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SUMMARY

Adversaries can compute the secret information of a program, such as the key for encryption routines,
from side channels in the light of timing- and access-based CPU cache behaviours. As a result, it is
crucial to understand whether a program is vulnerable to side-channel cache leakage or not. Yet how we
can find out such a vulnerability in a program remains a problem. In this paper, we revisit this problem
and contemplate a test generation methodology, which, in both timing- and access-based dimensions,
systematically discovers the cache side-channel leakage of an arbitrary software program. At the core of
our test generation framework is an algorithm that explores the program’s input space and adapts at runtime
according to observed cache performance in the executed tests. We have implemented our test generator
for timing- and access-based attack tests and evaluated it with open-source subject programs, including ones
from OpenSSL and Linux GDK libraries. Our extensive evaluation effectively discloses the vulnerabilities of
these real-world software to both timing- and access-based cache attacks. We also empirically show that our
test generator achieves higher and comparable effectiveness, respectively, in simulations and real hardware
platforms with regard to revealing cache side-channel leakage compared to state-of-the-art fuzz testing tools.
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1. INTRODUCTION

Side-channel attacks based on cache timing and access [6, 41, 26] have emerged to be a
serious security breach in real-world software systems. Leveraging side-channel attacks, adversaries
manage to figure out sensitive information of a program execution, e.g., a secret key, without any
knowledge of the functional input or output of the program. The key intuition behind a cache timing
attack is to observe the timing of cache hits and misses in executing a program, and subsequently
use this timing to determine the secret features of the respective program. Similarly, cache lines
accessed due to different input values in running the program also yield meaningful observations
that can be interpreted [30, 26]. The disclosure of such timing- and access-based observations to an
untrusted party may have disastrous consequences, resulting in a possible leakage of classified data
and in turn a breakdown of the overall system. Therefore, it is crucial to examine software systems
against potential timing- and access-based attacks with CPU cache.
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Figure 1. For a fixed input message, the plot shows the distribution of the number of keys with respect to a
given number of cache misses. The experiment was performed for an implementation of AES-128 [14] for

256,000 different keys (picture taken from [11])

Table I. Cache Sets Accessed with Different Keys

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 Cache Line Access Mark (Hexadecimal)
63 189 126 2 133 79 66 188 93 198 189 28 184 92 115 11 0200 FF00 0200 0040
49 26 222 36 133 117 181 195 29 18 167 177 81 58 30 11 0000 FF00 0000 0000
57 0 126 65 133 79 44 19 160 17 71 137 45 248 50 85 0000 FF00 0800 0010
49 133 0 36 158 142 44 188 93 249 249 137 45 224 30 11 0800 FF00 0000 0002

203 0 222 2 158 79 44 99 187 249 84 94 153 248 2 43 4001 FF00 1000 0000
203 133 0 2 116 142 113 195 187 17 84 137 184 224 115 43 4000 FF00 0008 0000

CPU cache is one of the prime components of a computing system for program execution.
Given a program, its vulnerability to cache timing- and access-based attacks is entailed by the
amount of information that can leak through the program’s cache performance and behaviour.
The cache performance and behaviour of a program, in fact, are significantly influenced by the
underlying execution platform. Unfortunately, the state-of-the-art in software testing to validate
platform dependent properties (e.g., performance) is far from being matured. Cache side-channel
leakage, being dependent on the cache and thus, the underlying execution platform, is therefore an
area that deserves attention.

In this paper, we take a step forward to test side-channel leakage with a focus on the cache.
Specifically, given a program and a cache configuration, we formulate the test generation problem
to validate software systems against both cache timing- and access-based attacks. In the light of this
formulation, we show an appropriate coverage metric for the test generation problem and design a
directed testing strategy to expose the cache side-channel leakage of an arbitrary program.

In order to understand the challenges involved in testing cache side-channel leakage via timing-
based attack, let us consider the illustration in Figure 1. Figure 1 demonstrates the execution of
an implementation of Advanced Encryption Standard (AES) [14] for a fixed plaintext message and
256,000 different keys. AES is an encryption algorithm that uses one single private key (i.e., being
symmetric in contrast to asymmetric encryption that uses a public key and a private key) with a
length of 128, 192, or 256 bits, to encrypt and decrypt data. Being fast and efficient, AES encryption
has been widely used in many applications [17], but most software implementations of it are prone
to side-channel leakage regarding cache timing and access records [52, 26, 29]. In Figure 1, the
horizontal axis shows the number of cache misses exhibited (i.e., in a range between 213 and
279) and the vertical axis captures the number of 128-bit keys that induce them. Figure 1 clearly
shows that the distribution of cache misses is essentially a Gaussian distribution. There exists only
two keys which induce extreme cache performance (i.e., maximum or minimum), whereas there
exists 13,850 keys which induce the modal cache performance. From the perspective of software
testing, Figure 1 reveals the following challenges. Firstly, all 256,000 executions in Figure 1 exercise
the same program path; therefore, merely exploring program paths is not sufficient to explore
different cache behaviours of the respective program. This is because different executions of the
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same path can yield different cache behaviours, as these executions may access different data
even when executing the same path (e.g., for pointer-based accesses). Since it is critical to explore
the different cache behaviours to expose cache side-channel leakage, optimizing a test generation
towards path coverage may not reveal cache side-channel leakage. Secondly, only a few keys may
exhibit certain cache behaviour, such as the leftmost and rightmost cache behaviours shown by two
ends of Figure 1. As a result, we need directed test generation strategies that can maximize the width
of the Gaussian curve as illustrated in Figure 1.

To investigate the influence of secret inputs on cache line accesses, we have monitored cache lines
accessed at runtime with the AES program. We picked six different keys which yet share values in
between. In Table I, bi (i ∈ [1, 16]) captures the i-th byte of the AES secret key. Without loss of
generality, we have simulated a 2KB fully associative L1 data cache with 64 cache lines (32B per
cache line). We employed a Cache Line Access Mark, which is a bitmap for all 64 cache lines, to
present whether a cache line has been accessed (‘1’) or not (‘0’) at runtime when the respective
keys were processed by the AES program. As shown by the rightmost column of Table I, we present
the Cache Line Access Mark in hexadecimal (one hexadecimal digit for four cache lines) for a
concise representation. For all the experiments, we used the same plaintext message. As evidently
demonstrated by Table I, different keys, in spite of sharing values in between and being processed
through the same execution path, cause different cache lines to be accessed while some of the cache
lines are accessed more than others. For example, there are eight cache lines (cf. ‘FF’ in Table I)
that have been accessed for every one of the six keys while there are other 24 cache lines that have
not been touched at all.

To summarize, the observations at the CPU performance and behaviour for a program, such as
the aforementioned cache misses/hits and accessed cache lines, may vary significantly for different
inputs, with some observations being more frequent than others. This requires systematically
searching the input space of the program. Such a search process should ensure that the testing
process not only exhibits the frequent observations (hence, common cache line hits and misses as
well as frequently accessed cache lines), but also the infrequent cache behaviour (hence, exceptional
behaviours).

In this paper, we design and evaluate a test generation framework, based on simulated annealing,
to address the challenges mentioned in the preceding paragraphs. The output of our framework is
a test suite, where each test in it witnesses a unique observation of cache timing and access for the
program. In other words, each of the tests generated by our framework for an arbitrary program
exhibits a distinctively specific cache timing or access behaviour. We show that the number of
tests in our test suite is directly correlated with the amount of information that may leak through
cache timing- and access-based attacks, respectively. Our work significantly differs from the work
in static analysis of cache side channels [16, 33]. In particular, our test generation process does
not exhibit any false positive, meaning that each test case in the test suite serves as a witness of a
cache behaviour in real executions. Such witnesses with unique observations of cache timing and
access, if thoroughly analyzed, are sufficiently usable to leak the secret information (e.g., the keys
for AES encryption) for a software program [52, 26, 38]. Besides, our work has a significant flavour
of testing and debugging. This means the tests generated by our framework can further be used to
investigate a program and potentially reduce its cache side-channel leakage.

Not only searching input space is non-trivial for testing cache side-channel leakage, but the test
execution itself also makes the testing problem challenging. For each generated test, we need to
measure the cache performance. Unfortunately, such a measurement is extremely noisy in real
hardware due to the presence of multiprocessing hardware and supervisory software (e.g., operating
systems). For an effective test generation, it is crucial to minimize such noise, as potential attackers
may employ several noise reduction techniques by themselves to mount a successful attack. In
order to reduce the noise in test execution, we firstly use a simulator as a controlled environment
where the execution statistics (e.g., the number of cache misses) is deterministic. By doing so, the
aforementioned disturbing noise is ruled out. Secondly, in real hardware, we leverage performance
counters and statistical methods, as well as explicitly introduce instructions to isolate execution
in a single core. These methods, in turn, reduce the noise when measurements are taken from
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real hardware. Finally, we employ state-of-the-art side-channel attacks (e.g., Prime+Probe [38])
to validate the effectiveness of our test generation strategy.

