
SNI5GECT: A Practical Approach to Inject aNRchy into 5G NR

Shijie Luo, Matheus E. Garbelini, Sudipta Chattopadhyay, and Jianying Zhou
Singapore University of Technology and Design

Abstract
In this paper, we propose and design SNI5GECT– a frame-
work that sniffs messages from pre-authentication 5G com-
munication in real-time and injects targeted attack payload in
downlink communication towards the UE. As opposed to us-
ing a rogue base station which limits the practicality of many
5G attacks, SNI5GECT acts as a third-party in the communi-
cation, silently sniffs messages, and tracks the protocol state
by decoding the sniffed messages during the UE attach pro-
cedure. The state information is then used to inject targeted
attack payload in downlink communication. We have imple-
mented SNI5GECT and evaluated it with five 5G enabled UE
devices and with both open-source (srsRAN) and commer-
cial (Effnet) base stations (gNBs). Our evaluation reveals that
SNI5GECT obtains over 80% accuracy in uplink and down-
link sniffing, and successfully injects messages at an arbitrary
protocol state with a 70%-90% success rate up to 20m of
distance between UE and SNI5GECT. We further evaluate
SNI5GECT to launch a variety of attacks that crash the UE,
downgrade the connection to lower generation or extract the
UE identity with an attack success rate often over 70% with
known UE distance. Finally, we discover a new multi-stage,
downgrade attack leveraging the SNI5GECT framework. The
risk of this attack has been acknowledged by GSMA and a
coordinated vulnerability disclosure (CVD) identity has been
assigned. Thus, SNI5GECT is a practical and complementary
tool for evaluating current and new 5G attacks in the wild.

1 Introduction

The fifth generation of mobile networks 5G New Radio (5G
NR) holds the potential to influence several key sectors e.g.,
smart home, industry control, healthcare, and robotics due
to its high speed and enhanced security control. Despite the
promising features offered by 5G NR, several design and
implementation vulnerabilities have already been reported [9,
15, 18, 30]. While such vulnerabilities undermine the trust
in 5G network, it is necessary to understand their real-world

Downlink

Uplink

X
Selective

Sniffing

UEgNB

Impact

Downgrade
Bypass Auth.

Crash Modem
Fingerprint

Injection via Overshadowing
Attacker

(Our Work)

Malform Flood Replay

X

Rogue gNBgNB UE

X
Lower

RSSI

b) Launching 5G Attacks via Rogue Base Station

a) Launching 5G Attacks via Selective Injection

Figure 1: An Illustration of SNI5GECT attack model

impact for accurate risk assessment. Therefore, it is crucial to
design frameworks and capabilities for investigating the limits
and impact of 5G NR attacks, for example, when attackers
may be constrained by practical real-world limitations.

In this paper, we propose and design SNI5GECT– a foun-
dational framework for launching pre-authentication attacks,
capable of sniffing both downlink and uplink 5G traffic over-
the-air. Moreover, SNI5GECT embodies capabilities to inject
downlink messages at the correct timing (e.g., after a specific
protocol state), causing the User Equipment (UE) to accept
the message. Such injected messages can be targeted attack
payloads, resulting in the UE, for example, to crash or to
downgrade. Figure 1(a) illustrates the attack model targeted
by the SNI5GECT framework. As opposed to heavily intru-
sive approaches such as employing rogue gNB [9, 30] (see
Figure 1(b)), SNI5GECT passively sniffs messages during
the initial connection process, decodes the message content,
and leverages the decoded message content to later decide to
inject targeted attack payloads. As opposed to prior work [19],
SNI5GECT sniffs and decodes both control-plane and user-
plane 5G NR messages in real-time (i.e., without requiring of-

fline analysis) and systematically injects attack payload based
on protocol state. This makes SNI5GECT suitable to launch
fingerprinting, denial-of-service, and downgrade attacks on
targets that require injection of messages under different com-
munication states.

To the best of our knowledge, SNI5GECT is the first frame-
work that empowers researchers with both over-the-air sniff-
ing and stateful injection capabilities, without requiring a
rogue gNB. This is particularly important, as launching at-
tacks via a rogue gNB requires use of bespoke techniques to
force a UE to connect to the rogue gNB. This adds complex-
ity and extra requirements to the setup, thus, increasing the
chance for an attack to fail. Furthermore, a rogue gNB can be
easily detected by intrusion detection systems. This is because
of the broadcast messages (Master Information Block (MIB)
and System Information Block (SIB)) being transmitted all
the time from the rogue gNB within the coverage area.

We argue that both real-time sniffing and message injection
capabilities towards the UE communication, as embodied
in the SNI5GECT framework, are essential for a 5G secu-
rity tool. Concretely, these capabilities enable arbitrary at-
tack scenarios that are stateful in nature: (i) requires sniff-
ing and extracting information from a message, and (ii) sub-
sequently, reusing such information and making decisions
whether to inject a generated message in multiple stages.
This is with the aim of exploiting the implementation or
protocol-level vulnerabilities in the UE (e.g., fingerprinting,
security bypass, downgrade, etc). For example, launching ac-
tive fingerprinting attacks requires the injection of a message
(Identity Request) followed by sniffing of a specific mes-
sage (Identity Response) to successfully extract unique
user information such as Subscription Concealed Identifier
(SUCI). Moreover, several attacks demand messages to be
injected after the Radio Resource Control (RRC) attach pro-
cedure [9, 15], such as attacks involving Non-access stratum
(NAS) messages (i.e., Registration Reject). In general,
due to the dynamic nature of 5G protocols, the stateful mes-
sage injection capability of SNI5GECT is essential for practi-
cally launching the most complex attacks on 5G UEs.

Prior works on 5G security testing requires use of rogue
gNB [9, 15, 30], do not involve comprehensive sniffing of
uplink/downlink messages [19], and fail to have fine-grained,
arbitrary and stateful message injection capabilities anywhere
during the 5G connection process [18, 32]. While the Adap-
tOver framework [6] performs both message sniffing and
injection for 4G networks, such work focuses only on one-
shot attacks that do not need to track responses from UEs,
involve high latency (≈50ms) and is not directly applicable
to 5G NR system. Moreover, the lack of an open framework
makes it impossible to potentially extend AdaptOver. In con-
trast to the aforementioned works, SNI5GECT provides an
open framework to sniff pre-authentication uplink/downlink
messages in 5G network, and it allows arbitrary message in-
jection by carefully monitoring the states from the sniffed

and decoded packets. This, in turn, facilitates orchestration
and evaluation of stateful and arbitrary attacks during the 5G
connection process in a realistic and non-intrusive fashion.

After providing a brief background and overview of
SNI5GECT framework (Section 2), we make the following
contributions in the paper:

1. We present the design of SNI5GECT– an open 5G frame-
work that embodies both sniffing and downlink injection
capabilities in a stateful fashion (Section 3).

2. We implement SNI5GECT on top of srsRAN 4G [26]
and WDissector library [9]. Using USRP b210, we
evaluate its sniffing and stateful injection capabilities
with four state-of-the-art smartphones employing differ-
ent 5G baseband modems. Our evaluation revealed that
SNI5GECT obtains > 80% of accuracy when sniffing
both downlink and uplink messages up to 20m from the
UE. Furthermore, injecting messages after a variety of
states show a success rate between 70%-90% (Section 5).

3. We leverage SNI5GECT to launch a variety of pre-
authentication attacks where UEs are located at known
distance: attacks that do ignore the UE’s response (one-
shot) [9], attacks that involve waiting for a response from
the UE (SUCI catcher), and attacks that involve multiple
stages, leveraging multiple sniffing and injection steps
to be successful. We show that SNI5GECT achieves an
attack success rate of up to 100% for one-shot attacks
and up to 93% for both multi-stage attacks and attacks
expecting response. We also show that some existing
attacks, employing a rogue gNB, may not achieve the
same impact when exploited in the wild (Section 5).

4. We have discovered a new multi-stage, downgrade attack
using SNI5GECT and have reported this finding respon-
sibly to GSMA. A CVD identifier CVD-2024-0096 is
assigned to acknowledge the associated risk (Section 5).

5. Finally, we demonstrate the generalization of SNI5GECT
by evaluating UE attacks when running either Effnet
commercial gNB [1] or srsRAN open-source gNB. We
observe that SNI5GECT achieves similar attack success
rates against both alternatives (Section 5).

After discussing the related work (Section 6) and the limita-
tions of our framework (Section 7), we conclude in Section 8.

2 Background and Overview

2.1 Background on 5G Communication
The top part of Figure 2 shows the spectrogram graph of dif-
ferent signals in 5G, as we introduce in the following sections.
Cell Search & Synchronization: In 5G communication,
downlink/uplink transmissions are organized into ten sub-
frames (a frame), which are further divided into slots based on

Syncher
Broadcast
Worker

UE
Tracker

UE DL
Worker

GNB UL
Worker

Notify
DCI UL

Exploitation
Module

User Script
(Exploit)

GNB DL
Injector

SSB SIB1 RACH msg2 RACH msg3 RRC Setup Uplink
Message

Uplink Grant Downlink
message injection

SSB

PDCCH
DCI DL

PDCCH
DCI UL

PUSCH

PDSCH

Slot

Subframe

Decode & Parse
Messages

i f (nas_5gs. mm. message_t ype == 0x41)
i nj ect (r egi st r at i on_r ej ect) ;

PDSCH

Downlink
Message

PUSCH

PDSCH

Injected
Downlink
Message

Duplicate Duplicate

Jamming

Message Filter

Figure 2: Illustration of SNI5GECT components

subcarrier spacing. The gNB periodically broadcasts the Syn-
chronization Signal Block (SSB) containing three signals: Pri-
mary Synchronization Signal (PSS), Secondary Synchroniza-
tion Signal (SSS), and Physical Broadcast Channel (PBCH).
By performing correlation with the predefined PSS and SSS
sequences, the UE can synchronize its timing and frequency
offsets with the gNB and then decode the PBCH. Then, the
UE extracts Master Information Block (MIB) payload from
the PBCH, which contains essential cell information, cell-
barred status, SSB frequency offset, and other parameters that
inform the UE how to decode further signals from the gNB.

Initial Cell Configuration: In addition to the MIB, the gNB
broadcasts the System Information Block Type 1 (SIB1) on
the Physical Downlink Shared Channel (PDSCH). SIB1 con-
tains essential information, such as common uplink and down-
link configurations and random access parameters, enabling
UEs to connect and communicate with the network.

PDCCH Search: Physical Downlink Control Channel (PD-
CCH) plays a crucial role in delivering control information
to the UE. The UE uses configurations from the Control Re-
source Set (CORESET) and the search space to iteratively
search for Downlink Control Information (DCI) within the
PDCCH. The DCI informs modulation, and coding schemes,
resource allocation, and scheduling information. These in-
dicate how to handle and where to locate Orthogonal Fre-
quency Division Multiplexing (OFDM) symbols in the Phys-
ical Downlink Shared Channel (PDSCH) and the Physical
Uplink Shared Channel (PUSCH).

