESULTS

We implemented the framework! to protect a device based on an
ARM Cortex-A53 CPU, running Linux (kernel version 4.6.3) and
OP-TEE (version 3.2.0). We tested the detection system against four
kernel rootkits (i.e., Adore-ng, Diamorphine, Kbeast, and Suterusu)
both injected individually and collectively in the system, and by
checking the consistency of five system calls, i.e., sys_getdents64,
sys_read, sys_write, sys_openat, and sys_close. Six kinds of HPC
events are counted simultaneously for the execution of each system
call: Instructions (IN), Cache References (CR), Cache Misses (CM),
Branch Instructions (BI), Branch Misses (BM), and Bus Cycles (BC).

! The experiments’ code is available at https://gitlab.com/asset-sutd/public/Ikrdet


https://gitlab.com/asset-sutd/public/lkrdet

Table 1: Counts of HPC events for each system call in different kernel modes. For each monitored event, it reports the value
(Val) stored during the monitoring phase, and the deviation (Dev), in percentage, with respect the reference values.

HPC event
System call Mode IN CR CM BI BM BC Status
Val Dev | Val | Dev | Val | Dev | Value | Dev | Val | Dev Val Dev
Reference 13220 | - | 5184 | - | 87 | - 1452 - [ 241 | - | 10918 | - B
Clean 13205 | 0 | 5174 | 0 | 81 | 6 | 1449 0 | 243 | 0 | 10892 | 0 Normal
Adoreng 14748 | 11 | 5783 | 11 | 109 | 25 | 1626 | 11 | 283 | 17 | 12421 | 13 | Abnornal
getdents64 Diamorphine | 13764 4 5370 3 86 -1 1529 5 281 16 11630 6 Abnornal
Kbeast 14036 | 6 | 5411 | 4 | 8 | 2 | 1580 | 8 | 284 | 17 | 11788 | 7 | Abnornal
Suterusu 13796 | 4 | 5415 | 4 | 100 | 15 | 1524 4 | 272 | 12 | 11739 | 7 | Abnornal
Mixed 15884 | 20 | 6071 | 17 | 127 | 45 | 1785 | 22 | 345 | 43 | 13716 | 25 | Abnornal
Reference 6762 - 3149 - 68 - 866 - 112 - 6678 - -
Clean 6803 | 0 | 3167 | 0 | 66 | 2 872 0 |12 | 0 | 675 | 1 Normal
Adore-ng 6789 0 3160 0 70 2 870 0 114 1 6717 0 Normal
read Diamorphine | 6835 1 3182 1 61 -10 876 1 115 2 6781 1 Normal
Kbeast 8500 | 25 | 3447 | 9 | 81 | 19 | 1139 | 31 | 168 | 50 | 8017 | 20 | Abnornal
Suterusu 6811 0 3169 0 68 0 873 0 115 2 6755 1 Normal
Mixed 8437 | 24 | 3418 | 8 | 80 | 17 | 1130 | 30 | 170 | 51 | 7983 | 19 | Abnornal
Reference 8779 | - | 4004 | - | 132 | - 1083 - [ | - | %27 | - -
Clean 8811 | 0 | 4017 | 0 | 130 | -1 | 1086 0 |18 | 1 | 9694 | 0 Normal
Adore-ng 8850 | 0 | 403 | 0 | 139 | 5 1092 0 | 188 | 2 | 9736 | 1 Normal
write Diamorphine 8855 0 4037 0 131 0 1092 0 190 3 9759 1 Normal
Kbeast 10251 | 16 | 4247 | 6 | 152 | 15 | 1317 | 21 | 231 | 26 | 10744 | 11 | Abnornal
Suterusu 8828 | 0 | 4023 | 0 | 146 | 10 | 1088 0 |91 | 4 | 9773 1 Normal
Mixed 10278 | 17 | 4260 | 6 | 154 | 16 | 1323 | 22 | 233 | 27 | 10809 | 12 | Abnornal
Reference 9707 - 4445 - 109 - 1134 - 191 - 9937 - -
Clean 9728 | 0 | 4454 | 0 | 107 | -1 | 1136 0 [ 193 | 1 | 975 | 0 Normal
Adore-ng 9718 | 0 | 4447 | 0 | 111 | 1 1134 0 |19 | 2 | 998 | 0 Normal
openat Diamorphine 9704 0 4441 0 106 -2 1133 0 191 0 9965 0 Normal
Kbeast 9755 | 0 | 4463 | 0 | 113 | 3 1138 0 |19 | 1 | 10012 | 0 Normal
Suterusu 9731 | 0 | 4456 | 0 | 124 | 13 | 1137 0 | 199 | 4 | 10074 | 1 Normal
Mixed 9731 | 0 | 4454 | 0 | 118 | 8 1135 0 | 198 | 3 | 10034 | 0 Normal
Reference 6941 - [ 3240 | - 71 B 898 - (104 | - | 6%2 - -
Clean 6968 | 0 | 3252 | 0 | 70 | -1 902 0 | 105 0 | 6950 | 0 Normal
Adore-ng 6958 | 0 | 3248 | 0 | 72 1 900 0 | 105 | 0 | 694 | 0 Normal
close Diamorphine | 6936 0 3235 0 68 -4 897 0 103 0 6925 0 Normal
Kbeast 6892 | 0 | 3222 0 | 67 | 5 892 0 | 107 | 2 | 6840 | 0 Normal
Suterusu 6943 0 3241 0 75 5 898 0 103 0 6928 0 Normal
Mixed 6911 | 0 | 3230 | 0 | 70 | -1 894 0 | 106 | 1 | 6897 | 0 Normal
Offline profiling is first performed in a clean kernel state. Online “ — Reference
< “lea
monitoring is performed in six kernel states: clean state, and com- - < _ f\::,':_,‘g
promised by different rootkits. The test application invokes each % =y - Pamorghine
b= s
system call 2000 times to mitigate the noise introduced by the Linux 2 — Suterusu
Kernel, obtaining accurate thresholds to identify abnormalities. & 31 s
Among the HPC events that we monitored, Cache Misses (CM) 2
has the minimum counting value and maximum deviation. The g
observed noise for CM is less than 15% for all uninfected system e =
calls; thus, 15% is an appropriate threshold to detect abnormalities
in CM. Branch Misses (BM) also has a small counting value, and 200 250 300 350 200

