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Abstract—Technological advances have enabled multiple coun-
tries to consider implementing Smart City Infrastructure to
provide in-depth insights into different data points and enhance
the lives of citizens. Unfortunately, these new technological
implementations also entice adversaries and cybercriminals to
execute cyber-attacks and commit criminal acts on these modern
infrastructures. Given the borderless nature of cyber attacks,
varying levels of understanding of smart city infrastructure and
ongoing investigation workloads, law enforcement agencies and
investigators would be hard-pressed to respond to these kinds of
cybercrime. Without an investigative capability by investigators,
these smart infrastructures could become new targets favored by
cybercriminals.

To address the challenges faced by investigators, we propose
a common definition of smart city infrastructure. Based on the
definition, we utilize the STRIDE threat modeling methodology
and the Microsoft Threat Modeling Tool to identify threats
present in the infrastructure and create a threat model which
can be further customized or extended by interested parties.
Next, we map offences, possible evidence sources and types of
threats identified to help investigators understand what crimes
could have been committed and what evidence would be required
in their investigation work. Finally, noting that Smart City
Infrastructure investigations would be a global multi-faceted
challenge, we discuss technical and legal opportunities in digital
forensics on Smart City Infrastructure.

I. INTRODUCTION

In this increasingly interconnected world, humans generate
a lot of data in their daily lives through the usage of com-
puting devices and the multitude of increasingly accessible
technologies that enable a better quality of life. The technolo-
gies include using smart home devices (popularly termed as
Internet-of-Things (IoT)) and interaction with novel technical
implementations by governments to improve citizens’ quality
of life. These novel technical implementations range from
smart water and electricity meters, smart vehicles, autonomous
vehicles and building automation systems [1]. These govern-
ments’ final goal was to presumably expand the systems into
Smart City Infrastructure (SCI) for a better overview of their
citizens, environment, safety and resources. Figure 1 illustrates
how governments and city planners could gather various data
points to obtain a holistic overview of the country, allowing
them to provide timely governance intervention where needed.
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Fig. 1. Overview of Smart City Infrastructure (SCI) Data Collection and
Processing

Unfortunately, governments and city planners are not the
only ones embracing the adoption of technologies related
to SCI. These new systems offer attractive opportunities to
state-sponsored adversaries and cybercriminals. If SCI data
could be stolen or intercepted, adversaries and cybercriminals
could gain access to a plethora of data that could be further
exploited. For example, the data could be exploited to cause
economic issues to a target country (e.g., sudden restrictions
on export of resources or medical supplies) or events intended
to destabilize the country (e.g., sudden outbreak of diseases
while a country’s hospitals are nearing maximum capacity).
The adversaries could cause further chaos if they successfully
breach SCI systems and trigger anomalous conditions (e.g.,
opening/closing valves in critical infrastructure or overriding
safety mechanisms) to cause emergency shutdowns, destruc-
tion of facilities or general chaos in transport systems.

Digital forensic investigators (DFI) and law enforcement
agencies (LEA) have been crucial in investigating cyberattacks
and cybercrime. However, DFI and LEA will likely require
further support if they are called upon to investigate attacks
on SCI as described earlier. This is because DFI and LEA per-
sonnel are typically not familiar of the unique characteristics
of SCI systems as compared to conventional digital systems.
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Moreover, DFI and LEA are likely to have other ongoing
digital investigations. Their ongoing case commitments may
prevent them from being able to perform research on SCI
systems to identify the required evidence. Meanwhile, SCI
system owners may also be unable to provide the necessary
evidence since these requirements were not specified in the
first place when SCI was implemented. Caviglione et al.
[2] stressed that digital forensic investigation on IoT devices
would have to be performed on small-scale implementations
(such as homes) to large-scale deployments such as those
within a smart city. It was further stated that the technology
used to build the infrastructure would be diverse and that
their accessibility features must be discerned and appraised
independently for forensic investigations [2]. The predicament
has not gone unnoticed - there have been calls for further
digital forensic research on new digital artifacts and preventing
misinterpretations of artifacts [3].

Digital forensics and cybersecurity in smart cities had been
previously discussed, where the definition of smart cities
was based on National Institute of Standards and Technology
(NIST) and only focused on smart environments, living and
mobility [1]. While the threats, forensic data, and data sources
highlighted did provide some guidance for DFI and LEA [1],
the provided information cannot apply to all SCI internation-
ally. For example, different countries have different technical
requirements, implementation and data needs for their SCI.
This could prove problematic for solutions that suggest a one-
size-fits-all approach by specifically listing functional systems,
such as the ones suggested by Baig et al. [1].