The remainder of the paper is organized as follows. We first provide a primer on CPU caches as
well as cache-related side-channel information leakages in Section 2. We give an overview of the
targeted problem in Section 4 and make the following contributions in this paper:

1. We formulated the test generation problem and an appropriate test coverage criterion for
validating cache side-channel leakage of an arbitrary program with regard to timing- and
access-based attacks (Section 3).

2. We designed a test generation algorithm that aims to search the program input space to
explore different cache behaviours and subsequently, reveal the cache side-channel leakage
of a program (Section 5).

3. We implemented our test generation algorithm in an open platform. Our implementation and
all the experimental data is publicly available† to facilitate research.

4. We evaluated our test generator with real-world programs from OpenSSL library [40] and
Linux GDK library [43] in a controlled environment (using Simplescalar [3] simulator) as well
as in real hardware. We also compared our test generator with state-of-the-art fuzz testing tools
Radamsa [28] and AFL [54]. Our evaluation effectively reveals cache side-channel leaks in all
the chosen subject programs. Our directed approach in test generation outperforms (in terms
of revealing cache side-channel leakage) both Radamsa and AFL (Section 6) for timing-based
attacks. As to access-based attacks, our test generator achieves much better and comparable
effectiveness compared to Radamsa and AFL in simulation and real hardware, respectively.

We conclude this paper with threats to validity (Section 8) and consequences (Section 9).

2. PRELIMINARIES

CPU cache is a critical component of memory hierarchy in computer systems. In general, the
memory hierarchy is composed of disk, main memory, CPU cache(s), and CPU registers. Data is
persistently stored in a disk. When a software program executes, the required data is loaded from
the disk to main memory. This loaded data is then processed by the CPU for running the program.
However, due to the limited number of CPU registers, they can only hold a limited number of
variables in the program. As a result, CPU caches are employed to temporarily store and retrieve
data. Modern CPUs typically embrace multiple levels of CPU caches, e.g., L1, L2, and L3 caches.
L1 cache is the closest to the CPU. It is smaller in size as compared to L2 and L3 caches, however,
it has very short access latency. For example, our evaluation uses an Intel R© CoreTM i5-3337U CPU.
This has 64KB, 1MB, and 4MB, respectively, for its L1, L2, and L3 caches.

CPU caches have much smaller capacity than main memory. A CPU cache is uniformly
partitioned into cache lines. Due to the smaller size of the CPU cache as compared to the main
memory, each cache line might be shared by several memory locations. If the data needed by a
software program is always in the CPU cache (i.e. a cache hit), then the performance of the program
is superior. When the required data is not found in the cache, cache misses occur. Cache misses can
occur for multiple reasons. Firstly, when a memory location is accessed for the first time, it needs
to be brought into the cache, resulting in a cache miss. Such cache misses are often referred to as
cold cache misses. Secondly, a memory block might be replaced from the cache by other memory
blocks. The exact nature of this replacement is hardware controlled and depends on the associativity
of the cache. For example, with a direct-mapped cache, each memory location can be mapped to
only one cache line. With a fully-associative cache, each memory location can freely be mapped to
any cache line. Thus, for fully-associative caches, cache misses occur when a memory location is
accessed for the first time or when the cache is full. With an N -way set-associative cache (N is an
integer, e.g., N = 2) that partitions the cache into N sets with m cache lines in each set, a memory

†https://github.com/tiyashbasu/Cache_Side_Channel_Tester
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AN EXPLORATION OF EFFECTIVE FUZZING FOR SIDE-CHANNEL CACHE LEAKAGE 5

location can be mapped to any one of m cache lines in one set. To formalize the cache architecture
for software testing, a model of CPU cache will be presented in Section 3.1.

CPU cache employs one of the most complex mechanisms in computer systems. All software
programs rely on CPU caches for execution. Therefore, running a software program must
incur interactions with the CPU cache. However, CPU caches are hardware controlled and
their management is non-transparent to software developers. Moreover, state-of-the-art CPU
management techniques are undisclosed by the manufacturers. Despite such non-transparency,
attackers have managed to find side channels to uncover secret information of programs regardless
of Intel or ARM processors [31, 24, 36]. The performance gap between a CPU cache and main
memory, with different inputs fed during the execution of a program, entails different observations,
such as the numbers of cache misses/hits and cache lines accessed. This, in turn makes cache
side-channel attacks practical to discover sensitive information from a program. Such sensitive
information includes secret keys of encryption routines, keystrokes in password checkers or any
other private information such as the contact list of users. For example, by analyzing the timing
differences of cache misses and hits in running an implementation of AES encryption, the private
key could be figured out [41, 52]. This is one of the typical timing-based attacks targeting the CPU
cache. Furthermore, by learning about the access records to CPU cache lines, attackers are also able
to retrieve the keys used for AES encryption [26, 9]. Such an attack is categorized as access-based
side-channel leakage.

Cache side-channel attacks are often non-invasive and they can even be easily mounted over the
network [6]. We note that, side channels do not only exist for the CPU cache, and there are also other
side channels besides cache timing and access, such as measuring the power consumption or even
the vibration sound of electronic devices during the execution of a program [34, 30, 46, 23, 29, 47].
These side channel attacks are beyond the scope of this paper. Readers may refer to other literature
for details.

3. PROBLEM FORMULATION OF TEST GENERATION

In this section, we we first provide brief models on caches and cache side channels before
formulating the test generation problem to quantify the cache side-channel leakage.

3.1. A Model of CPU Cache

A typical cache architecture can be defined via four parameters – number of cache sets, cache
line size, associativity and replacement policy. For example, consider an M -bit byte-addressable
memory address space. Data from the main memory (DRAM) is fetched at the granularity of cache
line size. Let us assume the cache line size is 2B bytes and the number of cache sets is 2S . An
arbitrary memory address X is mapped to the cache set

⌊
X
2B

⌋
mod 2S . Thus, within M -bit memory

address, S bits can uniquely identify the cache set where an address is mapped to and B bits can
be used to identify the individual bytes within a cache line. If the cache associativity is A, then the
cache can hold a total of

(
2S · B · A

)
bytes of memory. When a cache set holds more than A cache

lines and a new memory address is mapped to the same cache set, then a replacement policy is
applied to evict a cache line from the set. The replacement policy is often a proprietary information
and is unknown to the users of the system. Since our test generation methodology is oblivious to
the replacement policy, for the rest of the paper we will simply capture the cache architecture via a
triplet 〈2S , 2B,A〉. When the cache associativity A = 1, the cache holds exactly one cache line for
each cache set and it is a direct-mapped cache.

3.2. Cache side channel leakage

In this paper, we consider two common types of side-channel attacks, i.e., timing- and access-based
attacks. In such side-channel attacks, the attackers monitor the number of cache misses and the trace
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of cache lines accessed, respectively, when running the victim program. Subsequently, they employ
statistical techniques to unveil the secret information [6] from the observed traces.

We assume the cache side channel to be a function, i.e.,

C : I→ O. (1)

The function C maps a finite set of sensitive inputs to a finite set of observations. Given that
the attackers monitor the number of cache misses for timing-based attacks, an observation o ∈ O
captures the number of cache misses in an execution. As to access-based attacks, an observation
o means a vector of cache lines accessed, as shown in the rightmost columns of Table I. If we
model the choice of a secret input via a random variable X and the respective observation by a
random variable Y , the leakage through the channel C is the reduction in uncertainty about X
when Y is observed. In particular, the following result holds for quantifying the cache side-channel
leakage [33]:

ML(C) ≤ log2 |C(I)| (2)

where ML(C) captures the maximal leakage through the channel C. Here the cardinality of set
C(I) captures the number of output observations O, where C : I→ O. In other words, |C(I)| is
the cardinality of the co-domain of function C. In Formula 2, equality holds when X is uniformly
distributed.

3.3. Implication to test generation

Since we aim for a software validation framework, we assume the presence of a strong attacker
whose choice of secret input is uniformly distributed. Therefore, ML(C) is maximized and
ML(C) = log2 |C(I)| holds (cf. Formula 2). As a result, the number of unique observations by the
attacker (i.e., |C(I)|) resembles the side-channel leakage of the respective program.

The quantification |C(I)| provides preliminary insights on testing an arbitrary software. On the
one hand, |C(I)| provides an appropriate coverage metric for a test-generation scheme targeted to
discover side-channel leakage. On the other hand, |C(I)| can be used to compute the number of bits
leaked through side channels (cf. Formula 2).