its observed noise is 10%. So a deviation greater than 10% in BM
suggests a malicious modification. The noise for the other four
HPC events, i.e., Instructions (IN), Cache References (CR), Branch
Instructions (BI), and Bus Cycles (BC), are all less than 5%. Therefore,
the deviation thresholds for IN, CR, BI, and BC are set to 5%.
Table 1 reports the results. The first column lists the system
calls being monitored; the second column lists one offline-reference
mode the six online-test modes (i.e., clean kernel, the four infected
kernels by single rootkit, and the Mixed line referring to a kernel
infected by all the rootkits). The next columns show, for each of the
six HPC events, both the absolute values and their deviation from
the reference value computed during the offline profiling. The last
column reports whether the deviation identifies as normal (i.e., no
rootkit detected) or an abnormal (i.e., a rootkit is detected) status.
Figure 3 depicts the distribution of branch misses during the dif-
ferent executions considered in our experiments. It allows noticing
a factora useful at balancing sensitivity and accuracy when select-
ing the thresholds for each specific HPC event. The count values

Count Value of BRANCH_MISSES (BM)
Figure 3: Density distribution of Branch Misses.

for the clean kernel state in Offline (Reference) and Online (Clean)
modes are not exactly the same due to system noise: the value of
the discrepancy is a good criterion for choosing the threshold.

Then, a second factor to be considered when choosing the thresh-
olds is that larger absolute values are less affected by the system
noise. Therefore, a smaller threshold is applicable for IN, CR, B,
and BC, but a larger threshold is needed for CM and BM.

The bold numbers in Table 1 indicate that the deviations ex-
ceed the set thresholds (15% for CM, 10% for BM, 5% for IN, CR,
BI, and BC). In other words, the execution of these system calls
(sys_getdents64 for all the four rootkits and sys_read, sys_write
for Kbeast only) allows identifying an abnormal state. This re-
sult is consistent with the working principle of the four rootkits.
Adore-ng, Diamorphine and Suterusu just modify sys_getdents64
for hiding malicious information, but Kbeast also modifies sys_read
and sys_write. Finally, the kernel infected by multiple rootkits (i.e.,



Table 2: Influence of selected HPC events on the detection
accuracy: Y indicates that the rootkit (rows) has been iden-
tified by monitoring the event (columns).