Due to the complexity of SCI, digital evidence for various
components of SCI must be identified before actual cybercrime
occurs. This is to reduce the stress faced by DFI and LEA as
first responders to cybercrime. DFI and LEA could also better
handle SCI cybercrime challenges if a standard definition of
SCI is achieved, along with potential threats, offences and
evidence sources pre-identified. Although this is a global
challenge, adhering to global initiatives and standards allow
flexibility of adoption by international DFI and LEA.

The contributions of our research are summarized as fol-
lows:

1) We highlight current issues in SCI and define a standard-
ized definition of SCI.

2) We develop and make publicly available our threat model
template to governments, DFI and LEA to identify threats
in SCI.

3) We map SCI threats to possible offences and correspond-
ing SCI evidence sources and types.

4) We discuss future SCI digital forensics opportunities from
a technical and legal perspective.

For reproducibility and advancing the research in SCI
digital forensics and threat modeling, our threat model
is publicly available at: https://github.com/poppopretn/
SmartCityThreatModel.

The rest of this paper is organized as follows. In Section II,
we present the context of the paper and define SCI. In
Section III, we highlight the choice of our threat modeling

methodology, showcase our threat model and present the
threats identified in SCI. In Section IV, we show the threats,
offences, evidence sources and types within SCI that we
derived using our threat model. In Section V, we discuss future
technical and legal opportunities for SCI digital forensics. In
Section VI, we explain the limitations of our research. In
Section VII, we summarize current related work in SCI digital
forensics. Finally, we conclude the paper in Section VIII.

II. CONTEXTUALIZING SMART CITY INFRASTRUCTURE

Technological innovations and rapid deployment of Internet
of Things (IoT) devices have transformed many cities in
different geographical regions into smart cities [4]. Arguably,
these cities may not have implemented sufficient infrastructure
that can deliver futuristic societal outcomes such as accident-
free environments or zero-waste scenarios. However, these
current implementations have brought about positive changes
such as moulding the design of future cities and achieving
sustainable use of resources [4].

A. Current Issues in Smart City Infrastructure

The implementation of SCI is an attractive option for gov-
ernments looking to improve citizens’ lives and has increased
visibility to critical indicators such as resource utilization and
public safety. Nonetheless, there are multiple challenges to
implement such capabilities as outlined below:

1) Definition Issues: It is vital to set the right context and
definition when SCI is discussed. From the academic
perspective, a commonly agreed definition of a Smart
City has yet to be agreed on. A brief literature review
of papers regarding SCI was conducted and yielded at
least three different definitions of a Smart City [5]–[7].
SCI is not clearly defined from the industry perspective
either. Various industry solutions such as Bosch [8],
Cisco Kinetic for Cities [9], Microsoft CityNext [10]
and Schneider Electric EcoStruxure [11] have offered
products touted to allow prospective customers to create
smart cities. However, a review of their respective product
briefs showed that these solutions appear not to be based
on any commonly agreed upon definitions or standards.
Many also fail to realize that such forms of definition are
constrained by financial budgets and technological matu-
rity of the location SCI are deployed in. This inevitably
contributes to the problem of a lack of standard definition
in SCI.

2) Interoperability Issues: This is an extension of the
definition issue mentioned previously. There were at least
31 different vendors [12] offering various platforms and
technologies to build SCI. It is unlikely that any one
vendor could meet all the design requirements (hard-
ware and software) of a city/country. A more realistic
outcome would be a myriad of vendors being chosen
to implement technologies by their respective strengths.
With such a gamut of sensors, protocols, and tech-
nologies, interoperability between vendors becomes an
issue. Although entities such as FIWARE [13] and the
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TALQ Consortium [14] offer Application Programming
Interfaces (APIs) to allow interoperability of technologies
with different vendors, adoption and implementation of
such APIs remain unclear.

3) Cybercrime Issues: Cyber attacks on smart cities could
become the next issue governments face as such projects
are implemented. From the legal perspective, respective
laws possibly were not updated to include attacks on
SCI. Meanwhile, from the law enforcement and incident
response perspective, there could be a lack of experience,
knowledge and training for professionals called upon to
investigate such attacks. This issue is further exacerbated
by the definition and interoperability issues. There is
no standard definition of a smart city, and multiple
technologies are being utilized in a smart city. Legal,
remediation and law enforcement actions are hampered
due to varying understanding of SCI and technology
complexities, leading to a risk of misleading evidence
being retrieved and presented to courts of law.