PDSCH & PUSCH Decoding: The decoding of PDSCH
and PUSCH is critical for the data transmission in a 5G sys-
tem. Both PDSCH and PUSCH rely on the DCI carried by
PDCCH to determine e.g., the allocated resources, modula-

tion, and coding scheme (MCS) for decoding. Using such
information, the UE extracts and decodes the data from the
specified physical resource blocks (PRBs) and OFDM sym-
bols. For SNI5GECT, we leverage the configuration details
obtained from the DCI to decode messages transmitted over
the PDSCH and PUSCH between the UE and the gNB. More-
over, if we intend to send a message to a target UE, then we
must encode the message into the PDSCH and include a DCI
message in the PDCCH to indicate the scheduling information.
Finally, PDCCH and PDSCH In-phase and Quadrature (IQ)
samples are placed into the appropriate slot and transmitted.

Random Access: The UE uses Random Access procedure
(RACH) to establish connection with the gNB. First, the
UE transmits a Random Access Preamble over the Phys-
ical Random Access Channel (PRACH). Upon receiving
the preamble, the gNB responds with a Random Access
Response (RAR) message on the PDSCH channel. This mes-
sage includes key information such as a Temporary Cell Ra-
dio Network Temporary Identifier (TC-RNTI), and an uplink
grant for the subsequent transmission. By monitoring RACH
messages, we can detect new UEs attempting to connect to the
network. Following RAR, the UE uses the allocated uplink
resources to transmit RACH Message 3 on PUSCH. This mes-
sage typically carries RRC Setup Request, which includes
the contention resolution identity. In response, the gNB trans-
mits RACH Message 4 on the PDSCH to resolve contention.
Once the UE processes and acknowledges these messages, it
establishes the RRC connection with the gNB.

2.2 Overview of SNI5GECT

SNI5GECT includes three key entities: (i) the legitimate User
Equipment (UE), (ii) the legitimate 5G gNB, and (iii) the

attacker. The legitimate UE communicates directly with the
gNB, while the attacker initially operates as a passive sniffer
positioned between them (see Figure 1).
Attacker Model: SNI5GECT concentrates on attacks occur-
ring before the authentication procedure to highlight the im-
pact of vulnerabilities triggered by unencrypted messages.
Since messages exchanged between the gNB and the UE are
not encrypted before the security context is established (pre-
authentication state), an attacker does not require knowledge
of the UE’s credentials to sniff uplink/downlink nor to inject
messages without integrity protection throughout the UE con-
nection procedure. For example, an attacker can exploit the
short UE communication window that spans from the RACH
process until the NAS security context is established. Such
an attacker actively listens for any RAR message from the
gNB, which provides the RNTI to decode further UE mes-
sages. While this approach requires SNI5GECT to sniff the
UE starting from the 5G registration procedure, it is highly
practical since many common events can cause a phone to
lose signal, resulting the UE to perform re-connection: Users
(i) entering and leaving a lift which temporarily breaks mobile
connectivity, (ii) arrivals in the airport (toggling of airplane
mode), (iii) passing through a long tunnel or an underground
parking garage where signal is completely lost. Consequently,
an attacker located nearby such places could easily exploit
the UE communication window even without using selective
5G jamming techniques.

Nonetheless, injection needs to occur at a precise moment,
starting from the RAR procedure, such that the UE fails to
distinguish between messages originating from the legitimate
gNB and the attacker. This opens opportunities attacking UEs
without using a rogue gNB that needs exclusive communica-
tion with the UE and knowledge of its credentials. Specifically,
our attacker mimics a partial Dolev–Yao adversary, which
(i) is capable of eavesdropping on pre-authentication unen-
crypted messages, (ii) it can inject, replay or modify messages
towards the downlink communication channel of an UE at a
known distance, and (iii) fingerprint and subsequently track
the UE by passive (sniffing) or by active means (injection).
Workflow: SNI5GECT starts by synchronizing with the le-
gitimate gNB via the Syncher component (see Section 3.1
for details). Then, the time-corrected subframes are passed
to the Broadcast Worker for search and extraction of SIB1
parameters. As discussed in Section 2.1, SIB1 includes sev-
eral crucial configurations e.g., common uplink and downlink
configurations. Thus, the Broadcast Worker decodes the SIB1
and applies the decoded settings for subsequent communica-
tion tracking (see Section 3.2). Then, the Broadcast Worker
also detects whenever a new UE approaches the 5G gNB and
spawns an instance of the UETracker component.

For each UETracker instance, every subframe received
from the Syncher is passed to its associated UE DL Worker
(see Section 3.3.1) and GNB UL Worker (see Section 3.3.2).
The UE DL Worker handles downlink control information

(DCI) searches and PDSCH channel decoding, while the GNB
UL Worker performs PUSCH channel decoding. Once mes-
sages are decoded by the UE DL Worker and GNB UL Worker,
they are leveraged to identify the protocol/communication
state and depending on the protocol state, a crafted attack pay-
load might be generated. The attack payload is finally passed
to the GNB DL Injector for encoding and is injected into the
UE using a Software-defined radio (SDR) (see Section 3.3.3).

3 SNI5GECT Design

In the following, we discuss the two main capabilities of
SNI5GECT (Figure 2): sniffing over-the-air messages and
injecting downlink messages from the gNB to the UE.

3.1 Cell Synchronization & Sniffing
This component (named “Syncher”) serves as the entry point
for activating the sniffer (see Figure 2). Its primary role is to
synchronize with the target 5G cell and retrieve the basic in-
formation contained in the MIB. To achieve this, the Syncher
handles challenging and time-sensitive tasks at the 5G physi-
cal layer such as maintaining real-time synchronization and
distributing subframes to other components. This is a critical
requirement for 5G since missing a single slot from either UE
or gNB can result in the loss of critical messages, potentially
leading to missed opportunities for injecting attack payload
to the UE at a precise time. To address these challenges, the
Syncher is designed to be operated in a thread with the highest
scheduling priority. This ensures real-time performance and
minimizes latency, enabling SNI5GECT to process the signals
and decode the messages in real-time.

Initially, to detect the target cell, the Syncher follows an ap-
proach similar to a UE device. In particular, after initialization,
Syncher performs a cell search using predefined configura-
tions to detect the target cell. Specifically, Syncher searches
for the Synchronization Signal Blocks (SSB) at the specified
SSB frequency, processing one subframe at a time. It com-
putes the timing offset, and Carrier Frequency Offset (CFO)
of the received subframe. This is then used to extract the Re-
source Elements (REs) at the correct offsets and decode the
PBCH for retrieving MIB.

The cell search step is successful only if the MIB passes
CRC verification; otherwise, Syncher continues processing
subsequent subframes until successful. Once the MIB is ex-
tracted, the configurations from the MIB are distributed to
other components, such as the Broadcast Worker for SIB1 de-
coding (see Figure 2). Moreover, the decoded MIB provides
the frame number and SSB block index, enabling the Syncher
to determine slot numbers within each received subframe.
This information is crucial for subsequent tasks like DCI
search, PDSCH and PUSCH decoding as shown in Figure 2.

Once the cell search is complete, the Syncher transitions
to the cell tracking stage to maintain synchronization with

the gNB. For subframes scheduled for SSB transmission, the
Syncher continuously performs the correlation between the
received signals and the predefined PSS/SSS sequences. This
is to determine the offset of the currently received block and
decode the MIB to update the current slot number, similar to
cell search state, as described in the preceding paragraph. Us-
ing the offset, the Syncher also adjusts the number of samples
to receive next time. This is to ensure that subsequently re-
ceived blocks start precisely at the first OFDM symbol in the
slot. This step is crucial, as it aligns the received block with
the start of the slot, ensuring subsequent operations such as
accurate Fast Fourier Transform (FFT) processing of OFDM
symbols. This precise synchronization guarantees the subse-
quent downlink messages to be decoded correctly.

3.2 Extracting Cell information & UE Search

After completing the cell search, we synchronize with the
gNB and proceed to decode the SIB1. This message provides
the radio resource settings necessary to detect UEs connecting
to the gNB and to decode subsequent communications (e.g.,
Random Access Channel messages and RRC Setup Requests,
etc.). The Broadcast Worker component, as highlighted in
Figure 2, performs two main tasks: (i) Locate and decode
the SIB1 message, using the parameters from the MIB (as
decoded by the Syncher), and (ii) after successfully decod-
ing and applying the configuration from SIB1, the Broadcast
Worker transitions to monitoring new UEs connecting to the
gNB. Firstly, to decode the SIB1 message, the Broadcast
Worker utilizes the pdcch-ConfigSIB1 from the previously
decoded MIB message. This is to determine the configura-
tions for CORESET#0 and Search Space#0. Such parameters
enable monitoring and detecting PDCCH/DCI scheduling
information for SIB1. Then, once the DCI is decoded, key
parameters e.g., resource block allocations are obtained and
used to process the corresponding IQ samples and extract
raw bytes, which in turn, are parsed as the SIB1 message.
Failure in any of these steps (e.g., CRC error) leads to failure
in decoding the SIB1 message.

Finally, after extracting the configuration information from
SIB1 and applying it to the Broadcast Worker and pre-
initialized UETracker, the Broadcast Worker transitions to
searching for new UEs joining the network. To this end, the
Broadcast Worker monitors downlink transmission of the
Random Access Response (RAR) message, as this is the
first message sent from the gNB in response to the UE that
initiates the random access procedure. The Broadcast Worker
extracts the Random Access Radio Network Temporary Iden-
tifier (RA-RNTI) parameter from the RAR message, which
temporarily identifies UEs during the random access pro-
cess. This RA-RNTI is used to kick-start the UETracker (See
Figure 2) to track the newly detected UE, until Cell Radio
Network Temporary Identifier (C-RNTI) is assigned to the
UE after successful contention resolution.

To ensure continuous and real-time detection of new UEs
connecting to the gNB, the Broadcast Worker persistently
monitors each downlink transmission slot for the RAR mes-
sage, which additionally carries the RAR uplink grant infor-
mation. This grant enables the decoding of the subsequent
uplink message (RACH Message 3), which might contain the
RRC Setup Request from the UE. Therefore, the Broadcast
Worker must detect and process the RAR message promptly.
Once RAR is detected, Broadcast Worker activates a UE-
Tracker and quickly forwards the uplink grant to subsequent
SNI5GECT components such that RRC Setup Request mes-
sage can be captured. We note that the RRC Setup Request
message includes the Contention Resolution Identity,
a critical field required to carry out malformed RRC Setup
message injection attacks [9]. For the UE to successfully
pass the contention resolution process and accept our injected
malformed RRC Setup message, it is necessary to extract the
Contention Resolution Identity from the original RRC
Setup Request message and include it in the malformed
RRC Setup message. Thus, failure in decoding this message
in real-time makes it impossible to launch attacks involving
malformed RRC Setup messages [9].