IN|CR|CM | BI | BM | BC
Adore-ng Y Y Y Y Y Y
Diamorphine Y Y Y Y
Kbeast Y Y Y Y
Suterusu Y Y Y
Mixed Y Y Y Y Y Y

Mixed) presents the largest deviations with respect to the stored val-
ues. Therefore, it is reasonable saying that LKRDet can accurately
distinguish whether a rootkit infects the kernel.

4.1 HPCs events selection and accuracy

The sets of available HPC registers and hardware events vary among
different processor. Some processors might have constrained num-
ber of HPC registers (e.g., ARM11 only has two HPC registers). As
such, we cannot monitor too many types of HPC events simulta-
neously. Meanwhile, not all kinds of hardware events are sensitive
to the kernel control-flow modifications. Therefore, it is useful to
select HPC events properly for improving detection effectiveness.

Table 2 shows which kinds of HPC events detected the rootkits
accurately. We can indicate that the values of BM and BC are more
susceptible to the kernel control-flow modifications. Thus, they
provide more useful information when aiming at detecting rootkits
that impacts on the kernel control-flow. CM and Bl are less sensitive,
IN and CR are worst for detecting the considered rootkits.

4.2 Accuracy

As discussed in section 2, there are mainly two kinds of HPC-based
kernel rootkits detection methods. Program-centric Machine Learn-
ing (ML)-based methods classifying the dynamic behavior of specific
workload patterns [9, 19], and data-centric solutions counting the
HPC values during a system call execution of which the most repre-
sentative approach is NumChecker [23]. We compare our detection
framework against these state-of-the-art approaches.

For the sake of correctness, we implemented a ML-based mecha-
nism in the same device used for the previous set of experiments.
The features for training the ML models are captured by sampling
the HPC events every 10 millisecond during the execution of a fixed
input 1s command. Then, we sample the same six HPC events as
in our TEE-based LKRDet mechanism. Since 1s command will call
many system calls, including sys_getdents64, the malicious modifi-
cation in the system call control-flow should also cause different
features shown in the timeline characteristics. Figure 4 shows the
samplings of branch misses during the execution of the 1s command
in different kernel modes (i.e., lean kernel, the four infected kernels
by different rootkits individually, and the Mixed line referring at the
kernel infected by all the rootkits). Comparing the sampling values
at points D, @), and (3), the existence of these rootkits is visible
thanks to their impact on the number of branch misses. In partic-
ular, the rootkits Adore-ng and Kbeast highly modify the kernel
control-flow thus they cause large deviation of the timeline HPC
features, while Diamorphine and Suterusu show milder impacts.
Finally, the trace generated kernel infected by multiple rootkits (i.e.,
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Figure 4: HPC sampling of Branch Misses.

Table 3: Detection accuracy (true positive/false positive) of
the different mechanisms considered in this work.

Adore-ng | Diamorphine | Kbeast | Suterusu | Mixed
NumChecker 1/0 - 1/0 1/0 -
ML-Based 1/0 0.67/0.15 1/0.08 0.76/0.18 1/0
LKRDet 1/0 1/0 1/0 1/0 1/0

Table 4: Time overhead required for each method.

CPU Checking Time
NumChecker | AMD Opteron 1356/2.3GHz 262.3 ms
ML-Based Broadcom BCM2837/1.2GHz 825 s
LKRDet Broadcom BCM2837/1.2GHz 2.91s

Mixed) is visibly different by any other trace. This is consistent
with the deviations observed in Table 1.

We implement an online ML-based rootkit detection framework
and trained six kinds of classification methods (i.e., k-Nearest Neigh-
bors (k-NN), Logistic Regression, Naive Bayes, Support Vector Ma-
chines (SVM), Decision Tree, and Random Forest), with each time-
line feature of six HPC events. We collected 15000 entries for each
HPC event in different kernel states. The dataset for training in-
cludes 90000 data for each HPC event. The online testing of the
ML-based classification approach is conducted by testing 1000 data
for each HPC event and calculating the probability that the rootkit
exists. It is important noticing that the ML-based approaches re-
quired to be trained with both malicious and benign traces. On the
contrary, LKRDet requires to be fed only benign traces, generated
by non-violated system executions. As such, it is more suitable than
ML-based approaches to identify previously unknown rootkits.