Motivated by |C(I)|, we develop a test generation algorithm that aims to maximize the value
of |C(I)|. This means we generate test inputs in order to explore as many unique observations
as an attacker can make. For each unique observation explored by our framework, a witness is
provided. These witnesses can further be investigated to discover the information leak for respective
executions. Besides, the number of unique observations explored by our test generation is directly
correlated with the side-channel leakage quantified in Formula 2. As we look into both timing- and
access-based attacks, Formula 1 is rewritten as{

Ct : I→ Ot,
Ca : I→ Oa,

(3)

where Ct and Ot are the channel and set of observations for timing-based attacks, respectively,
while Ca and Oa are for access-based attacks.

3.4. Practical consideration

For timing-based attacks (i.e. for channel Ct), it is evident that we need to record the number of
cache misses induced for each test execution. This can be accomplished via accessing the hardware
performance counters, e.g., L1 cache miss counter. While testing for access-based cache attacks
(i.e. for channel Ca), we need to check the cache lines being accessed for each test execution (cf.
Table I). Although it is possible to identify the exact set of cache lines accessed in a simulated and
controlled environment, such an information may not be feasible to obtain in real-world systems.
This is because identifying the exact set of cache lines often requires a detailed knowledge of the
underlying cache architecture, e.g, the cache replacement policy. Such knowledge is proprietary
for most real-world systems. Moreover, checking the access statistics of each cache line for a test
execution may entail heavy overhead to the test generator.

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
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/* k is sensitive input */ 
char p[128]; 
char k;   
char q[128]; 
assert(k>=0); 
load  reg1, q[127] 
if (k <= 63) 
load  reg2, p[k%2] 

else 
load  reg2, p[64*(k%2)] 

add   reg1, reg2 
store reg1, q[127]

k mod 2 == 0 (#miss = 3) 
k mod 2 == 1 (#miss = 2) 

(a)

/* k is sensitive input */ 
char p[128]; 
char k;   
char q[128]; 
assert(k>=0); 
if (k <= 63) 
load  reg2, q[127-k] 

else 
load  reg2, q[k-64] 

load  reg1, p[k] 
add   reg1, reg2 
store reg1, p[k]

0<=k<=127 (#miss = 2) 

(b)

/* k is sensitive input */ 
char p[128]; 
char k;   
char q[128]; 
assert(k>=0); 
load  r1, p[k] 
load  r2, q[127-k] 
add   r1, r2 
store r1, p[k]

k = 0 (#miss = 3) 
1 <= k <= 127 (#miss = 2) 

(c)

p[0], q[127]
p[1]

k
q[0]
q[1]

q[126]
Cache

128 bytes

128 bytes

p[127]

(d)

Figure 2. k is a sensitive input taking only positive values. (a)–(c) three code fragments and respective
partitions of the input space with respect to the number of cache misses (reg1, reg2 represent registers), (d)
mapping of program variables into a direct-mapped cache with 256B (q[127] and p[0] conflict in the cache)

To alleviate the challenges mentioned in the preceding paragraph, we approximate the maximal
leakage computation via an efficient and scalable check for each test execution. Instead of checking
whether a cache line is accessed during a test execution, we check whether a cache set is accessed.
Recall that a set-associative cache, as captured by the triplet 〈2S , 2B,A〉, groups A different cache
lines in a single cache set. Let us assume in test execution e, Ôea and Oea capture the set of cache
sets and the set of cache lines accessed, respectively. Over a set of arbitrary test executions E, the
following relationships hold: ∣∣∣∣∣⋃

e∈E

Ôea

∣∣∣∣∣ ≤
∣∣∣∣∣⋃
e∈E

Oea

∣∣∣∣∣ ≤ |Ca(I)| (4)

For access-based cache attacks, our test generation methodology computes
∣∣∣∣ ⋃
e∈E

Ôea

∣∣∣∣ over a set of

systematically generated test executions E. From Formulas 2–4, we have the following relationship
when the choice of secret input is uniformly distributed:∣∣∣∣∣⋃

e∈E

Ôea

∣∣∣∣∣ = ML(Ca) ≤ ML(Ca) (5)

where ML(Ca) captures the approximate leakage computed by our test generator for access-based

channel Ca. Therefore, besides directing the test generator towards maximizing
∣∣∣∣ ⋃
e∈E

Ôea

∣∣∣∣, the test

generator also provides a lower bound on the amount of information leaked via access-based channel
Ca.

It is worthwhile to note that in direct-mapped caches, associativityA = 1. As a result, each cache
set holds exactly one cache line. Thus, for direct-mapped caches, equality holds in Formulas 4–5.

4. MOTIVATIONAL STUDY

In this section, we motivate the challenges in test generation through examples. Since memory
performance is accurately captured in the binary code, we directly test the binary code. However,
for the sake of illustration, we use both assembly-level and source-level syntaxes in Figure 2.
Figures 2(a)–(c) show three different code fragments. These code fragments execute on a platform
employing a direct-mapped, 256 bytes cache. The mapping of variables p[0 . . . 127], q[0 . . . 127] and
k into the cache is shown in Figure 2(d).

Copyright c© 2019 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2019)
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Consider the execution of the code in Figure 2(a), starting with an empty cache. We assume
that k has been assigned to a register and for the sake of simplicity in the example, we ignore the
cache performance of “assert” function call. Since k is assigned to a register, accessing k does not
involve accessing the cache. When k is even, we get the following sequence of memory accesses:
q[127]→ p[0]→ q[127]. The first two accesses to q[127] and p[0] would incur cache misses due to
the initial empty state of the cache. Moreover, since p[0] and q[127] are mapped to the same location
in the cache, the access to p[0] will replace q[127] from the cache, resulting in the second access
of q[127] to be a cache miss. A similar exercise would reveal that for odd values of k, the code in
Figure 2(a) suffers two cache misses. To summarize, the code in Figure 2(a) exhibits two different
cache behaviours, but these behaviours are not directly correlated with the program path. More
specifically, each program path in Figure 2(a) exhibits all possible cache behaviour of the overall
program.

The example in Figure 2(b) captures a program with exactly one cache behaviour, even in the
presence of multiple program paths. In particular, the cache behaviour of the program in Figure 2(b)
is independent of the program input. This happens primarily due to the fact that the store
instruction of p[k] will always find p[k] in the cache, irrespective of the value of k. Moreover, the
access to q[127− k] or q[k − 64] will always be a cache miss due to the initial empty state of the
cache. Similarly, the first access to p[k] (i.e., load reg1, p[k]) will incur a cache miss. In
summary, for all possible values of k, the code fragment of Figure 2(b) incurs two cache misses.

Finally, using the code fragment of Figure 2(c), we show that a single program path may lead to
multiple different cache behaviours. In particular, consider the execution of the code in Figure 2(c)
with k = 0. This leads to the following sequence of memory accesses: p[0]→ q[127]→ p[0]. Since
q[127] replaces p[0] from the cache, the respective execution would incur three cache misses. It
is worthwhile to note that for any k ∈ [1, 127], access to q[127− k] does not replace p[k]. As a
result, for any k ∈ [1, 127], the execution of the code in Figure 2(c) suffers two cache misses. This
example demonstrates the variation of cache behaviour within a single program path and therefore,
the importance of exploring the input partitions with respect to cache performance.

It is worthwhile to note the influence of access-based cache side channel in Figures 2(a)-(c). In
Figure 2(a), for k that k ≤ 63 and k is an even integer, only one cache line, i.e., the one holding
p[0] and q[127], would be accessed, while for k that k ≤ 63 and k is an odd integer, two cache
lines, i.e., p[0](q[127]) and p[1] would be accessed. For all other values of k, the program will access
the first two cache lines, holding q[127] and p[1], respectively. In Figure 2(b), each possible value
of k ∈ [0, 127] manifest different cache-line access statistics. For instance, the cache line holding
p[0] and q[127] was accessed with k = 0, while cache lines holding p[1] and q[126] were accessed
with k = 1. In other words, by checking the cache-access statistics of the program in Figure 2(b),
an access-based side-channel attacker can accurately determine the value of sensitive input k. A
similar exercise on the program in Figure 2(c) will reveal that an access-based cache side channel
completely reveals the value of sensitive input k.

The preceding examples demonstrate the non-trivial interaction between cache performance and
programming patterns. In particular, a single program path may exhibit variation with respect to
cache performance. Similarly, test inputs, that lead to the execution of different program paths,
may exhibit the same cache performance. Moreover, depending on the exact nature of the attacker
(i.e. timing- or access-based), the leakage of information may vary substantially. For instance, even
though the program in Figure 2(b) does not leak any information with respect to a timing-based
cache attack, it reveals complete information (i.e. the value of k) with respect to an accessed-based
cache attack.

To summarize, it is important to design smart input generation techniques, which specifically
focus on exploring different cache behaviours of a program. In this work, we accomplish this via a
search-based test generation scheme.