3.3 Connection and Message Monitoring

This component of SNI5GECT (named “UETracker”) moni-
tors the communication between the gNB and the UE upon
activation by the Broadcast Worker. It searches each slot to
detect and decode messages between the gNB and the UE.
Based on the status of the communication, it determines when
to inject the message into the UE.

As shown in Figure 2, each instance of UETracker contains
three main components: (i) UE DL Worker, which decodes
downlink messages from the gNB towards the UE; (ii) GNB
UL Worker, which decodes uplink messages from the UE to
the gNB; and (iii) GNB DL Injector, which encodes messages
intended to be injected into the downlink communication from
the gNB to the UE. The key functionalities performed by these
components are outlined in Algorithm 1.

3.3.1 UE DL Worker: Decoding Messages from gNB

UE DL Worker processes and decodes the downlink signal
from the gNB to the UE. This translates the time-domain
signal into frequency components OFDM symbols. Moreover,
since the attacker acts as a third party in the communication
and not as the gNB, all scheduling information is obtained via
passive over-the-air sniffing. To this end, immediately after
being activated by the Broadcast Worker, the UE DL Worker
utilizes CORESET and Search Space configurations obtained
from SIB1 message to iteratively search and decode the PD-
CCH in each downlink slot (see lines 12-13 in Algorithm 1).

Next, the UE DL Worker applies these configurations from
DCI to decode the PDSCH into raw bytes, which correspond

to messages transmitted from the gNB to the UE (Line 16
in Algorithm 1). Subsequently, if the received bytes pass the
CRC check, we perform packet dissection and identify the
protocol state on-the-fly (Lines 22-23 in Algorithm 1) via
WDissector library [9]. We then either generate a targeted
attack payload based on the protocol state or simply ignore
the state (see procedure process_decoded_message) in Al-
gorithm 1. We note that the attack payload generation is com-
pletely modular and arbitrarily extensible for testing. In our
evaluation, we show such extensibility by evaluating existing
attacks and by discovering new downgrade attacks.

Finally, the initially obtained CORESET and Search Space
configuration contain values that are not applicable to the
entire lifetime of the connection. Thus, the UETracker will
miss those messages sent using the UE-specific configura-
tions. Consequently, to ensure valid decoding of all user
data messages, UETracker extracts UE-specific parameters
(CellGroupConfig) from the RRC_Setup message and ap-
plies any relevant configuration changes to itself and associ-
ated components (see lines 18-20 in Algorithm 1).

This component is essential for decoding both uplink and
downlink messages. On one hand, Downlink Control Infor-
mation (DCI) for both uplink and downlink transmissions is
sent in the downlink. Without accurately detecting and de-
coding this DCI, it is impossible to retrieve the scheduling
information required to decode the actual PDSCH (downlink)
and PUSCH (uplink) messages, thereby preventing success-
ful retrieval of downlink and uplink data. Furthermore, while
decoding the SIB1 message provides the UETracker with cell-
wide configurations necessary for initial message detection
and decoding, it does not include UE-specific configurations.
Successfully detecting and decoding the RRC_Setup message
is crucial for obtaining these UE-specific configurations, en-
abling the framework to fully track and decode messages
exchanged between the gNB and the UE.

3.3.2 GNB UL Worker: Decoding Messages from the UE

The GNB UL Worker decodes uplink messages sent from the
UE to the gNB. However, processing of uplink signal is non-
trivial. Firstly, 5G NR has two options for uplink waveforms
(CP-OFDM and DFT-s-OFDM). Secondly, we note that in
Frequency Division Duplex (FDD), the uplink frequency is
different from the downlink frequency. More importantly,
since the signals are transmitted over-the-air, the downlink
and uplink signals are not perfectly aligned in the time do-
main. Hence, the demodulation of the uplink is performed
independently of the downlink OFDM demodulation.

There are several ways to align with the timing of the UE
transmission, such as making use of GPS Disciplined Oscilla-
tors (GPSDO) alongside the SDR. However, in our setup, we
do not rely on GPSDO for SDR timing. Instead, the attacker
synchronizes its clock with the gNB using the SSB blocks.
Due to the hardware delay and transmission delay between

the gNB and the attacker, some time misalignment still exists
between them. Consequently, uplink signals are not correctly
aligned from the attacker’s perspective and directly decoding
such misaligned subframes may result in decoding failure.
Nonetheless, the gNB instructs the UE to adjust its data trans-
mission timing using the Timing Advance Command (TAC).
TAC contains the information about how early the UE has to
send out the signal before the start of the subframe. This is
to correctly align the signals from the UE with the start of
the subframe when such signals arrive on the gNB side. Thus,
when the UE transmits UL signals, an observer unaware of
the TAC can only sniff the start of the downlink subframe,
failing to decode UL signals that were transmitted before
the downlink subframe. To avoid such constraint, SNI5GECT
applies TAC correction to successfully decode the UL signals.

Since we use Time Division Duplex (TDD), both uplink
and downlink share the same frequency. Consequently, up-
link and downlink samples are received simultaneously. To
correctly align the start of the uplink subframe with the start
of the first OFDM symbol, some correction on the uplink
symbols is required (see line 33 in Algorithm 1). Specifically,
since the TAC instructs the UE to send out the signals before
the start of the subframe, some uplink symbols for the current
subframe reside in the last received block of samples. We
utilize the TAC to compute the timing offset in the uplink
subframe. This offset reduces the time misalignment between
the attacker and the target UE, and ensures accurate decoding
of most messages sent by the UE to the gNB, e.g., the critical
messages exchanged before the security context is established.
We evaluated the robustness of this approach in RQ1.

Since the uplink grant is sent via downlink from the gNB
to the UE, the GNB UL Worker checks if there exists a grant
for the current slot (see lines 27-30 in Algorithm 1). If such a
grant exists, then the GNB UL Worker uses the scheduling in-
formation provided in the uplink grant, obtained from the DCI
on the PDCCH, to decode the PUSCH. The GNB UL Worker
then processes the assigned resource blocks to demodulate
the received signal and extracts the raw bytes transmitted by
the UE (see line 35 in Algorithm 1). Then, similar to UE
DL Worker, if the decoded message passes the CRC check, it
is sent to the WDissector library [9] for packet analysis and
protocol state identification. This is then used for possible
attack payload generation and injection (Lines 36-37).

3.3.3 GNB DL Injector: Inject messages towards the UE

The GNB DL Injector is responsible for encoding and injec-
tion of messages intended to appear as if they originate from
a legitimate gNB towards the tracked UE. Unlike the passive
monitoring approach of the sniffing capability, the GNB DL
Injector does not require scheduling information from the
gNB. Instead, it generates its own scheduling information and
injects it into the DCI DL, which is encoded into the PDCCH.
Concurrently, the intended message to be injected towards the

Algorithm 1 Message Processing from Subframe
Require: Subframes

1: procedure PROCESS_DECODED_MESSAGE(message)
2: ▷ dissect the decoded message
3: packet← WDWorker.dissect(message)
4: ▷ generate a targeted attack payload or ignore
5: packet_state← WDWorker.detect_state(packet)
6: if is_attack_state(packet_state) then
7: payload← generate_exploit(packet)
8: ▷ inject attack payload in downlink transmission
9: GNB_DL_Injector.inject(payload)

10:
11: for each subframe do
12: for ⟨slot, slot_number⟩ ∈ subframe do
13: ⟨dl_grant, ul_grant⟩ ← search_dci(slot, slot_number)
14: if (dl_grant ̸= /0) then
15: ▷ UE DL Worker decodes the downlink message
16: ⟨message,crc⟩ ← pdsch_decode(slot, dl_grant)
17: ▷ apply configurations to SNI5GECT components
18: if (checked(crc)∧messagetype = RRC_Setup) then
19: configs← extract_configs(message)
20: apply_configs(configs)

21: ▷ generate state-aware attack payload
22: if checked(crc) then
23: process_decoded_message(message)

24: if (ul_grant ̸= /0) then
25: grant_queue.push(ul_grant)

26: ▷ check the uplink grant from the head of grant queue
27: ULgrant ← grant_queue.first
28: ▷ slot number always increases sequentially
29: ▷ hence, check whether ULgrant is for current slot
30: if is_for_current_slot(ULgrant , slot_number) then
31: ul_grant← grant_queue.pop_head()
32: ▷ apply offset to synchronize UE and attacker time
33: apply_delay_calibration(slot)
34: ▷ GNB UL Worker decodes the uplink message
35: ⟨message,crc⟩ ← pusch_decode(slot, ul_grant)
36: if checked(crc) then
37: process_decoded_message(message)

UE is encoded into the PDSCH using the time-domain and
frequency-domain scheduling information from the DCI DL.
When a response from the UE is required, the GNB DL Injec-
tor also generates a DCI to schedule an uplink transmission,
encodes it into the PDCCH, and attaches it to the next slot.
Eventually, all the encoded data is converted into IQ samples
and transmitted to the UE (Line 9 in Algorithm 1).

It is possible that the injected message is transmitted in the
same slot as the gNB’s transmission, leading to collisions. If
the signal strength is insufficient, this may result in jamming
the UE’s received signals. To mitigate this issue and improve
the attack’s success rate, we inject the same message multi-
ple times in consecutive subframes. However, if we attempt
to inject messages in both slots within the same subframe
and continue over consecutive subframes, then the SDR fails

to transmit as many samples. To address this, we inject the
message only in the first slot of the subframe (see rightmost
side of Figure 2). For the second slot, we either transmit a
PDCCH carrying a DCI uplink grant, allowing us to schedule
an uplink grant for the UE, or we copy 80% of the samples
from the current slot and inject them into the second slot. This
approach aims to block the gNB transmission and prevent
the UE from accepting messages sent by the gNB. For most
attacks, we only need to inject the messages into five consec-
utive subframes in order to successfully carry out the attack,
which corresponds to 5ms in total.