Table 3 reports data about the detection accuracy of different
rootkit detection mechanisms. The results of NumChecker are col-
lected from the referenced articles [23], as it is not suitable for
running on IoT devices. The ML-based results refers to our imple-
mentation of such methods; for each rootkit, the table reports the
highest accuracy and lowest false positive achieved using different
classification methods: Random Forest over IN for Adore-ng, k-NN
over BM for Diamorphine and BS for Kbeast, Decision Tree over IN
for Suterusu, and Random Forest over IN for Mixed mode.

Both ML-based approaches and LKRDet reaches full accuracy for
kernel infected by rootkits that strongly modify the kernel control-
flow (i.e., Adore-ng, Kbeast) and by multiple rootkits (i.e., Mixed
column): a configuration that has not been tested in [23]. Consid-
ering Suterusu, which causes slight modifications, the accuracy
of ML-based mechanism decrease to 0.76, and the false-positive
raise to 0.18. On the other hand, LKRDet and NumChecker preserve
complete accuracy. LKRDet can still show 100% detection accu-
racy for the rootkit Diamorphine, that has not been considered by
Numchecker, while the ML-based method has the worst accuracy.
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Figure 5: Components of the LKRDet overhead.

4.3 Efficiency and scalability

Table 4 compares the efficiency of LKRDet against the state-of-
the-art approaches by considering the time required for the online
checking. NumChecker [23] performs one test in 262.3 milliseconds,
performing 500 iterations of the test application, each iteration
includes 5 system calls and monitors 3 HPC events. However, it
cannot be applied to IoT architectures due to lack of resources. Our
LKRDet approach takes 2.91 seconds to run the test application,
each iteration including 2000 iterations of the 5 system calls and
monitoring 6 HPC events. The ML-based method requires 825 sec-
onds for capturing and testing 1000 feature data, with each feature
data including 6 HPC events. Furthermore, any ML-based method
will require time for training for each rootkit it aims at identifying.
To analyze the scalability of LKRDet, its time consumption can
be split into four parts: (1) time to run the test application without
profiling T0, (2) offline profiling time T1, (3) online monitoring time
T2, (4) time to compare T3. Figure 5 shows the values of these values
varying the number of system calls in the test application from
1000 to 5000. TO increases slightly with the number of iterations
but remains negligible (less than 0.3s). T1 and T2 have very close
values and increase reasonably. T3 remains identical when varying
the number of iterations. Increasing the number of system calls
reduces the system noise improving the precision, meanwhile only
T1 and T2 increases. Since T1 is executed only once offline, only T2
impacts the detection overhead during the life of the system. Thus,
LKRDet overhead scale well when increasing the precision.

5 DISCUSSION AND CONCLUDING REMARKS

Among the HPC-based detection methods, ML-based solutions can
continuously improve their effectiveness by adjusting their mod-
els and obtaining more data. However, they struggle to deal with
new rootkits having unknown features. This is because ML-based
methods require to be trained by using traces produced by both
secured and infected systems. Otherwise, most of ML algorithms
for classification will not be able to recognize malicious executions.

On the other hand, deterministic solutions provide complete
accuracy, but they require complex architectures, providing virtual-
ization features usually unavailable to IoT devices. Also, the VMM
itself can be the attacking target to damage detection mechanisms.

We presented LKRDet, a TEE-based kernel rootkit detection
framework relying on HPCs to monitor the execution flow of sys-
tem calls. LKRDet is secured by running in a trusted execution
environment, and lightweight enough to be used in any ARM-based
IoT devices. It is not prone to application updates and varying sys-
tem load, as the test application remains the same, and the profile
data remains almost unchanged due to the kernel space profiling.

As such, it requires to execute the profiling phase only once for
each kernel update and to redesign the test application only in case
of significant changes in the kernel. Meanwhile, the monitoring
phase may be executed periodically during the life of the system,
as a low-priority task by impacting only minimally on eventual
real-time constraints of the system. Furthermore, by monitoring
the smallest piece of software to be monitored, it overcomes the
drawbacks recently highlighted [8, 25] in the use of HPCs.

As a major limitation, LKRDet cannot detect kernel rootkits
tampering with the HPC values [21]. However, this limitation is
common to any methods relying on HPCs to detect kernel rootkits.
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