A properly defined and widely accepted definition of SCI
could address the issues highlighted above. For example,
a properly defined SCI will facilitate and empower Digital
Forensic Investigators (DFI) in peer review processes, espe-
cially at Levels 3 and 4 of the Peer Review Hierarchy as
proposed by [15]. It also facilitates interoperability between
vendors and enhances the development of APIs. Finally, it
enhances clarity in connections between evidence and criminal
hypotheses, reducing the risks of misleading evidence being
presented in courts [16].

B. Defining Smart City Infrastructure

The primary issue originates from a lack of a standard
definition in SCI as various vendors and entities are vying to
be the standard for smart cities. Geographical differences and
individual governmental requirements have not helped foster
a standard definition of a smart city. A way to transcend such
challenges in defining a smart city, along with relevant data
indicators is required to facilitate the resolution of issues raised
in Section II-A.

As a body that strives to standardize methods to accomplish
a final goal, the International Organization for Standardization
(ISO) facilitates such an endeavour. After extensive research,
we identified multiple ISO standards that provided a suitable
framework for a standardized definition of SCI. With reference
to Figure 2, the ISO standards that were selected are as
follows:

1) ISO37101:2016 [17]
2) ISO37120:2018 [18]
3) ISO37122:2019 [19]
4) ISO37123:2019 [20]
As observed from Figure 2, our proposed SCI definition (i.e.

the body) is guided by four ISO standards. ISO37101:2016
serves as the guiding vision of a Smart City (i.e., a skele-
ton) via sustainable development. Concurrently, correspond-
ing core and supporting data indicators from Factor #1

Vision:
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Quality of Life 
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Smart City Infrastructure (SCI) Definition

Fig. 2. Defining SCI

(ISO37120:2018), Factor #2 (ISO37122:2019) and Factor #3
(ISO37123:2019) provide the required context of the SCI (i.e.,
the muscles/flesh). Core data indicators are mandatory data
indicators that must be captured if the ISO standards are used,
whereas supporting data indicators are recommended to be
captured (but not mandatory). We further explain our choice
as follows:

1) ISO37101:2016 - In contrast to a technical view and
definition of SCI, the standard ISO37101:2016 adopts
a technology-agnostic approach and uses sustainable de-
velopment as a common denominator before any form
of technical implementation is utilized. Table I lists
the underlying fundamental purposes of sustainability in
modern society along with sustainability issues raised in
ISO37101:2016. Since the issues are systematically listed
out before any form of smart city technology is imple-
mented, ISO37101:2016 serves as a suitable component
to drive the vision aspect of our proposed SCI definition
(see Figure 2).

TABLE I
SUSTAINABILITY PURPOSES AND ISSUES HIGHLIGHTED IN

ISO37101:2016

Purposes of Sustainability Sustainability Issues

1. Attractiveness (e.g., Culture,
identity)
2. Preservation and improvement
of environment (e.g., Protection
of biological diversity and ecosys-
tem)
3. Resilience (e.g., Climate change
adaptation, economic shock pre-
paredness)
4. Responsible resource use (e.g.,
Sustainable production, reusing
and recycling of materials)
5. Social cohesion (e.g., Diversity,
sense of belonging, social mobil-
ity)
6. Well-being (e.g., Happiness,
healthy environment, quality of
life)

1. Governance, empowerment and
engagement
2. Education and capacity building
3. Innovation, creativity and re-
search
4. Health and care in the commu-
nity
5. Culture and community identity
6. Living together, interdependence
and mutuality
7. Economy and sustainable pro-
duction and consumption
8. Living and working environment
9. Safety and security
10. Community infrastructures
11. Mobility
12. Biodiversity and ecosystem ser-
vices

2) ISO37120:2018, ISO 37122:2019 and ISO37123:2019
- Building on the technology-agnostic approach of
ISO37101:2016, core and supporting data indicators
with respect to measuring city services and quality
of life (ISO37120:2018), smart cities (ISO37122:2019)
and resiliency (ISO37123:2019) are outlined. The data
indicators used in the three ISO standards are listed
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in Table II. While it is tempting to solely focus on
data indicators listed in ISO37122:2019 instead of also
using ISO37120:2018 and ISO37123:2019, the stan-
dard ISO37120:2018 has stated that ISO37122:2019
and ISO37123:2019 have to be used in conjunc-
tion with ISO37120:2018 [18]. Further examination of
ISO37122:2019 and ISO37123:2019 also yielded the
same considerations that the three ISO standards must
be used in tandem to provide a complete overview of a
modern city [19], [20]. Finally, another added advantage
is that the data indicators in these three ISO standards
can also be mapped back to the 17 United Nations
Sustainable Development Goals (SDGs) 2015 [18]–[21].
This would allow governments to have better visibility in
their progress towards the United Nations SDGs.