However, injecting a message to the UE is a complicated
process due to (i) inherent delays in transmitting and receiv-
ing signals to and from the SDR and the phone baseband
hardware, and (ii) the fact that the UE’s timing is synchro-
nized with the gNB rather than the attacker (i.e., SNI5GECT
acts as the third party in the communication). As a result,
aligning the injection time with the UE’s timing becomes
complex, since a small difference in the injection time (range
of microseconds) can result in a message arriving too early
or too late. This, in turn, would cause the injected message to
be dropped by the UE due to CRC errors. To overcome this
challenge, SNI5GECT uses an iterative, offline search method
to find the appropriate delay calibration value for message
injection: This requires placing an SDR at potential target
locations and running the IQ sample recorder. The process
begins by initially synchronizing SNI5GECT with the gNB
and then sending out an arbitrary message with a zero-delay
offset. Then, on the recorder side, we first identify the slot that
the message is injected. Finally, we use the decoding function
from UE DL Worker to try to decode the injected signals with
different delay offset, until the message can be successfully
decoded. With this process, we aim to heuristically identify
the timing offset required for successful decoding at the target
UEs in the locations, resulting in successful injections. Hence,
such approximate offset value, which resulted in successful
decoding of injected signals, is used for subsequent message
injection by SNI5GECT during attacks. We empirically show
that to launch successful attacks, such offset does not need to
change for a distance of at least 20m (see RQ2).

SNI5GECT approach is feasible from the UE perspective.
This is because in the absence of a message from gNB, the
injected message arrives at the correct time, then the UE is
unable to distinguish whether the message originates from
the gNB or the attacker. Therefore, the UE decodes and ac-
cepts the message, and responds accordingly. Consequently,
if the attack is launched via a fake gNB to crash the UE, then
SNI5GECT can equally crash the UE by injecting the same
payload without using the rogue gNB. Similarly, if the attack
aims to retrieve information from the UE, then the UE will
receive the uplink grant and respond to the attacker in the next
slot as if the UE communicates to the gNB.

4 Evaluation Setup

Hardware and Software Setup: SNI5GECT is developed
on top of srsRAN 4G [26] project, which offers both a 5G
Standalone (SA) gNB prototype and an open-source 5G ca-
pable UE implementation. This project also provides func-
tions required for DCI search, PDSCH decoding/encoding
and PUSCH decoding. We wrote ≈10950 lines of C++ code
(including header, test and attack modules) to integrate these
functions together and implemented the components outlined
in Section 2. We also leverage WDissector project [9] for
real-time packet dissection and learning of protocol states.

We evaluated SNI5GECT using five commercial off-the-
shelf (COTS) 5G SA-capable devices (see Table 1). Addition-
ally, we evaluated SNI5GECT with two different legitimate
5G gNBs, with Open5GS [17] as the core network in both
cases. For open-source RAN implementation, we use srsRAN
with a USRP B210 as the radio front end for the legitimate 5G
gNB. For commercial gNB, we employed a setup consisting
of an Effnet gNB [1] paired with a Phluido Remote Radio
Unit (RRU) [20] and a USRP B210 SDR as the legitimate
gNB. SNI5GECT supports maximum 50MHz bandwidth in
TDD and DCI formats 0/1_0/1, paired with USRP-B210 SDR.
In our evaluation, both gNBs operated on a 20MHz n78 Band
using TDD and a subcarrier spacing of 30 kHz. In total, our
evaluation of SNI5GECT employs three USRP SDRs, one
each for the legitimate 5G gNB and SNI5GECT framework
(see Figure 1). A third USRP SDR is needed for the legitimate
4G eNB running srsRAN 4G, which, in turn, is used to detect
downgrade attacks. The physical setup is shown in Figure 3.

4G Base Station
(IMSI Catcher)

UE (Victim)

5G Base Station
(Legitimate gNB)

Sni5Gect
(Attacker)

Figure 3: Physical setup showcasing a rogue 4G base station
(IMSI catcher), a legitimate 5G base station, the SNI5GECT
attacker device, and the victim UE (OnePlus Nord CE 2).

We conducted evaluations at two different distances: plac-
ing the phone close to the SNI5GECT SDR, marked as 0
meters, and positioning it 1 meter away from the SNI5GECT
SDR, marked as 1 meter.
Evaluation Protocol: The evaluation process is conducted
as follows. First, we start the legitimate 5G gNB and wait for
UE to establish a connection. Next, we launch the SNI5GECT
framework, allowing it to synchronize with the srsRAN gNB,
once synchronized, the framework begins sniffing and de-

Table 1: Tested 5G UEs, employed modem and patch version.

Model Modem Patch Version
OnePlus Nord CE 2 IV2201 MediaTek MT6877V/ZA 2023-05-05
Samsung Galaxy S22 SM-S901E/DS Snapdragon X65 2024-06-01
Google Pixel 7 Exynos 5300 2023-05-05
Huawei P40 Pro ELS-NX9 Balong 5000 2024-02-01
Fibocom FM150-AE USB modem Snapdragon X55 NA

Table 2: Effectiveness of SNI5GECT sniffing capability for
different distance between the UE and the SNI5GECT SDR.
Number of sniffed messages is provided alongside accuracy.

Device Dist. Sniffing Accuracy Uplink Downlink

OnePlus Nord CE 2 0 m 93.32% (4418) 75.77% (938) 99.54% (3480)
1 m 92.20% (8074) 70.45% (1576) 99.66% (6498)

Huawei P40 Pro 0 m 94.86% (1180) 86.08% (371) 99.51% (809)
1 m 94.74% (1262) 84.87% (387) 99.89% (875)

Pixel 7 0 m 86.55% (1094) 75.89% (491) 97.73% (603)
1 m 90.71% (1768) 74.11% (435) 97.87% (1333)

Samsung Galaxy S22 0 m 93.15% (1061) 88.78% (467) 96.90% (594)
1 m 97.51% (745) 94.68% (338) 100% (407)

tecting SIB1 messages. It then passively waits for the UE to
establish the connection with the legitimate gNB. After this,
we disable the airplane mode on the UE, causing it to connect
to the gNB. After a few seconds, we turn on the airplane mode
to disconnect the UE from the gNB and evaluate the results
of the attack or sniffing process.

All our evaluations were conducted on a Debian 12 sys-
tem, with the SNI5GECT software stack running inside an
Ubuntu 22.04 Docker container. The host machine has an
AMD Ryzen 9 5950X CPU and 32 GB DDR4 RAM.

5 Evaluation Results

5.1 RQ1: How effective is the sniffer?

We evaluate this question by first capturing the over-the-air
communication between a smartphone and the gNB via the
SNI5GECT sniffer and then comparing the total sniffed down-
link and uplink messages exposed in the SNI5GECT trace file
(i.e., PCAP) with the trace file exposed by the gNB itself (i.e.,
ground-truth). This allows us to calculate the effectiveness of
SNI5GECT sniffer since the trace file generated by the gNB
itself (via srsRAN) contains all the messages of the communi-
cation (i.e., downlink and uplink) and thus reveals whether the
sniffer misses any messages within its trace file. The sniffer ef-
fectiveness is showcased in Table 2 over multiple connection
attempts and with varying distances. Table 2 indicates that
the sniffing effectiveness of the downlink channel is substan-
tially better than the uplink channel, as respectively captured
in columns “Downlink Accuracy" and “Uplink Accuracy".
Nonetheless, the overall accuracy of the sniffer is high, consis-
tently capturing over 80% of over-the-air messages between
the UE and the gNB as highlighted in “Accuracy" column.

The reduced uplink sniffing accuracy is attributed to failure
in detecting the DCI for uplink messages, which results in

SNI5GECT missing several uplink messages. Additionally,
SNI5GECT works as a third party in the communication, and
hence, the timing of the uplink does not perfectly align with
the downlink timing from the gNB. Despite SNI5GECT mak-
ing use of TAC to compensate the uplink timing difference
and leveraging the cyclic prefix of the OFDM symbols to
tolerate some timing errors, decoding of the PUSCH channel
occasionally fails, resulting in missed uplink messages. These
factors collectively explain the reduced accuracy.

We also evaluated the robustness of our uplink sniffing ap-
proach. In particular, SNI5GECT leverages the initial Timing
Advance (TA) Command value provided by the gNB (i.e.,
sniffed from RAR message). This is to reduce the time mis-
alignment difference between the attacker and the target UE
for uplink sniffing (see Section 3.3.2). We designed two differ-
ent experiments to evaluate the effectiveness of this approach.
For the first experiment, we evaluate the uplink sniffing perfor-
mance for UEs far from the SNI5GECT. Firstly, we fixed the
position of SNI5GECT and the gNB, with the gNB six meters
away from SNI5GECT. Then, we place the four phones five
meters away from the SNI5GECT, toggle the airplane mode to
trigger the connection, and finally compare the uplink sniffing
result with the ground truth from the srsRAN base station. We
gradually increase the distance with a step of five meters until
the phones are 20 meters away from SNI5GECT. For each
distance, we run the evaluation ten times. Results are shown
in Figure 4. We observe that the uplink sniffing performance
remains generally high (often 70%−95%) within 20m dis-
tance and the performances generally decrease (up to 55%) as
the distance between SNI5GECT and the target UE increases.

5 10 15 20
Distance (m)

40

50

60

70

80

90

100

UL
 S

uc
ce

ss
 R

at
e 90.5%

81.7%

64.1%

95.7%

76.9%

85.0%

71.1%

91.8%

68.4%

79.8%

55.3%

91.1%

59.0%

87.8%

54.7%

69.9%

Device
Huawei
Oneplus

Pixel
Samsung

Figure 4: Success Rate of Uplink Sniffing w.r.t distance

The previous experiment is affected by the signal quality, as
the antenna used might receive poor signals from the UE when
it is far away. We observed that the RSRP drops from 21.55
dBm to 8.95 dBm on average from 5 meters to 20 meters away.
Thus, to evaluate the robustness of uplink sniffing, we also
designed another experiment. In this evaluation, we placed
the phones one meter away from both the SNI5GECT and
the gNB to get better signal quality. Four phones connect
to the gNB simultaneously and we record the IQ samples
sent between the gNB and the target UE into a file. Then
we run the uplink sniffing test offline by directly reading the

TA-10 TA-8 TA-6 TA-4 TA-2 TA TA+2 TA+4 TA+6 TA+8 TA+10
TA Offset

0
10
20
30
40
50
60
70
80
90

100

Su
cc

es
s R

at
e

Pixel
Huawei

Samsung
Oneplus

Figure 5: Uplink Sniffing w.r.t TA command offset

signals from the pre-recorded files. This guarantees each test
have exactly the same set of input. Moreover, in addition to
applying the TA from RAR directly, we also evaluate the
uplink sniffing performance within the range [TA-10, TA+10]
with a step of two. For each TA offset, we evaluate with ten
different connection recording files. This helps us evaluate
the robustness of adopting the TA Command from the gNB
to the UE, without being affected by other factors such as
signal qualities. We illustrate the success rate for different
UEs in Figure 5. Indeed, we observe that the uplink sniffing
performance remains similar within the window of TA±4.
This robustness zone corresponds to a timing misalignment
of ±1.04 microseconds, ≈ ±312 meters. This is acceptable
for effective uplink decoding under realistic conditions.