5. METHODOLOGIES

In this section, we describe our test generation methodologies in detail.
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AN EXPLORATION OF EFFECTIVE FUZZING FOR SIDE-CHANNEL CACHE LEAKAGE 9

5.1. Architecture and attack model

In this paper, we only focus on L1 caches, meaning that the attacker can distinguish memory
accesses that are L1 cache misses with the memory accesses that are L1 cache hits. Broadly, side-
channel attacks are classified into synchronous and asynchronous attacks [50]. In a synchronous
attack, an attacker triggers the processing of known inputs (e.g., a plain-text or a cipher-text
for encryption routines), whereas this phenomenon is not possible for asynchronous attacks.
Synchronous attacks can be mounted easily, since the attacker does not need to compute the start and
end of the victim routine. For instance, in a synchronous attack, the attacker can trigger encryption
of known input messages and observe the encryption-timing [6]. Since we aim for a test generation
tool with the aim of producing side-channel resistant implementations, we assume the presence of
a strong attacker mounting synchronous attacks in this paper. Therefore, we assume the attacker
can request and observe the execution (e.g., number of cache miss) of the targeted routine. We
also assume that the attacker is capable to execute arbitrary user-level code in the same processor
running the targeted routine. As a result, the attacker can flush the cache before the targeted routine
starts execution and therefore, reduce the external noise in her observations. The attacker, however,
is incapable to access the address space of the target routine.

In addition, as illustrated in Section 3 and Section 4, timing- and access-based attacks have similar
characteristics in the problem formulation but such attacks exhibit different attacker observations
for a specific program (cf. Figure 2(a)-(c)). We hence develop a coverage-directed test generation
algorithm that 1) targets both the timing- and access-based cache attacks and 2) it is run separately
for each type of side-channel attacks with isolated settings and outcomes. With such an algorithm,
we aim to answer the following research questions:

• RQ1: How effective is our coverage-directed strategy, based on the formulation of maximal
leakage (cf. Formula (2) and Formula (4)), in revealing cache side-channel vulnerabilities in
a controlled environment (such as in a processor simulator)?

• RQ2: How effective is our coverage-directed strategy, based on the formulation of maximal
leakage, in revealing cache side-channel vulnerabilities on real hardware?

• RQ3: How efficient is our coverage-directed strategy to generate tests?

5.2. Overview of the algorithm

In this section, we will use the timing-based attacks with the observation of cache hits and misses to
illustrate the algorithm we have developed for the test generation. Algorithm 1 provides an outline
of it. The central idea of our test generation revolves around a simulated annealing algorithm. Given
a program P , let us assume {b1, b2, . . . , bn} capture different bytes for an arbitrary input of the
program. We first set an initial solution solinit to initiate our test generation process. Such an initial
solution comprises of Ni random values for each input byte bi. In our case, Ni can be set as a
configuration parameter in the test generation. Such a representation of the search space enables us
to generate different sets of tests from the same solution, but with different objective values. We note
that the objective value, for a set of tests, is defined as the number of unique cache misses exhibited
by these tests; as different sets of tests may exhibit different numbers of unique observations (i.e.,
the objective values), the same solution may generate different sets of tests with different objective
values. With this representation of the solution space, the annealing process explores solutions with
the higher probability of increasing the unique observed cache misses, i.e., the objective value. If
each solution were to represent only one test case, then each solution would always produce an
objective value of one. Indeed, our evaluation observed a significant improvement by capturing
multiple possible tests within one solution representation.

Given the initial solution, we iteratively generate test cases to maximize the unique number of
observed cache misses. For any solution sol′ generated by Algorithm 1, we randomly select a set of
test inputs from sol′. The number of tests, to be selected from sol′, is set prior to the test generation
process. We run each selected test and record the set of observed cache misses. The cardinality of
this set forms the objective value of solution sol′. In Algorithm 1, the objective function is computed
and the test-suite T ′ is augmented via the procedure computeTest. In order to explore the
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10 T. BASU, K. AGGARWAL, C. WANG, AND S. CHATTOPADHYAY

input space, we mutate each solution via the procedure selectNeighbour. The probability of
selecting a mutated solution depends on the computed objective value of the respective solution and
the temperature set for the annealing process. Finally, when searching the input space is completed,
the procedure postProcess is used to remove test cases having duplicate observations of cache
misses in T ′ and save the resultant test suite in T . Upon termination of Algorithm 1, the test suite
T is presented to the designer. Each test in T witnesses a unique cache performance of the program
under test.

In the following, we describe some crucial components of out test generation process with timing-
based attacks for illustration.

5.3. Initialization of the configuration parameters

The performance of a simulated annealing algorithm crucially depends on the configuration
parameters such as tinit, tfinal, α and trials (cf. lines 9-12 in Algorithm 1). In our experiments,
we first generated a few random executions to systematically set values of these parameters. We set
tinit to a value where we observed a considerable amount of suboptimal solutions are accepted by
our test generator. Such a value of tinit is desirable to avoid that the optimization process does not
get stuck in a local maxima. In a similar fashion, we set tfinal to a value where suboptimal solutions
are rarely accepted, hence mimicking the exploitation phase in the simulated annealing process. In
general, there is a lack of scientific approach to choose the value of α. The value of α should be
set in a fashion that the temperature decays slowly and our test generation can explore a significant
(but not exhaustive) portion of the input space to converge towards an optimal solution. In our
experiments, we set α = 0.9. Finally, we compute the value of trials (i.e. the number of iterations
for a given temperature) in such a fashion that a reasonable number of suboptimal solutions are
accepted without slowing down the test generation process dramatically. In the future, we plan to
develop a generic approach for systematically obtaining the values of tinit, tfinal, α and trials .

5.4. Procedure setInitialSolution

In this procedure, we obtain an initial random solution from the input space (cf. line 14 in
Algorithm 1). This is accomplished by generating Ni random values for each input byte bi. These
values set up the initial solution solinit in our test generation process.

For instance, let us consider a scenario where the program under test is an implementation of
AES-128. In AES-128, the length of the secret key is 128 bits or 16 bytes. When testing AES-128
for different secret keys, we first generate a set of random values for each of the sixteen key bytes.
Figure 3, for example, captures a scenario where five random values are generated initially for each
of the sixteen bytes of AES key.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 

120 106 81 147 70 222 198 29 134 54 50 132 27 69 150 173 

96 215 217 64 201 101 174 139 59 4 61 50 47 101 50 232 

154 18 93 228 125 78 21 177 82 236 165 199 89 195 219 163 

211 101 180 146 24 86 2 167 195 169 142 237 49 155 49 30 

45 235 135 124 144 3 1 102 156 98 160 215 144 95 192 138 

Figure 3. An example of a random initial solution generated by the procedure setInitialSolution

5.5. Procedure computeTest

In this procedure, we randomly generateM tests from a solution, append these tests to a test suite T ′
and execute these tests to compute the objective value (cf. line 19 in Algorithm 1) for the respective
solution. The number of tests, as selected from a solution (i.e.M ), is pre-configured by the designer.
To generate a test from a solution, we select one value at random for each input byte bi. Since an
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AN EXPLORATION OF EFFECTIVE FUZZING FOR SIDE-CHANNEL CACHE LEAKAGE 11

Algorithm 1 Directed Test Generation for Covering Observations by an Attacker

1: Input:
2: P : Program under test
3: I : Input space of the program under test
4: C : A cache configuration
5: Output:
6: T : A test suite where each t ∈ T exhibits a unique cache performance (i.e., the number of cache

miss)
7: /* initialize relevant parameters (see Section 5.3) */
8: set intermediate test suite T ′ := ∅
9: set initial temperature tinit > 0

10: set final temperature tfinal ∈ (0, tinit)
11: set temperature decay rate α ∈ [0, 1)
12: set number of trials trials per temperature round
13: /* set initial solution (see Section 5.4) */
14: let solinit := setInitialSolution(I)
15: /* iterative test generation */
16: let t := tinit
17: let solcur := solinit
18: /* compute tests and objective from initial solution (see Section 5.5) */
19: let 〈obj, T ′〉 := computeTest(solinit, P , T ′)
20: while (t > tfinal) do
21: Let count := 0
22: while (count < trials) do
23: /* mutate solution (see Section 5.6) */
24: let sol′ := selectNeighbour(solcur)
25: /* compute tests and objective from sol′ */
26: let 〈obj′, T ′〉 := computeTest(sol′, P , T ′)
27: if (obj′ > obj) then
28: solcur := sol′

29: obj := obj′

30: else
31: select a random value r ∈ [0, 1]

32: if r < e
obj′−obj

t then
33: solcur := sol′

34: obj := obj′

35: end if
36: end if
37: count := count+ 1
38: end while
39: t := t · α
40: end while
41: /* Remove duplicate observations from T ′, and keep unique observations in T */
42: let T := postProcess(T ′)
43: Report T to the designer

input byte bi may hold up to Ni values (cf. Figure 3) in a solution, this selection is performed from
a pool of Ni values for byte bi.