1 2 3 4 5 6 Total
Round

0
10
20
30
40
50
60
70
80
90

100

Su
cc

es
s R

at
e

(%
)

 99.7 99.1 98.6 99.5 95.9 99.4 99.3

 13.1

 39.9 37.0
 47.0 43.6

 23.9
 35.8

Sni5Gect NR-Scope

Figure 6: Success Rate of DCI search

Finally, we also compare the accuracy of our DCI search
with respect to existing framework i.e., NR-Scope [31], using
the same setup described in Figure 3. In this evaluation, we
connect four different UEs to the target srsRAN gNB simulta-
neously. Concurrently, SNI5GECT passively sniffs the DCIs
transmitted from the gNB to the UEs. We then compare the
number of captured DCIs with the ground truth obtained from
the srsRAN base station logs. We run the same evaluation for
six rounds, and evaluated the success rate of each round. Fig-
ure 6 illustrates the competitive performance of SNI5GECT
over NR-Scope [31]. During our experiment, NR-Scope often
failed to detect new UE connections and hangs frequently. As
a result, it missed a lot of DCIs, thus leading to its poor perfor-

mance. We observe that in contrast to NR-Scope, SNI5GECT
effectively captures new UEs approaching to the gNB, keeps
track of their UE specific configurations, and then utilize these
configurations to search and decode the DCIs sent from the
gNB to the target UE.

5.2 RQ2: How effective is stateful injection?

We evaluate the effectiveness of SNI5GECT in successfully
injecting arbitrary messages at any given state during the 5G
communication. We firstly inject messages in different states
(e.g., after RRC Setup Request) and then confirm whether
such messages are successfully received by the UE. To this
end, we use Fibocom USB modem as target UE and extract its
internal capture file (ground-truth) to confirm the reception of
an injected message into the modem firmware. Additionally,
we evaluate the success rate with respect to the number of
injected messages. This is particularly insightful to reveal
whether injecting multiple times the same message can sig-
nificantly increase the chances for a message to be received
by the UE, in case of over-the-air failures or collisions.

Table 3 showcases the total and successfully injected mes-
sages and success rate. For each row, Table 3 also contains
the results given how many times ("Duplication" column) the
same message was injected for each state. Overall, SNI5GECT
achieves a high success rate (> 80%) of message injection in
most evaluated states. Furthermore, increasing the number of
Duplication reveals a significant increase in the success rate
of messages injected after Authentication Failure and
after Security Mode Complete. This is expected due to the
increased chance of collisions with many uplink messages
during such states and during injection.

We also evaluated the effectiveness of SNI5GECT to attack
the victim UE at different distances. This is to demonstrate
the effectiveness and robustness of the injection time offset
found by brute force. Similar to previous experiments, we
placed the UE five to 20 meters away from the SNI5GECT
(while keeping the distance between SNI5GECT and the
gNB six meters) and a 30dB amplifier is placed at the TX
port of the SNI5GECT SDR to increase the injection signal
power. Then, we inject the Registration Reject [15] after
Registration Request state. We run this attack in three
different rounds and in each round, we toggle the connection
for about 20 times. Finally, we check the pcap file col-
lected from QCSuper [23] to confirm the message is actually
received at the expected state on the UE side. We observe
over 95% success rate within 20m and the success rate de-
creased to about 83% at about 20m distance (see Table 4).
This demonstrates SNI5GECT’s robustness in realistic condi-
tion i.e., to inject messages into communication even when
the victim UE is relatively far. It also demonstrated that with
increased signal power, the injection success also increases.

Overall, our results reveal that SNI5GECT is not only a
practical offensive tool, but it also tests the resiliency of cur-

rently deployed 5G networks against over-the-air intrusions.

5.3 RQ3: Evaluation of 5G Attacks
At a high level, we evaluate SNI5GECT with three different at-
tack categiories with the following requirements (Table 5): (i)
One-Shot Attacks require injecting a single message towards
the UE. If the UE accepts the message, it reacts immediately
(e.g., by downgrading its network connection or crashing);
(ii) One-Shot Attacks with Response, which in addition to
sending a single message to the UE, the attack also expects
a corresponding response from the UE. (iii) Multi-Stage At-
tacks depend on injecting the same or different messages
multiple times at different states to successfully execute the
attack. Consequently, SNI5GECT must perform multiple in-
jections and/or message sniffing to achieve the desired out-
come. We also evaluate attacks triggering crash, downgrade,
fingerprinting and other vulnerabilities from prior research
e.g., 5Ghoul [9] and 5GBaseChecker [30].

5.3.1 One-Shot Attacks

5Ghoul Attacks: 5Ghoul [9] highlights several malformed
messages that can lead UE modems to crash. To show the
practicality of SNI5GECT, we selected five representative
One-Shot attacks (out of 14) to replicate via our framework:
four instances of the malformed RRC Setup attack and one in-
stance of the malformed Radio Link Control (RLC) attack, all
of which are reported to crash the UE modem. Then, we eval-
uated these attacks using the OnePlus Nord CE2 smartphone,
which employs a vulnerable MediaTek modem. The success
rate of each attack across different distances is shown in Ta-
ble 6 (see column srsRAN gNB). While few attacks resulted in
performance around 70%, a change of the attacker’s distance
consistently results in a higher accuracy of above 90%. Attack
failure occasionally happens when the UE does not accept
messages from SNI5GECT. This is due to the approximated

injection delay, which may not yield the optimal delay
for all devices (see Section 3.3.3). Nonetheless, SNI5GECT
jams downlink messages from gNB and resends its previously
injected message to increase the attack success rate. Once the
jamming stops, the UE proceeds to communicate with the
gNB. Finally, we confirm 5G modem crashes via ADB logs,
which include error strings e.g., “sModemReason”.

Registration Reject Downgrade Attack: We evaluate
SNI5GECT to show its effectiveness in performing inter-
generation downgrade attacks [15]. Such an attack requires
only a single message to be injected into the communi-
cation (Registration Reject - N1 mode not allowed)
without further interaction with the UE. Concretely, the ex-
pected behavior of a successful attack includes (i) the UE
switching from 5G to 4G connectivity and (ii) the 5G gNB
persistently attempting to recover the connection by repeat-
edly sending messages such as Security Mode Command

Table 3: SNI5GECT Injection Performance.

Duplication # RRC Setup Request Registration Request Authentication Failure Security Mode Complete
Messages # Injected Success Rate # Messages # Injected Success Rate # Messages # Injected Success Rate # Messages # Injected Success Rate

1 356 306 85.96% 232 181 78.02% 47 29 61.70% 51 23 45.10%
2 251 219 87.25% 423 337 79.67% 72 60 83.33% 67 60 89.55%
3 316 272 86.08% 350 262 74.86% 42 28 66.67% 46 44 95.65%
4 234 202 86.32% 364 297 81.59% 71 51 71.83% 43 39 90.70%

Table 4: Injection Performance at Different Distances.

Distance Total Success Success Rate
5m 73 70 95.89%

10m 65 61 93.85%
15m 73 69 94.52%
20m 73 61 83.56%

Table 5: Attacks Category and Expected Outcomes.

Attacks Category Outcomes
5Ghoul Attacks One-shot Attacks Crash

Registration Reject Injection One-shot Attacks Downgrade
Identity Request Injection One-shot Attack expecting Response Fingerprinting

Authentication Replay Injection Multi-stage Attacks Downgrade
5G AKA Bypass Multi-stage Attacks Security Bypassing

towards the UE. Hence, we use our physical setup with both
5G and 4G base stations to evaluate the attack success rate
(see Figure 3). The attack behavior was repeatedly observed
during our tests (see attack success rate in the leftmost side
of Figure 7), thus confirming the effectiveness of SNI5GECT
to reliably reproduce downgrade attacks. We note that down-
grade attack may also occasionally fail due to the brute-force
delay calibration approach mentioned earlier.

5.3.2 One-Shot Attacks with Response

The 5G standard enhances security by introducing the Sub-
scription Permanent Identifier (SUPI) as a permanent iden-
tifier to replace the less secure IMSI from 4G. Upon receiv-
ing an Identity Request from the gNB, the UE encrypts
the SUPI to generate the Subscription Concealed Identifier
(SUCI) and only transmits the SUCI back to the network.
This encryption prevents attackers from directly deriving the
SUPI from the SUCI. However, as demonstrated in the 5G
SUCI-Catchers [3] paper, attackers can still track UE devices

Table 6: 5Ghoul attacks under srsRAN or Effnet gNBs.

CVE Dist. srsRAN gNB Effnet gNB
Total Success rate Total Success rate

CVE-2023-20702 0 m 18 100.00% 26 92.31%
1 m 59 100.00% 28 85.71%

CVE-2023-32843 0 m 19 100.00% 25 68.00%
1 m 22 90.91% 22 90.91%

CVE-2023-32842 0 m 22 77.27% 25 76.00%
1 m 21 95.24% 24 75.00%

CVE-2024-20003 0 m 22 90.91% 32 40.62%
1 m 22 100.00% 23 56.52%

CVE-2023-32845 0 m 15 86.67% 25 64.00%
1 m 20 95.00% 20 95.00%

with the encrypted SUPI, thereby compromising user privacy.
To showcase the capability of SNI5GECT to perform such

attacks, we inject an Identity Request message into the
target UE and consider the attack successful only if the UE
responds with the expected Identity Response message, which
contains the UE’s SUCI. To evaluate the success rate of this
attack, we first start a legitimate 5G gNB and then launch
the attack against various phones and different distances. The
results are presented in the center of Figure 7. We observe
that most phones achieve a success rate of approximately 60%
with some variability. As mentioned earlier, the static injec-
tion delay causes the UE to occasionally ignore the injected
Identity Request messages. Furthermore, since this sce-
nario relies on receiving a response from the UE, a failure
by the sniffer to successfully decode the message results in
missing the Identity Response, leading to attack failures.

5.3.3 Multi-Stage Attacks

Novel 5G Downgrade: We have discovered a novel down-
grade attack and its risk is acknowledged by GSMA [10].

Our attack relies on forcibly starting timer T3520 within
the UE by injecting a replayed Authentication Request (Auth.
Req.) message containing an invalid sequence number (SQN).
According to the 3GPP specification, once the UE receives
such replayed message, the UE replies with an Authentication
Failure message, starts timer T3520 and blacklists (i.e., mark
as barred) the currently connected 5G gNB if the authentica-
tion procedure is not completed before expiry of such timer
or the authentication procedure keeps failing. Once the UE
blacklists the gNB, it disconnects from 5G and connects to a
nearby 4G eNB with the same MCC and MNC as the previ-
ously connected gNB instead. Furthermore, if no 4G eNBs
are available, the UE does not attempt connecting to the same
gNB even after waiting a long time.

Moreover, to prevent the gNB from retrying the authenti-
cation procedure, SNI5GECT injects the replayed Authenti-
cation Request message immediately after the Registration
Request message and continues to do so after receiving any
Authentication Failure message from the UE. This forces the
UE to drop the connection and blacklist the gNB regardless
of subsequent attempts from the gNB to continue with the
authentication procedure. This demonstrates SNI5GECT’s
Multi-Stage attack capability, as it injects messages at dif-
ferent stages of the connection process while dynamically
updating the message content to reflect changing conditions.

To evaluate this attack, we start a legitimate gNB and test

Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro
0

10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

98.5

77.2

98.3

59.4 57.5

85.5
76.6

65.4

84.2
93.3

84.8

53.3

65.3

90.9
100.0

92.0

61.9 65.0

93.0

45.6

81.4 78.3

54.0 52.9

Registration Reject
Downgrade

Identity
Request

Auth. Req. Replay
Downgrade

Distance (m)
0
1

Figure 7: Attack Success Rates by Device, Distance, and Attack Type using srsRAN as legitimate gNB.

Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro Nord CE 2 Galaxy S22 Pixel 7 P40 Pro
0

10
20
30
40
50
60
70
80
90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

92.0

75.7
82.6

42.4
50.0

68.9
65.3

79.6

46.5 46.5 47.1

75.0

61.4
55.6

94.7

61.8
65.8

84.2

65.6

52.3

43.9
50.0

57.5
50.5

Figure 8: Attack Success Rates by Device, Distance, and Attack Type using Effnet as legitimate gNB.

various phones against the attack. The attack is deemed suc-
cessful if the UE replies with multiple Authentication Failure
messages, disconnects and does not connect back to the cor-
responding gNB. We observe that Pixel 7 always recovers
immediately and reconnects back to the gNB after attack. In
contrast, other phones downgrade to 4G and remain in the
downgraded state for several minutes to hours. The summary
of results is presented in the rightmost side of Figure 7.

Overall, the downgrade is highly successful against most
of the evaluated phones (> 80%), except for Pixel 7 at 1m
distance and Huawei P40, both of which result in a moderate
success rate of 50%. Such reduction on the success rate for
some phones can be attributed to failure of SNI5GECT to
capture every (Authentication Failure) response from the UE,
allowing the gNB to retry the authentication procedure and
thus nullify the attack attempt. Nonetheless, such results still
highlight the practicality of the novel downgrade attack.

We also evaluated that SNI5GECT can successfully launch
such complex attack even if the victim UE is 20 meters
away. This further demonstrates the practicalities of using
SNI5GECT framework to test and carry out complex attacks.
In summary, these results highlight that SNI5GECT not only
can be used to reproduce 5G attacks in practical settings, but
also show its potential to discover new attacks on 5G UEs.

5GBaseChecker AKA Bypass: We also evaluate secu-
rity bypass vulnerabilities e.g., 5G AKA Bypass from
5GBaseChecker [30]. For this experiment, we use the re-
ported vulnerable Pixel 7 smartphone. We received ex-
pected plaintext response Registration Complete and PDU
Session Establishment Request from the UE, as stated
in the original attack, immediately after injecting plaintext

Base station closed the connection

Expected response from UE

Figure 9: Capture of plaintext Registration Accept message.

Registration Accept message. This also shows that the
message injection by SNI5GECT was successful. Concur-
rently, the gNB had sent a Security Mode Command, but it
was ignored by the UE due to the injected Registration
Accept message. However, as Registration Complete
was not the expected UE response, the core network reports
an error and then the gNB sends the RRC Release message
to terminate the connection (see Figure 9). This experiment
also shows that reported 5G attacks may not have the same
impact when exploited in the wild.

5.3.4 Implications of 5G Downgrade Attacks

In this experiment, we show the implications of downgrad-
ing a UE connection to use a lower network generation by
launching the IMSI-catching attack [24] via a rogue 4G eNB.

Unlike 5G, in which the UE permanent identity is informed
through the concealed SUCI, 4G allows the UE to inform its
International Mobile Subscriber Identity (IMSI) in plaintext.
This 4G vulnerability is well known and makes it possible for
attackers to extract the UE SUCI to track the UE location over
time, probe the UE for targeted attacks and perform further
privacy breaches. To carry out this attack, an attacker sets up

Scope Sniffing Downlink Overshadow Generation
Work pre-AKA post-AKA PDCCH PDSCH PUSCH Synch. Broad. Uni. LTE 5G

NR-Scope [31] ● ❍ ● ● ❍ ❍ ❍ ❍ ❍ ●

LTESniffer [12] ● ● ● ● ● ❍ ❍ ❍ ● ❍

Falcon [8] ● ● ● ❍ ❍ ❍ ❍ ❍ ● ❍

SigOver [32] - - - - - ● ● ❍ ● ❍

AdaptOver [6] ● ❍ ● ● ● ◗ ◗ ● ● ❍

SigUnder [18] - - - - - ● ● ❍ ❍ ●

5GSniffer [19] ❍ ● ● ❍ ❍ ❍ ❍ ❍ ❍ ●

SNI5GECT ● ❍ ● ● ● ◗ ◗ ● ❍ ●

Table 7: SNI5GECT with respect to similar works. ●: sup-
ported, ❍: unsupported, ◗: Not evaluated, - : Not applicable.
Synch.: Synchronization, Broad.: Broadcast, Uni.: Unicast.

a fake 4G eNB and tricks a downgraded UE to connect to it.
Once connected, the attacker sends an Identity Request
message to the UE, which reveals its IMSI by replying to the
4G eNB with a plaintext Identity Response message.

We use the OnePlus Nord CE2 phone to demonstrate this at-
tack. We firstly launch the attack as described in Section 5.3.3
to forcibly downgrade the UE to 4G. At the same time, we run
a modified srsRAN 4G eNB as an IMSI-Catcher to extract the
UE IMSI once the UE downgrades. Since the phone is config-
ured to prioritize 5G NR over 4G, the UE first approaches the
5G gNB. When the SNI5GECT attacker detects the new UE
approaching, it sends an Authentication Request mes-
sage to the UE and the UE responds with Authentication
Failure. After injecting the message three times, the UE
disconnects from the 5G gNB, connects to the IMSI-Catcher
rogue eNB and responds with the Identity Response mes-
sage, thus indicating a successful attack.

5.3.5 Experiments with commercial gNB

To assess SNI5GECT’s attack capability in real-world sce-
narios, we evaluate against UEs connecting to a commercial
gNB, employing Effnet’s Radio Access Network (RAN) and
a Phluido Remote Radio Unit (RRU) software [20]. As the
commercial gNB does not provide the ground-truth capture
file, we skip evaluation of the sniffing accuracy and evaluate
concrete attacks such as 5Ghoul, Registration Reject, Authen-
tication Replay and Identity Request.

The results are highlighted in Table 6 (see column Effnet)
and Figure 8. Overall, the attack success rate for UEs com-
municating with Effnet gNB is slightly lower as compared
to srsRAN. This is because the commercial gNB transmits
messages at a faster rate, which reduces the availability of
empty slots and hence, increases the chance of collisions dur-
ing SNI5GECT message injection. Additionally, Effnet gNB
might send multiple messages before the UE moves to the
next state, which prevents messages injected too early from
being accepted by the UE. SNI5GECT mitigates such issues
by injecting a message multiple times (cf. Section 3.3.3).

6 Related Work

Table 7 positions SNI5GECT with respect to similar frame-
works. In the following, we discuss this in detail.

5G Sniffing: 5GSniffer [19] allows sniffing of certain mes-
sages (e.g., MIB, DCI). This facilitates traffic analysis and
indirectly tracking the UE by exploiting privacy leaks during
communication. However, in contrast to SNI5GECT, 5GSnif-
fer does not handle the majority of 5G physical layer channels
and hence cannot sniff any message payload during stateful
procedures e.g., RRC Attach and NAS Registration. Therefore,
SNI5GECT is not only useful in privacy-related attacks, but
also in stateful spoofing attacks that require extracting param-
eters from UE messages (e.g., downgrade in Section 5.3.3).

Recent work such as NR-Scope [31] is incapable to sniff
the uplink, which is fundamental for attacks occurring af-
ter specific UE responses (statefulness). QCSuper [23], Mo-
bileInsight [28] and Network Signal Guru [29] can extract
over-the-air messages directly from the smartphone by reverse
engineering of diagnostic protocol. However, they cannot sniff
messages of other UEs, as sniffing only reveals messages of its
own communication with the gNB. Consequently, such tools
cannot be used to attack arbitrary UEs. Additionally, they rely
on proprietary non real-time protocol, hence, launching state-
ful attacks is not applicable when compared to SNI5GECT.

Spoofing Attacks in 5G: SigOver [32] and Sigunder [18]
introduce over-the-air spoofing of broadcast and paging mes-
sages in 4G and 5G networks to execute DoS attacks via over-
shadowing techniques. In comparison, SNI5GECT focuses on
more complex (stateful) procedures such as RRC Attach and
NAS Registration, thus enabling access to a broader attack sur-
face. AdaptOver [6] enables injection of arbitrary messages
toward the UE in mobile networks. However, AdaptOver is
tailored to 4G and only focuses on static “One-Shot” attacks
that do not react to UE replies and depicts high latency dur-
ing downlink injection (e.g., 50ms). In contrast, SNI5GECT
targets 5G and can inject messages based on UE responses
within only 5ms. Additionally, AdaptOver is not publicly
available while SNI5GECT is open-source (See availability).

Downgrade Attacks in Mobile Networks: Downgrade at-
tacks studied in prior works [2, 15, 21] are mostly evalu-
ated from the perspective of a rogue gNB. In comparison,
SNI5GECT focuses on the practical side of launching a vari-
ety of attacks, including but not limited to downgrades. As an
example, we find a novel downgrade attack (see Section 5.3.3)
as a byproduct of our framework. Therefore, we argue that
SNI5GECT complements such prior works by serving as a
practical evaluation tool as opposed to competing.

5G Security Testing and Verification: Several prior works
support over-the-air testing and exploitation of UEs [2, 9, 16,
30] using a rogue gNB, which, needs to be configured with the
UE credentials. SNI5GECT avoids limitations of knowing UE
credentials by acting as a third-party in the communication,
and thus, by freely injecting messages at pre-authentication
states. Other work like 5GReplay [22] is not applicable in
over-the-air scenarios and target only RRC and NAS protocol.
In contrast, SNI5GECT offers additional control on lower pro-

tocol layers e.g., RLC/PDCP/MAC. Finally, orthogonal to our
work, model-based verification focuses on finding 5G vulner-
abilities through sole analysis of 3GPP specification [13, 14].
Nonetheless, SNI5GECT complements such works to assess
the realistic impact (see AKA Bypass in Section 5.3.3).