For the sake of demonstration, let us assume that the designer has set M to be seven. To generate
the first test from the solution given in Figure 3, we select one random value from each of the sixteen
sets of five values (cf. Figure 4(a)). We repeat the same procedure to generate the remaining six test
cases. We augment our test suite T with these seven test cases. We also execute these test cases
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 

120 106 81 147 70 222 198 29 134 54 50 132 27 69 150 173 

96 215 217 64 201 101 174 139 59 4 61 50 47 101 50 232 

154 18 93 228 125 78 21 177 82 236 165 199 89 195 219 163 

211 101 180 146 24 86 2 167 195 169 142 237 49 155 49 30 

45 235 135 124 144 3 1 102 156 98 160 215 144 95 192 138 

(a) (a)

(b)

Figure 4. (a) Selection of a random input from the solution (the selected values are marked in circles). (b) The
test suite T ′, augmented with the newly executed seven test cases. The number of cache misses observed,

for each test case, is captured via the last column.
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43 

(a) 

120 

96 

154 

211 

45 

202 

80 

147 

237 

6 
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(a)
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 

202 139 5 168 86 184 129 16 235 131 26 169 248 80 250 125 

80 222 84 21 14 70 120 180 46 207 95 228 98 126 151 153 

147 62 40 12 14 116 213 67 161 26 147 154 75 75 186 94 

237 55 182 21 81 90 235 227 141 16 46 152 216 35 48 50 

6 17 16 179 114 167 120 60 147 28 25 43 17 7 78 47 

(b) (b)

Figure 5. (a) A depiction of the bitwise XOR operation flipping the bits for b1 from the solution stated in
Figure 3, (b) The neighboring solution obtained by flipping the bits of all values in the solution stated in

Figure 3.

and record the number of cache misses suffered for each of the test case. In Figure 4(b), each row
indicates a test case in our test suite, whereas the last column captures the number of cache misses
observed by executing the respective test. In order to compute the objective value for the selected
seven test cases (as indicated by the last seven rows in Figure 4(b)), we compute the number of
unique cache misses observed by these tests. As shown in Figure 4(b), this can be captured by the
set {43, 45, 46, 48}. Therefore, we set the objective value to be four for the selected test cases.

5.6. Procedure selectNeighbour

In order to obtain a neighboring solution sol′ from an arbitrary solution solcur, we mutate the current
solution by flipping the bits of all the values it contains (cf. line 24 in Algorithm 1). Recall that each
input byte bi may contain up to Ni values. Therefore, we flip the bits of each of these Ni values to
obtain a neighboring solution.
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We revisit the example in Figure 3. Let us consider the input byte b1. The five values for input byte
b1 undergo a bitwise exclusive-or (XOR) operation with systematically generated flipping masks,
resulting in a new set of 5 values. These flipping masks are generated with the following condition:
for each of the values for a given input byte, we gradually reduce the number of bits that are likely
to be flipped from eight (when the temperature for the annealing process is tinit) to one (when
the temperature for the annealing process is tfinal). This is to facilitate the exploration of a larger
neighbourhood during the start of the annealing process while gradually reducing the size of the
neighbourhood to explore, as the annealing process progresses. The operation is demonstrated in
Figure 5(a). We repeat such bit-flipping procedure for all other input bytes to obtain a neighboring
solution sol′. The final solution, after flipping all the input bytes, is captured via Figure 5(b).

5.7. Applying the algorithm with access-based attacks

In the preceding sections, we have presented our test generation methodology with timing-based
attacks. As to the access-based attacks, we need to replace the objective with a measurable value.
We quantify the cache sets accessed as a form of bit vector in the execution of a program, as shown
in Table I. Concretely, for access-based attacks, the objective function is modified to maximize∣∣∣∣ ⋃
e∈E

Ôea

∣∣∣∣ for a set of generated test executions E (cf. Formula 5). Recall that Ôea captures the set

of cache sets accessed in test execution e. In Algorithm 1, the number of unique bit vectors, each
bitvector capturing the set of cache sets accessed in a test execution, is used as the objective value.
The objective value is computed within the function computeTest. Upon exiting Algorithm 1, a
test suite T is presented to the designer. Each test in T witnesses a unique cache access behaviour
of the program under test.

5.8. Notes on the choice of Simulated Annealing

We have chosen simulated annealing because of its efficiency and feasibility in our experimental
setting. The hill-climbing algorithm performs a local search to maximize our chosen objective
function (i.e., the number of cache misses or accessed cache sets). Given the complex nature of
the interaction between program features and cache behaviours, we envisioned that such a local
search may not lead to a good coverage of cache behaviours. Indeed, for our preliminary evaluation,
we observed that discarding bad solutions in the neighbourhood causes our test generators to be less
effective. Consequently, we decided to use relatively more involved, yet inexpensive input space
exploration strategy based on simulated annealing. By using such a strategy, we keep our testing
framework efficient for both general-purpose computing and embedded systems. Moreover, this
strategy also helps us to take advantage of the annealing process to generate test cases. For example,
during the annealing process, our test generator gradually reduces the accessible neighbourhood
space as the temperature decreases. A genetic algorithm, on the other hand, would generate a
population of candidate solutions and require an objective function to evaluate the population. Since
our target applications run both on general-purpose and embedded systems (i.e. Raspberry Pi), we
realized that running a population of tests, in each iteration, would become quite expensive for
the targeted Raspberry Pi device. Nonetheless, we note the possibility of simulating such device
in massively parallel systems, e.g., in the cloud. In such a scenario, it might be feasible to run a
parallelized version of genetic algorithm and this can be considered in a future extension of our
proposed methodology.

6. EVALUATION

Experimental setup In our evaluation, we have chosen real-world subject programs, including
programs from the OpenSSL [40] library and the Linux GDK [43] library. These programs consist
of implementations of cryptographic algorithms and key mapping routines. Table II outlines some
of the salient features of these programs. The “Size of binary” column indicates the binary size
when the respective program is compiled via gcc 2.7.2.3 with -O2 optimization and targeting
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the PISA architecture simulated by Simplescalar [3]. Simplescalar [3] is used as the controlled
environment for our experiments. The choice of our subject programs is driven by the fact these
programs are widely used in security-critical applications, thus making it essential to validate their
security-related properties. We have also selected a basic implementation of AES [14] to stress test
our framework against potentially insecure implementations.

We have implemented our test generator as an off-the-shelf tool written in C++. Being off-the-
shelf, our test generator provides a generic tool that is not constrained to some specific software
programs, but can be applied to fuzz various applications. We performed our experiments for all
timing-based experiments and access-based experiments in a controlled environment to accurately
evaluate the efficacy of our test generation methodologies. A controlled environment is a contrast to
a real platform (e.g., a Raspberry Pi or a PC) where multiple programs run concurrently to compete
for the CPU cache. In a controlled environment, there is no such disturbance and the execution
statistics (e.g., the number of cache misses) is deterministic. As a result, for a given input, a target
(sequential) program exhibits the same number of cache misses in a controlled environment. We
have also evaluated our test generation scheme for both general-purpose and embedded systems.
In particular, we have evaluated the effectiveness of our test generation for timing-based attacks on
a 64-bit Intel R© CoreTM i5-3337U CPU having 4GB memory and running the Debian operating
system. As to access-based experiments on real hardware, we used a Raspberry Pi 3 [19]. For
access-based attacks, we chose an embedded systems (i.e., Raspberry Pi 3) due to the recent
threat of access-based cache attacks on ARM-based embedded systems [36, 24]. We conducted
the test generation process as long as our test results (i.e., the number of observations such as cache
misses and accessed cache sets) change. For some cases, the convergence of test results took 3,000
iterations and for some other cases the convergence took place after 30,000 iterations. Concretely,
we run any of the test generation methodologies until they converge. In order to reproduce results
and facilitate research in this direction, we have made our tool and all data publicly available ‡.

Table II. Salient features of the subject programs

Program name Input size Lines of Size of binary
(bytes) C code (KB)

Basic AES [14] 16 773 29.9
OpenSSL AES [40] 16 1,382 64.5
OpenSSL DES [40] 8 551 33.5
OpenSSL RC4 [40] 10 158 13.0
GDK-key from name [44] 4 1,351 45.2
GDK-key to unicode [45] 4 1,686 14.9

6.1. Evaluations on timing-based attacks

RQ1: Effectiveness in a controlled environment As to timing-based attacks, we set up a controlled
environment using Simplescalar [8], which simulates PISA architecture (an MIPS-like architecture).
To evaluate our test generator, we compile each subject program into PISA compliant binary.
Using the inputs generated by our test generator, we execute these PISA compliant binaries within
Simplescalar simulator (using an in-order processor and 2KB L1 cache) and record the number of
cache misses.