Detection of Overshadowing Attacks: Physical-layer at-
tacks can be detected and mitigated by relying on detecting a
rogue gNB [4, 25] or overshadowing and jamming of static
information e.g., the SIB [5, 11]. However, these works do
not address selective overshadowing of 5G messages. More-
over, the 5G sniffer in SNI5GECT enables future research on
passive physical-layer or protocol-level 5G attack detection.

7 Threats of Validity and Limitations

Generalization of framework: SNI5GECT only supports
5G and downlink injection. However, its modular design can
facilitate extensions to support earlier mobile technologies
e.g., 4G. Additionally, future work will focus on optimizing
DCI search and message coding to enable uplink injection.

TAC Handling: As the distance between UE and attacker
grows, our use of the TA is less applicable to the attacker,
thus affecting uplink sniffing accuracy. However, we show
that SNI5GECT is not affected by TA variations up to a delta
of ±4 as shown in Figure 5.

Overshadowing Synchronization: Our static delay offset for
downlink injection remains unchanged for up to 20m (Table 4)
with attack accuracy ≈ 80%. However, our overshadowing
synchronization approach requires significant manual effort
to build a timing offset map based on the attacker-UE distance.
Even with this map, SNI5GECT cannot precisely determine
the UE locations. Thus, synchronizing with UEs within the
entire coverage area remains challenging, as different delay
offsets must be tried until success. Therefore, building a prac-
tical 5G sniffer targeting both pre-RAR and post-RAR states
and signal overshadowing framework with unknown UE dis-
tance, remains an open research direction.

Attacking Post-Authentication States: SNI5GECT relies
in sniffing plain-text messages before injecting attacks via
overshadowing. Consequently, SNI5GECT is currently not
applicable to exploit post-authentication procedures due to
encryption of messages, which leads the UE to ignore un-
encrypted payloads by design. However, we plan to expand
SNI5GECT to target plain-text control messages (MAC) that
are accepted even after post-authentication states.

Sniffing Post-RAR states: Currently, SNI5GECT does not
sniff UEs already connected to the gNB (post-rar states) since
it requires tracking the UE’s RNTI from the start of the
PRACH procedure (see Section 2.2). We note that decod-
ing post-rar messages in 5G is still a fundamental challenge,
as it requires brute forcing the DCI, which is time consuming
and impractical for real-time attacks in the pre-authentication

states focused by SNI5GECT. Nonetheless, future works can
mitigate such real-time barrier by integrating SNI5GECT with
a brute-force DCI search algorithm offloaded to GPUs.
Sensitivity to Physical Layer Behaviour: Currently,
SNI5GECT is used indoors or within a maximum ≈ 20m
distance from the UE. Therefore, physical layer behaviour
associated with long distance and dense environments (e.g.,
multipath propagation, beamforming, adaptive power control)
is not currently considered. We intend to build a foundational
tool for experimenting with stateful 5G message sniffing and
injection. However, we plan to expand SNI5GECT evaluation
to account for physical layer behaviours that commonly occur
in 5G networks deployed in urban environments.
Physical Layer Support: SNI5GECT supports Single Input
Single Output (SISO) in in 5G TDD configuration. Multiple
Input Multiple Output (MIMO) and other orthogonal physical
layer features can be introduced to SNI5GECT by migrating
code from OpenAirInterface [7] and srsRAN project [27].
Identifying and distinguishing UEs: The random RNTI
uniquely assigned to each UE during the PRACH process is
leveraged by SNI5GECT to sniff and attack such UE with-
out affecting UEs associated with different RNTIs. However,
since 5G is designed to avoid user tracking, SNI5GECT can-
not distinguish a smartphone model or user (i.e., victim UE)
solely based on the RNTI to launch targeted attacks. Nonethe-
less, we consider such fingerprinting an orthogonal area to our
work and envision future research in such area to complement
the scope of SNI5GECT, rather than competing with it.

8 Conclusion

This paper showcases SNI5GECT– an open-source framework
that performs over-the-air packet sniffing and injection in 5G
NR networks without using a rogue gNB. Consequently, this
allows security researchers to quickly perform security testing
and evaluate the realistic impact of 5G attacks against arbi-
trary UEs. This advantage is evident by SNI5GECT capability
to launch challenging, multi-stage attacks that require real-
time injection and sniffing of messages in different stateful 5G
procedures. Such attacks are exemplified by our evaluation
of AKA Bypass and our newly discovered downgrade attack
(see Section 5). Furthermore, our evaluation of SNI5GECT
against five COTS UEs reveals a high accuracy in sniffing
(> 80%) and injection (> 70%) of messages. Therefore, we
argue that SNI5GECT is a fundamental tool in 5G security
research that enables not only over-the-air 5G exploitation
but advancing future research on packet-level 5G intrusion
detection and mitigation, security enhancements to 5G physi-
cal layer security and beyond. To the best of our knowledge,
there is no open-source alternative that offers the capabili-
ties of SNI5GECT, which is publicly available in the follow-
ing URL: https://github.com/asset-group/Sni5Gect-
5GNR-sniffing-and-exploitation

https://github.com/asset-group/Sni5Gect-5GNR-sniffing-and-exploitation
https://github.com/asset-group/Sni5Gect-5GNR-sniffing-and-exploitation

Acknowledgement

We thank the anonymous shepherd and reviewers for their
insightful comments on our paper. This research is partially
supported by National Research Foundation, Singapore, under
its National Satellite of Excellence Programme “Design Sci-
ence and Technology for Secure Critical Infrastructure: Phase
II" (Award No: NRF-NCR25-NSOE05-0001) and MOE Tier
2 grant (Award number MOE-T2EP20122-0015). Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect
the views of the respective funding agencies.

Research Ethics

Our work, which falls on the wireless security area, often
involves taking part in responsible security disclosure. This is
important to not only ensure that affected parties are aware of
our work, but to also to ensure that appropriate fixes or counter
measures are put in place. Therefore, during development and
experimentation with SNI5GECT, we made sure to contact
the affected special interest group (GSMA) as to inform them
of the contents of our research.

During our development and evaluation, in order to mini-
mize the impact to other people around, we setup the test bed
using test country code MCC and test network code MNC
and make sure only the devices under test are been sniffed
and attacked.

Additionally, we only plan to publicly release the
SNI5GECT framework and the exploits discussed in the paper.
Other serious exploits leveraging the framework will not be
publicly available to avoid abusing SNI5GECT to launch at-
tacks against people’s smartphone. Instead, to foster security
research, we will separately make the exploits available via
requests to a publicly form. This is so we can verify that we
are sending the exploits to trusted institutions like universi-
ties and research institutions. After all, our goal is to heavily
foster security research on mobile networks in a responsible
manner.

Open Science Commitment

We have released our tool open source with this pub-
lication, including all of the components mentioned in
Section 3. The Zenodo link (https://doi.org/10.5281/
zenodo.15601773) provides the current implementation of
all of these components and instructions on how to run
SNI5GECT and replicate the results of our evaluation (Sec-
tion 5). We also make the exploits available in the repository.
This guarantees researchers can run and reproduce experi-
ments using our framework and run further evaluations.

References

[1] Effnet AB. Effnet 5G solutions. https:
//www.effnet.com/products/protocolstack-nw/,
2025. Accessed: 2025-01-08.

[2] Evangelos Bitsikas, Syed Khandker, Ahmad Salous,
Aanjhan Ranganathan, Roger Piqueras Jover, and
Christina Pöpper. Ue security reloaded: Developing
a 5g standalone user-side security testing framework.
In Proceedings of the 16th ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks, page
121–132, New York, NY, USA, 2023. Association for
Computing Machinery.

[3] Merlin Chlosta, David Rupprecht, Christina Pöpper, and
Thorsten Holz. 5g suci-catchers: still catching them
all? In Proceedings of the 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks,
WiSec ’21, page 359–364, New York, NY, USA, 2021.
Association for Computing Machinery.

[4] Adrian Dabrowski, Nicola Pianta, Thomas Klepp, Mar-
tin Mulazzani, and Edgar Weippl. Imsi-catch me if
you can: Imsi-catcher-catchers. In Proceedings of the
30th Annual Computer Security Applications Confer-
ence, ACSAC ’14, page 246–255, New York, NY, USA,
2014. Association for Computing Machinery.

[5] Jiongyu Dai, Usama Saeed, Ying Wang, Yanjun Pan,
Haining Wang, Kevin T. Kornegay, and Lingjia Liu.
Detection of overshadowing attack in 4g and 5g net-
works. IEEE/ACM Trans. Netw., 32(6):4615–4628, Oc-
tober 2024.

[6] Simon Erni, Martin Kotuliak, Patrick Leu, Marc
Roeschlin, and Srdjan Capkun. Adaptover: adaptive
overshadowing attacks in cellular networks. In Pro-
ceedings of the 28th Annual International Conference
on Mobile Computing And Networking, MobiCom ’22,
page 743–755, New York, NY, USA, 2022. Association
for Computing Machinery.

[7] Eurecom. OpenAirInterface 5g wireless im-
plementation. https://gitlab.eurecom.fr/oai/
openairinterface5g, 2025. Accessed: 2025-01-08.

[8] Robert Falkenberg and Christian Wietfeld. FALCON:
an accurate real-time monitor for client-based mobile
network data analytics. In 2019 IEEE Global Communi-
cations Conference, GLOBECOM 2019, Waikoloa, HI,
USA, December 9-13, 2019, pages 1–7. IEEE, 2019.

[9] Matheus E Garbelini, Zewen Shang, Shijie Luo, Sudipta
Chattopadhyay, Sumei Sun, and Ernest Kurniawan.
5ghoul: Unleashing chaos on 5g edge devices via state-
ful multi-layer fuzzing. IEEE Transactions on Depend-
able and Secure Computing (TDSC), 2025.

https://doi.org/10.5281/zenodo.15601773
https://doi.org/10.5281/zenodo.15601773
https://www.effnet.com/products/protocolstack-nw/
https://www.effnet.com/products/protocolstack-nw/
https://gitlab.eurecom.fr/oai/openairinterface5g
https://gitlab.eurecom.fr/oai/openairinterface5g

[10] GSMA. Coordinated vulnerability disclosure
(CVD) programme. https://www.gsma.com/
solutions-and-impact/technologies/security/
gsma-coordinated-vulnerability-disclosure-
programme/, 2025. Accessed: 2025-01-18.

[11] Virgil Hamici-Aubert, Julien Saint-Martin, Renzo E.
Navas, Georgios Z. Papadopoulos, Guillaume Doyen,
and Xavier Lagrange. Leveraging overshadowing for
time-delay attacks in 4g/5g cellular networks: An em-
pirical assessment. In Proceedings of the 19th Interna-
tional Conference on Availability, Reliability and Secu-
rity, ARES ’24, New York, NY, USA, 2024. Association
for Computing Machinery.