We compare our test generator with two state-of-the-art fuzz testing tools Radamsa [28] and
AFL [54]. Radamsa is a black-box fuzzer and it does not need target software code for test
generation. Therefore, we simply let it generate random test inputs by mutating a sample input
for a subject program. AFL is a greybox fuzzing tool that generates inputs for a program while
executing an instrumented version of the program binary. We note that AFL and Radamsa are not

‡https://github.com/tiyashbasu/Cache_Side_Channel_Tester
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Comparative analyses of different test generators in a controlled environment: (a) Basic AES (b)
OpenSSL AES (c) OpenSSL DES (d) OpenSSL RC4 (e) GDK - key from name (f) GDK - key to unicode

used for side-channel testing, yet they are used extensively to fuzz security critical programs. Our
purpose of using these baseline tools was to demonstrate the need for designing new test generation
schemes for side channels, which we propose for the first time with this paper. We do not intend
to show that the performance of AFL and Radamsa is suboptimal along the line of their original
purpose. In order to compare different test generation schemes, we compare the number of unique
cache misses observed with respect to the number of tests generated by each scheme.

Figure 6 presents the results of testing six programs in the controlled environment of
Simplescalar. The primary purpose of our test generation is to highlight cache side-channel leakage
in arbitrary software binaries. Figure 6 clearly highlights the higher cache side-channel leakage
in basic AES and OpenSSL DES, as compared to the OpenSSL version of AES. This is due to the
higher number of unique observations reported in basic AES and OpenSSL DES, as compared to the
OpenSSL implementation of AES. From Figure 6, we can also observe that, in several scenarios,
our approach outperforms the fuzz testing tools by a significant margin. This is expected, as our
approach is customized and directed, in order to expose cache side-channel leakage of a program.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparative analyses of different test generators in real hardware: (a) Basic AES (b) OpenSSL
AES (c) OpenSSL DES (d) OpenSSL RC4 (e) GDK - key from name (f) GDK - key to unicode

This also indicates the requirement of better test generation methodologies that focus on testing
cache side-channel leakage.

RQ2: Effectiveness in a real hardware Measuring cache performance in a real hardware is
challenging as compared to the same in a controlled environment. This is because, observing cache
performance in a real hardware is extremely noisy. Such a noisy behaviour appears due to the
following reasons:

1. Binaries compiled for real hardware have additional code introduced by the linker, during the
final stages of compilation. These extra code causes cache misses by themselves, thus causing
interference in our readings.

2. Current-generation CPUs are multiprocessing, i.e., every CPU core executes multiple kernel
threads and user threads in an interleaved fashion. Besides, the existence of both software and
hardware interrupts may disrupt the measurement of cache performance.
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/*setting up performance monitoring*/

struct perf_event_attr pe;

pe.type = PERF_TYPE_HW_CACHE;

pe.config = PERF_COUNT_HW_CACHE_L1D

| (PERF_COUNT_HW_CACHE_OP_READ << 8)

| (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16);

//a few more settings done here

int fd = perf_event_open(&pe, 0, -1, -1, 0);

/*enabling performance measurement*/

ioctl(fd, PERF_EVENT_IOC_RESET, 0);

ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

/*start of the code to test*/

AES_set_encrypt_key(key, 128, &e_key);

AES_encrypt(in, out, &e_key);

/*end of the code to test*/

/*disabling performance measurement*/

ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

Figure 8. Instrumenting source code for OpenSSL AES using perf.

It is worthwhile to mention that an attacker, who observes cache misses to break an
implementation, might employ several algorithms to reduce the noise in her measurements.
Therefore, from a software validation perspective, it is critical to understand that the attacker is
capable in extracting the number of cache misses suffered by the victim routine. As a result, a
software testing tool, in order to expose cache side-channel leakage, should also take appropriate
measures in reducing the noise introduced in the observed cache performance.

In order to reduce the noise in measuring cache performance, we perform the following steps.
First, we instrument the source code of each subject program to monitor cache misses only for the
routines that might be subjected to a cache attack (e.g., an encryption routine). This is accomplished
by using Linux utilities perf event open [21] to set up the cache performance monitoring
and ioctl [20] to enable and disable the cache performance monitoring. An example of such an
instrumentation is depicted in Figure 8. Secondly, we configure the underlying execution platform
to isolate a CPU core for running our tests. Of course, such an isolation is only partial. This is
because, in spite of a CPU core being isolated, most of the critical kernel threads will still run on
it. Therefore, some interrupts will still be directed to the isolated CPU core, resulting interference
in the measurement. However, in our evaluation, we observed the noise for such interference is
minimal. Finally, we implement a wrapper which runs a subject program with each test input 3,000
times and subsequently, reports the median of all observed cache misses as the final observation.
For instance, let us assume that we generate 5 tests and the recorded median values are 100, 200,
300, 200, and 200, respectively. In order to compare the effectiveness of different test generators, we
compare the number of unique medians recorded for the generated tests. In this example, therefore,
we quantify the effectiveness of the respective test generator as |{100, 200, 300}| = 3. Note that
counting all possible cache misses is not an appropriate metric for quantifying cache side-channel
leakage. This is because, the variation of cache misses, for a single program input, only makes a
side-channel attack difficult to mount.

Figure 7 demonstrates results obtained in real hardware. The effectiveness of the simulated
annealing approach remains better compared to both Radamsa and AFL in all scenarios. However,
the absolute effectiveness for the simulated annealing approach (compared to fuzz testing) is
less when compared to the results in a controlled environment. This is attributed to the large
caches in desktop machines. Due to the large caches, the dependency between cache performance
and test input is reduced, resulting in a few unique observations by the attacker. Nevertheless,
it is worthwhile to mention that large caches do not eliminate the dependency between cache
performance and program inputs. This is because different program paths are likely to exhibit
different cache performance. For instance, even though GDK library routines exhibit a small number
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of cache misses, the variation in the observed cache misses appear due to the varying cache
behaviour along different program paths.

RQ3: Efficiency of our test generator Our test generation is directed towards maximizing certain
objectives, which is the number of unique cache misses being observed. In particular, we generate
different solutions by analyzing the past executions. Therefore, the generation of each test takes
much longer on average as compared to fuzz testing. However, a directed approach has the
advantage to potentially converge quickly and expose more cache side-channel leakage as compared
to a random approach, as observed from Figure 6 and Figure 7. In our evaluation, all experiments
for a given subject program, using the simulated annealing, took a maximum of four hours on real
hardware. We note that the test generation time includes both the generation time of test inputs
and the test execution time (i.e., 3,000 times on real hardware), as our test generation is driven
by the measurements obtained from hardware. Indeed, the process of test execution dominates this
time. On contrary to our test generator, in the other fuzzing tools (i.e., AFL and Radamsa), the test
generation time and test execution time can be easily decoupled. Thus, fuzz testing for these fuzzing
tools only took a few minutes to generate the respective number of test inputs. This time does not
include the test execution time on real hardware. We believe four hours testing time is acceptable to
expose security-related risks for the chosen subject programs in Table II.

6.2. Evaluations on access-based attacks

As to access-based attacks, we still used the Simplescalar to simulate a 2KB L1 data cache and
recorded the bit vector of cache lines accessed. As for the real hardware, we used a Raspberry
Pi 3 which contains an ARMv7 processor with 16KB L1 data cache (64 cache sets and 256B
per set). Raspian Linux was installed in the Raspberry Pi. As a result, the aforementioned
perf event open and ioctl for monitoring cache behaviours could still be leveraged for
measuring cache behaviour. Isolating executions in one single ARM core was also necessitated since
multiple processes might be running concurrently in Raspian. As a relatively small cache is used in
a controlled environment (i.e. Simplescalar), we recorded the set of cache lines being accessed for
each test execution. For Raspberry Pi, we monitored the set of cache sets being accessed. Therefore,

in the controlled environment, our test generator quantifies
∣∣∣∣ ⋃
e∈E

Oea

∣∣∣∣, whereas for Raspberry Pi,

we revert to our approximation
∣∣∣∣ ⋃
e∈E

Ôea

∣∣∣∣ (cf. Formula 4) due to the closed cache architecture of

Raspberry Pi. We have compared our test generation framework to AFL and Radamsa using the
same routines as used for testing timing-based attacks.