[12] Tuan Dinh Hoang, CheolJun Park, Mincheol Son,
Taekkyung Oh, Sangwook Bae, Junho Ahn, Beomseok
Oh, and Yongdae Kim. Ltesniffer: An open-source
LTE downlink/uplink eavesdropper. In Ioana Boureanu,
Steve Schneider, Bradley Reaves, and Nils Ole Tippen-
hauer, editors, Proceedings of the 16th ACM Conference
on Security and Privacy in Wireless and Mobile Net-
works, WiSec 2023, Guildford, United Kingdom, 29 May
2023 - 1 June 2023, pages 43–48. ACM, 2023.

[13] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim,
Omar Chowdhury, and Elisa Bertino. 5greasoner: A
property-directed security and privacy analysis frame-
work for 5g cellular network protocol. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, page 669–684, New York,
NY, USA, 2019. Association for Computing Machinery.

[14] Abdullah Al Ishtiaq, Sarkar Snigdha Sarathi Das, Syed
Md Mukit Rashid, Ali Ranjbar, Kai Tu, Tianwei Wu,
Zhezheng Song, Weixuan Wang, Mujtahid Akon, Rui
Zhang, and Syed Rafiul Hussain. Hermes: Unlocking
security analysis of cellular network protocols by syn-
thesizing finite state machines from natural language
specifications. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 4445–4462, Philadelphia,
PA, August 2024. USENIX Association.

[15] Bedran Karakoc, Nils Fürste, David Rupprecht, and
Katharina Kohls. Never let me down again: Bidding-
down attacks and mitigations in 5g and 4g. In Pro-
ceedings of the 16th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, page 97–108,
New York, NY, USA, 2023. Association for Computing
Machinery.

[16] Syed Khandker, Michele Guerra, Evangelos Bitsikas,
Roger Piqueras Jover, Aanjhan Ranganathan, and
Christina Pöpper. Astra-5g: Automated over-the-air
security testing and research architecture for 5g sa de-
vices. In Proceedings of the 17th ACM Conference on

Security and Privacy in Wireless and Mobile Networks,
WiSec ’24, page 89–100, New York, NY, USA, 2024.
Association for Computing Machinery.

[17] Sukchan Lee. Open5GS a open source implementa-
tion for 5G core and EPC. https://open5gs.org/
open5gs/, 2025. Accessed: 2025-01-08.

[18] Norbert Ludant and Guevara Noubir. Sigunder: a
stealthy 5g low power attack and defenses. In Pro-
ceedings of the 14th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’21,
page 250–260, New York, NY, USA, 2021. Association
for Computing Machinery.

[19] Norbert Ludant, Pieter Robyns, and Guevara Noubir.
From 5g sniffing to harvesting leakages of privacy-
preserving messengers. In 2023 IEEE Symposium on
Security and Privacy (SP), pages 3146–3161, 2023.

[20] Phluido. Interoperable and portable, software-
defined open RAN physical layer. https://
www.phluido.net/, 2025. Accessed: 2025-01-18.

[21] David Rupprecht, Katharina Kohls, Thorsten Holz, and
Christina Pöpper. Breaking lte on layer two. In 2019
IEEE Symposium on Security and Privacy (SP), pages
1121–1136, 2019.

[22] Zujany Salazar, Huu Nghia Nguyen, Wissam Mallouli,
Ana R. Cavalli, and Edgardo Montes de Oca. 5greplay: a
5G network traffic fuzzer - application to attack injection.
In Proceedings of the 16th International Conference on
Availability, Reliability and Security. Association for
Computing Machinery, 2021.

[23] P1 Security. Qcsuper: A tool for capturing raw 2g/3g/4g
radio frames. https://github.com/P1sec/QCSuper,
2025. Accessed: 2025-01-08.

[24] Altaf Shaik, Jean-Pierre Seifert, Ravishankar Bor-
gaonkar, N. Asokan, and Valtteri Niemi. Practical at-
tacks against privacy and availability in 4g/lte mobile
communication systems. In NDSS. The Internet Society,
2016.

[25] Jisoo Shin, Yongyoon Shin, and Jong-Geun Park. Net-
work detection of fake base station using automatic
neighbour relation in self-organizing networks. In 2022
13th International Conference on Information and Com-
munication Technology Convergence (ICTC), pages 968–
970, 2022.

[26] Software Radio Systems. Open source sdr 4g soft-
ware suite from software radio systems (srs). https:
//github.com/srsran/srsRAN_4G, 2025. Accessed:
2025-01-08.

https://www.gsma.com/solutions-and-impact/technologies/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/solutions-and-impact/technologies/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/solutions-and-impact/technologies/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/solutions-and-impact/technologies/security/gsma-coordinated-vulnerability-disclosure-programme/
https://open5gs.org/open5gs/
https://open5gs.org/open5gs/
https://www.phluido.net/
https://www.phluido.net/
https://github.com/P1sec/QCSuper
https://github.com/srsran/srsRAN_4G
https://github.com/srsran/srsRAN_4G

[27] Software Radio Systems. srsRAN: open source
O-RAN 5G CU/DU solution from software ra-
dio systems (srs). https://github.com/srsran/
srsRAN_Project, 2025. Accessed: 2025-01-08.

[28] MobileInsight team. Mobileinsight. http://
www.mobileinsight.net/, 2025. Accessed: 2025-01-
08.

[29] QTRUN Technologies. Network signal guru
(nsg). https://play.google.com/store/apps/
details?id=com.qtrun.QuickTest, 2025. Accessed:
2025-01-08.

[30] Kai Tu, Abdullah Al Ishtiaq, Syed Md Mukit
Rashid, Yilu Dong, Weixuan Wang, Tianwei Wu, and
Syed Rafiul Hussain. Logic gone astray: A security
analysis framework for the control plane protocols of

5g basebands. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 3063–3080, Philadelphia,
PA, August 2024. USENIX Association.

[31] Haoran Wan, Xuyang Cao, Alexander Marder, and Kyle
Jamieson. NR-Scope: A practical 5g standalone teleme-
try tool. In Proceedings of the 20th International Confer-
ence on Emerging Networking EXperiments and Tech-
nologies, CoNEXT ’24, page 73–80, New York, NY,
USA, 2024. Association for Computing Machinery.

[32] Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil
Kim, Song Min Kim, and Yongdae Kim. Hiding in plain
signal: Physical signal overshadowing attack on LTE.
In 28th USENIX Security Symposium (USENIX Secu-
rity 19), pages 55–72, Santa Clara, CA, August 2019.
USENIX Association.

https://github.com/srsran/srsRAN_Project
https://github.com/srsran/srsRAN_Project
http://www.mobileinsight.net/
http://www.mobileinsight.net/
https://play.google.com/store/apps/details?id=com.qtrun.QuickTest
https://play.google.com/store/apps/details?id=com.qtrun.QuickTest

Appendix

Table 8: Evaluation of Registration Reject Downgrade Attack using srsRAN as legitimate gNB.

Device Distance(m) Total Success Success Rate

OnePlus Nord CE 2 0 196 193 98.47%
1 248 162 65.32%

Samsung Galaxy S22 0 127 98 77.17%
1 99 90 90.91%

Pixel 7 0 59 58 98.31%
1 198 198 100%

Huawei P40 Pro 0 96 57 59.38%
1 200 184 92.00%

Table 9: Evaluation of Identity Request using srsRAN as legitimate gNB.

Device Distance(m) Total Success Success Rate

OnePlus Nord CE 2 0 113 65 57.52%
1 160 99 61.88%

Samsung Galaxy S22 0 159 136 85.53%
1 300 195 65.00%

Pixel 7 0 64 49 76.56%
1 100 93 93.00%

Huawei P40 Pro 0 107 70 65.42%
1 90 41 45.56%

Table 10: Auth. Req. Replay Downgrade under srsRAN gNB.

Device Distance(m) Total Success Success Rate

OnePlus Nord CE 2 0 57 48 84.21%
1 59 48 81.36%

Samsung Galaxy S22 0 45 42 93.33%
1 46 36 78.26%

Pixel 7 0 164 139 84.76%
1 63 34 53.97%

Huawei P40 Pro 0 45 24 53.33%
1 68 36 52.94%

Table 11: Registration Reject Downgrade under Effnet gNB.

Device Distance(m) Total Success Success Rate

OnePlus Nord CE 2 0 25 23 92.00%
1 57 35 61.40%

Samsung Galaxy S22 0 111 84 75.68%
1 115 64 55.65%

Pixel 7 0 46 38 82.61%
1 38 36 94.74%

Huawei P40 Pro 0 92 39 42.39%
1 157 97 61.78%

Table 12: Identity Request Attack under Effnet gNB.

Device Distance(m) Total Success Success Rate

OnePlus Nord CE 2 0 38 19 50.00%
1 38 25 65.79%

Samsung Galaxy S22 0 45 31 68.89%
1 38 32 84.21%

Pixel 7 0 49 32 65.31%
1 32 21 65.63%

Huawei P40 Pro 0 49 39 79.59%
1 65 34 52.31%

Table 13: Auth. Req. Replay Downgrade under Effnet gNB.

Device Distance(m) Total Success Success Rate

OnePlus Nord CE 2 0 43 20 46.51%
1 41 18 43.90%

Samsung Galaxy S22 0 43 20 46.51%
1 30 15 50.00%

Pixel 7 0 34 16 47.06%
1 47 27 57.45%

Huawei P40 Pro 0 48 36 75.00%
1 109 55 50.46%

5 10 15 20
Distance (m)

0

5

10

15

20

25

30
UL

 R
SR

P
Samsung
Huawei

OnePlus
Pixel

Figure 10: RSRP of Uplink Sniffing w.r.t distance

5 10 15 20
Distance (m)

15

20

25

30

UL
 S

NR

Samsung
Huawei

OnePlus
Pixel

Figure 11: SNR of Uplink Sniffing w.r.t distance

	Introduction
	Background and Overview
	Background on 5G Communication
	Overview of Sni5Gect

	Sni5Gect Design
	Cell Synchronization & Sniffing
	Extracting Cell information & UE Search
	Connection and Message Monitoring
	UE DL Worker: Decoding Messages from gNB
	GNB UL Worker: Decoding Messages from the UE
	GNB DL Injector: Inject messages towards the UE

	Evaluation Setup
	Evaluation Results
	RQ1: How effective is the sniffer?
	RQ2: How effective is stateful injection?
	RQ3: Evaluation of 5G Attacks
	One-Shot Attacks
	One-Shot Attacks with Response
	Multi-Stage Attacks
	Implications of 5G Downgrade Attacks
	Experiments with commercial gNB

	Related Work
	Threats of Validity and Limitations
	Conclusion