RQ1: Effectiveness in a controlled environment Figure 9 presents the effectiveness of our test
generation for access-based cache attacks. The diagrams in Figure 9 clearly demonstrate that our
generation tool outperforms AFL and Radamsa with much more observations generated. Moreover,
these diagrams clearly indicate that access-based cache attacks are more powerful than timing-based
attacks in terms of leaking secret information from AES and DES. This is due to the significantly
larger number of observations generated as compared to the timing-based attacks (cf. Figure 6). It
is also worthwhile to note that for programs OpenSSL RC4 and GDK - key to unicode, all three
test generation algorithms just generated one observation (i.e. one unique set of accessed cache
lines) at runtime, as shown by Figure 9(d) and Figure 9(f). This is because, the simulated cache in
Simplescalar always made all generated inputs access the same set of cache lines for OpenSSL RC4
and GDK - key to unicode.

RQ2: Effectiveness in a real hardware In this section, we first discuss the relevant challenges to
test access-based cache attacks on real hardware. Subsequently, we discuss a simple yet effective
measure to deal with the noise in Raspberry Pi. Finally, we discuss the evaluation of our test
generation methodology in Raspberry Pi.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Comparative analyses of different test generators in the controlled environment for access-based
attacks: (a) Basic AES (b) OpenSSL AES (c) OpenSSL DES (d) OpenSSL RC4 (e) GDK - key from name

(f) GDK - key to unicode

Prime + Probe to learn cache sets accessed Unlike Simplescalar, in which we could freely track
any cache line, a real-world processor, like the one we were using with Raspberry Pi 3, demands a
method to know what cache sets were accessed by a program. To do so we employed the PRIME +
PROBE attack [38], which includes two steps. In the first step, i.e., priming the cache, as an attacker,
we filled the cache by copying a large amount of our own data (via memcpy) so that the cache would
become full. Then we ran the victim program (e.g., the encryption routine). The process of priming
is shown in Figure 10(a). At this time cache sets of the attacker’s program would be replaced in
executing encryption program. Hence, in the second step, i.e., probing the cache as illustrated in
Figure 10(b), we called memcpy again in our attacker program to access each cache set. If the
attacker content in a cache set had been replaced (via the encryption routine), then accessing such
a cache set will entail cache misses. Concretely, if accessing a cache set incurs a delay equivalent
to the cache miss penalty (typically much longer than the cache hit), then we conclude that the
respective cache set had been accessed by the encryption program.

We note that we still relied on perf event open and ioctl to determine whether a cache set
was hit or not. We repeatedly called the program in Figure 10(b) for 64 cache sets and in the end
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we could arrive at the bit vector capturing the cache set access statistics. Then, our test generation
algorithm based on simulated annealing could proceed with the bit vector as it did in the controlled
environment.

/* Priming the cache */

memcpy(src, dst, 16384); // Cache size is 16KB

/* Start of Encryption */
aes_key_setup(key, e_key, 128);
aes_encrypt(in, out, e_key, 128);

(a)

/* Probe the Cache */

/* Enable and start perf */
ioctl(fd, PERF_EVENT_IOC_RESET, 0);
ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

/* Start of Section – Activity to Measure */
memcpy(src, dst, 256); // Cache set size is 256B
/* End of Section – Activity to Measure */

/* Stop perf */
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

(b)

Figure 10. An Illustration of Prime+Probe for Testing: (a) Priming the Cache (b) Probing the Cache

Rectifying the problem of noise We need to reduce the noise when executing programs in a real
hardware platform on which multiple processes are running. However, we can model the noise and,
using the probability distribution graph, remove the noise from our observations at a fairly high
probability. For modeling the noise in Raspberry Pi environment, we removed all the code which
was being executed as part of perf event open and ran the ioctl command. We ran this
code 30,000 times to model the noise in measuring the number of cache misses and then plot its
frequency distribution curve. This frequency distribution resembled a normal distribution. Thus, we
can apply a confidence interval (95 percent or above) from this distribution graph. Let us assume
that the mean and the standard deviation for this distribution are µ0 and σ0, respectively. Using
the standard statistical computation, we have the lower and upper end points of 95% confidence
interval as (µ0 − 1.96 · σ0

N ) and (µ0 + 1.96 · σ0

N ), respectively, whereN is the size of the test sample.
While probing the cache (cf. Figure 10(b)), we measure the number of cache misses to access each
cache set for multiple times and get the frequency distribution graph of the number of cache misses
incurred. Let us assume that the mean for this distribution is µ and of course, it includes the noise
incurred. We then subtract the noise to check the presence of cache misses. Concretely, if we probe
the cache for N times, then we check the value of m = (µ− µ0)− 1.96 · σ0

N . If m > 0, then we
conclude that the cache miss occurred. Finally, we note that the aforementioned process is carried
out independently for each cache set, as memory accesses do not interfere across cache sets. Thus,
after concluding the probe phase, we know the cache sets suffering cache misses. This, in turn, helps
us to determine the accessed cache sets by the victim program (e.g., AES). By removing the noise,
the end results also closely resemble the actual cache sets accessed for a test execution.

Results Leveraging the technique of Prime+Probe and noise modeling, we performed experiments
with our test generation tool, AFL, and Radamsa on the six subject programs. The observation
monitored at runtime was the set of unique cache sets accessed. Figure 11 captures results obtained
within the Raspberry Pi 3, and confirms the effectiveness of the simulated annealing approach
with regards to access-based attacks. In brief, even though for the program GDK-key to unicode
our test generator tool yielded suboptimal effectiveness compared to Radamsa, for other five
programs it achieved comparable or better observations in terms of the number of unique cache
sets accessed. Nevertheless, in a controlled environment, our proposed test generation algorithm
proves its effectiveness as compared to AFL and Radamsa. In Raspberry Pi, such effectiveness is
impaired for two main reasons. Firstly, in Raspberry Pi, we only measure the set of cache sets being
accessed, which is an approximation of the set of accessed cache lines. Secondly, despite our effort
in reducing the timing-related noise in Raspberry Pi, we still cannot remove all sources of timing
noise in real hardware. This, in turn, affects the effectiveness of all test generation tools.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Comparative analyses of different test generators in the real hardware for access-based attacks:
(a) Basic AES (b) OpenSSL AES (c) OpenSSL DES (d) OpenSSL RC4 (e) GDK - key from name (f) GDK

- key to unicode

RQ3: Efficiency of our test generator We have validated the efficiency of our test generator for
access-based attacks. Our test generator is directed towards maximizing the objective of the number
of unique cache sets accessed by the program. A directed approach helped us resolve the problems
that a random approach is unable to address. The time taken by our test generation program to
execute 20,000 iterations was approximately 25 minutes, while the fuzz testing tools cost about
6 minutes for the same number of iterations. Note that the time cost of our algorithm for access-
based test generation is less than that with timing-based test generation. The temporal overhead
is nevertheless acceptable since our test generation tool manages to exhibit much more extensive
cache side channel leakages than the state-of-the-art fuzz testing tools.

6.3. Discussion of Evaluation Results

We have performed experiments in line with the three research questions for both timing- and
access-based attacks, respectively. As mentioned, the efficiency of testing access-based leakage
is higher than that of doing with timing-based leakage. However, a comparison between results of
timing- and access-based tests shows that the effectiveness of our test generator varies evidently with
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respect to the type of attacks. For example, in running OpenSSL RC4 and GDK - key to unicode in
the controlled environments, the effectiveness of our test generator, as captured in Figure 6 (d) and
Figure 6 (f), is much more promising than the effectiveness shown in Figure 9 (d) and Figure 9 (f),
respectively. The results in real hardware platforms for these two program differentiate even more.
Such differences indicate that, 1) timing-based attack vulnerabilities are easier to be discovered
by testing than access-based attack vulnerabilities, and 2) some programs may need further efforts
with customized strategies to be tested. Finally, we can also learn from the evaluation results that,
compared to timing-based attacks, the effectiveness for all the three fuzzing approaches is similar
for access-based attacks on real hardware platforms. Factually, it is more sophisticated to mount
access-based attacks in practice, as they require more knowledge of the underlying hardware and
the victim software [27, 51].

7. RELATED WORK

In the last few decades, the research in software testing has made a significant progress. However, the
validation of non-functional software properties (e.g., performance and energy) has gained attention
only recently. In this paper, we target the validation of security-related software properties, which
are critically dependent on the underlying execution platform.

Search and Model-based Testing Search-based testing has a long history in the software
engineering community. The most common techniques are hill climbing, simulated annealing, and
genetic algorithms [39]. These have been applied extensively to test a variety of software properties.
A key contribution of our paper is to reduce the side-channel testing problem into a coverage-guided
testing problem. We designed a search-based test generation methodology, based on simulated
annealing, to optimize the coverage metric. Although we used simulated annealing for the sake
of simplicity and efficiency, other search-based test generation strategies can also be adopted, e.g.,
genetic algorithms. However, to the best of our knowledge, we propose the first methodology to test
the cache side-channel leakage of arbitrary programs in commodity systems. We note that, the CPU
cache, as hardware controlled, is more difficult to be monitored during test execution.

Our test generation strategy does not use models for the software systems, in contrast to model-
based security testing [18]. However, for our experiments conducted in controlled environments,
the simulator uses a cycle-accurate model of the underlying hardware. This is to accurately evaluate
the effectiveness of our proposed test methodologies. However, as compared to the existing model-
based security testing approaches, we focus on side channels for CPU cache.

Static Analysis of Caches Static cache analysis [49, 12] is an active and challenging research
topic. These works propose models of different caches, which in turn can be used to explore the
cache behaviour of a program. However, these models are suitable for statically analyzing the timing
behaviour of a program and cannot be directly used for side-channel testing. Moreover, these works
need to model the cache replacement policy and are not appropriate for commodity systems where
the cache architecture is unknown. By contrast, our presented approach does not rely on the model
of caches; instead it executes the program and monitors the cache behaviour (e.g., the number of
cache misses and the record of accessed cache set) for side-channel testing. As a result, we believe
that our work can be leveraged to drive security-related optimizations.

Side-channel Attacks to CPU Cache Cache-based side-channel attacks have emerged to be
serious threat for many systems, including but not limited to embedded systems [36]. A detailed
account on side-channel attacks has recently been published in a survey [22]. Tools mounting
cache side channel attacks employ techniques to guess/ex-filtrate secret information from the
execution. This is in stark contrast to our proposed methodology. Our methodology focuses on
exploring the input space of the program and quantifying the overall vulnerability of the program
against cache side-channel attacks. While exploring the input space, our proposed methodology
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also generates a test for each observation (e.g., the number of cache misses) explored, whereas
the number of observations correlates with the vulnerability against cache side-channel attacks.
Our methodology is not designed to be used to speculate about secret information from a test
execution. In this paper, we leverage an attacker model that monitors the cache timing [6] and cache
accesses [26] to discover sensitive information. However, we believe that the proposed architecture
of our test generation is generic and it can be adapted easily to test against more advanced attacking
scenarios [53, 25, 1, 7, 31, 37].

Static Analysis of Side Channels for CPU Cache Recently, a few approaches have been
proposed to quantify the information leak through cache side channels [16, 33, 32]. These works
are based on static analysis and therefore, they suffer from the presence of false positives. Since
our approach is based on testing, it does not generate any false positive. Moreover, we generate
witnesses for each observed cache behaviour. These witnesses can further be used for testing and
debugging.

Testing Side Channels In the past year, research in software testing has focused on using
symbolic execution and Max-SMT to quantify side-channel leakage [42]. In contrast to our test
generator, this work does not take into account side-channel leaks through micro-architectural
entities, such as caches. Moreover, we also evaluate our test generator to validate the cache side-
channel leakage in real hardware.

Testing and Dynamic Analysis of Side Channels for CPU Cache A recent approach based
on dynamic analysis [11] quantifies cache side-channel leakage from execution traces that record
number of misses and cache access statistics. Specifically, such an analysis can be used to guess
the secret input from execution traces. Our work is complementary in the sense that it can be used
with the existing dynamic analysis [11] to guess the secret key for each generated test execution.
However, in contrast to our work, the proposed dynamic analysis approach [11] requires a symbolic
model of the cache, which is difficult to obtain without a complete information about the underlying
cache architecture. In contrast to symbolic testing of cache side-channel [10], the approach proposed
in this paper does not explicitly model hardware caches. Instead we learn cache behaviour on-the-fly
and therefore, we can show the application of the approach also on real hardware. In our previous
approach [5], we proposed a search-based test generation methodology to validate the cache side-
channel leakage of arbitrary programs. In this work, we extend the approach for access-based cache
attacks and show the effectiveness of our approach in both the controlled environment as well as in
a real embedded system.

Verification of Side Channels for CPU Cache Our approach is orthogonal to works related to
the verification of constant-time cryptographic software [4, 2]. In particular, our approach targets
arbitrary binary code and is not limited to the verification of constant-time cryptographic software.
Besides, our proposal has a significant flavour of testing and debugging, as we generate witnesses for
observed cache behaviour through directed test generation. In contrast to recent works on verifying
cache side-channel freedom [13], our approach on testing is oblivious to cache replacement policies
and its effectiveness is evaluated on real-world general-purpose as well as embedded systems.

Countermeasures to Throttle Side Channels for CPU Cache Our work is orthogonal to
approaches that propose countermeasures against side-channel attacks [52, 48, 15]. Of course, we
believe that the open platform provided by our work can be utilized as a valuable tool to validate
existing and new countermeasures. In particular, as we target arbitrary binary code, we can use
our test generator to discover potential flaws in countermeasures proposed to mitigate cache side
channels.

In summary, we have proposed a test generation framework to validate arbitrary software against
cache-based side-channel attacks. To the best of our knowledge, this is the first search-based
approach that systematically discovers witnesses to validate cache side-channel leaks of a program.
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8. THREATS TO VALIDITY

Our framework does not exhibit false positives, therefore the computed cache side-channel leak
indeed appears in real execution. However, we conducted our test generation process until they
do not reveal any new observation (e.g., cache miss or accessed cache set) for sufficient time.
However, this does not guarantee the absence of any new attacker observation. Thus, the number
of observations exposed by our test generator imposes a lower bound on the information leakage.
This means our framework should not be used to prove the absence of cache side-channel leak.
Software systems, that must adhere to zero leakage, can leverage our test generator to discover
implementation flaws early during the design.

In this paper, we have targeted cache timing attacks [6] and access-based cache attacks [26].
There exists other cache attacks [1, 53, 31, 37] not covered in this paper. Therefore, our test generator
cannot be used directly to validate software systems against such cache attacks. However, we believe
that our test generation strategy is quite generic and it can be adapted easily to account for other
cache attacks by reformulating the objective function of a solution. Besides, the open platform of
the test generator facilitate research in this direction and improve the state-of-the-practice in testing
software non-functional properties.

As discussed in the evaluation, it is virtually impossible to reduce all noise in measuring cache
performance for complex execution platforms. We have reduced the impact of noise in the evaluation
via running a single test multiple times, using statistical metrics, isolating executions in a single core,
modeling the noise in measurements and using hardware performance counters. Finally, although
we repeated measurements for a single test input in the order of thousands, it might be insufficient
for certain hardware platforms.

Finally, we note that each test generated by our methodology corresponds to a unique attacker
observation (i.e., the number of cache misses or accessed cache set). Thus the number of unique
observations, as explored by our test suite, captures the channel capacity of the overall program.
This metric, by no means, captures the amount of information being leaked for a given execution.
In our prior work [11], we show that quantifying the information leakage, for a given execution, is
quite involved and requires different machineries to solve the problem. Thus, even though our test
generation process quantifies the overall side-channel vulnerability (i.e., the channel capacity) of
a program, we may not conclude the side-channel vulnerability of a given execution of the same
program from our test generation process.

9. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the test generation problem to validate cache side-channel leakage
of an arbitrary software with regards to both timing- and access-based attacks. We have shown that
such a problem differs from classic program-path exploration problems. The key insight behind the
test generation problem is to systematically explore the cache behaviour. Since cache behaviour
critically depends on the underlying execution platform, it is crucial for such a test generator to
understand the influence of execution platforms on the generated tests. Following this insight, we
have designed a simulated-annealing-based test generation algorithm in order to expose the cache
side-channel leakage of a program. Our evaluation highlights cache side-channel leakage in real-
world programs from OpenSSL and Linux GDK libraries, both on a simulated environment and on
a real hardware. We also show that our directed approach is more effective in revealing cache side-
channel leakage than state-of-the-art fuzz testing tools. Following this result, we believe that other
search-based testing approaches, such as genetic programming, will also be effective in exposing
cache side-channel leakage of software.

The key intuition in this paper reflects on the importance of exploring the interaction between
software systems and the underlying execution platform. This is critical to understand several other
non-functional properties, such as performance, energy and robustness among others. Therefore,
we believe that we can extend our work in several directions to validate software non-functional
properties. We plan to use several optimizations to improve the annealing process. In this fashion,
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we can generate a more efficient test generation tool, which is also directed to expose side-channel
leakage of arbitrary programs. In particular, we also plan to leverage machine learning to understand
the behaviour of execution platform and design better test generation methodologies that target
software non-functional properties. We further plan to investigate appropriate synergies between
symbolic execution and search-based methods in this direction. Finally, we aim to use the power
of our test generator to detect timing and access covert channels that attackers can leverage to
stealthily fetch data for analysis and speculation when a program is running [35, 38]. We believe
this is possible, as our test generator explores timing and access behaviours of a program and
any significant deviation from such timing and access can be detected efficiently at runtime. For
reproducibility and further research, the experimental data and our tool are made publicly available:

https://github.com/tiyashbasu/Cache_Side_Channel_Tester
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