TABLE II
DATA INDICATORS LISTED IN ISO37120:2018, ISO37122:2019 AND

ISO37123:2019

Clause Number Data Indicators
5 Economy
6 Education
7 Energy
8 Environment and Climate Change
9 Finance

10 Governance
11 Health
12 Housing
13 Population and Social Conditions
14 Recreation
15 Safety
16 Solid Waste
17 Sport and Culture
18 Telecommunication
19 Transportation
20 Urban/Local Agriculture and Food Security
21 Urban Planning
22 Wastewater
23 Water

Based on the information provided in the preceding para-
graphs, we formally define SCI as follows:

Definition 1: Smart City Infrastructure (SCI) are infras-
tructure designed to fulfil and address the six purposes
of sustainability and twelve sustainability issues (based on
ISO37101:2016 and outlined in Table I), with technical im-
plementations that provide visibility to data indicators set
out in ISO37120:2018, ISO37122:2019 and ISO37123:2019
(outlined in Table II).

III. THREAT MODELING SMART CITY SYSTEMS

New systems likely have to be designed and built to capture
the data indicators based on our proposed definition of SCI
(i.e., Definition 1). There could be multiple opportunities
where cybersecurity threats creep into the designed systems
despite endeavours to reduce such threats. Hence, it is im-
perative to ensure such systems are appropriately classified
and devise a concrete means to identify potential threats.
An appropriate Threat Modeling methodology should also

be selected, with a means of clearly documenting identified
threats to facilitate threat mitigation efforts.

A. Classification of Smart City Infrastructure Systems

Multiple data indicators (Clauses 5 to 23) shown in Table II
appear to be daunting at first [18]–[20]. However, after careful
analysis, we were able to further classify the data indicators
based on their respective outcomes into 4 distinct groups.
With reference to Figure 3, the 4 groups are Citizen Services,
Livelihood Support, Essential Services and Resources. These
identified groups were used as a foundation for our proposed
Smart City infrastructure system design and threat model.

Data Indicators from ISO37120:2018, ISO37122:2019 and ISO37123:2019
(Clauses 5 to 23)

Citizen 
Services

Livelihood 
Support

Essential 
Services

Resources

5. Economy

6. Education

9. Finance

10. Governance

12. Housing

8. Environment and
Climate Change

13. Population and
Social Conditions

14. Recreation

17. Sport and
Culture

20. Urban/local
Agriculture and
Food Security

21. Urban Planning

11. Health

15. Safety

16. Solid Waste

18. Tele-
communication

19.
Transportation

22. Wastewater

7. Energy

23. Water

Fig. 3. Smart City Data Indicators Classification

B. Selection of Threat Modeling Methodology

Threat modeling is defined as using abstractions to assist
in the identification of risks [22]. It is best executed when
systems are still in the design phase since identified risks
can be addressed by modifying the design of the systems
before they are formally implemented. Ideally, it should be
executed after any proposed design change to ensure that
potential threats are not introduced due to the change in the
system. Having said that, threat modeling is still useful and
important for systems that have deployed as well. However,
it is likely that additional efforts and resources would have
to be utilized to address the risks identified. This is because
such systems would have been operational. For example, if
the rectification of risks identified in an operational system
requires it to be switched off, the system owners would have
to divert operational requirements to another asset. This may,
in turn, introduce complexities and potential risks. As such,
it is highly encouraged that threat modeling should be done
before any system is formally deployed.

Given a wide range of threats faced by various systems,
multiple different threat modeling methodologies have been
proposed throughout the years to identify threats in different
scenarios. A collection of threat modeling methodologies have
been identified and documented by Shevchenko et al. [23] and
presented as follows:
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1) STRIDE: Spoofing, Tampering, Repudiation, Informa-
tion Disclosure, Denial of Service, Elevation of Privi-
lege (STRIDE) was first formulated in 1999 by Loren
Kohnfelder and Praerit Garg [24]. STRIDE has been
successfully used in modeling threats in Cyber-Physical
Systems [22], and a software modeling tool is also
available [25].

2) PASTA: Process for Attack Simulation and Threat Anal-
ysis (PASTA) was developed in 2012 and has seven stages
of modeling activities. It requires both technical and non-
technical stakeholders to participate in the process [26].

3) LINDDUN: Linkability, Identifiability, Non-Repudiation,
Detectability, Disclosure of Information, Unawareness,
Non-Compliance (LINDDUN) is a six-step process that is
focused on modeling privacy-related threats. A noticeable
drawback of this method lies in its complexity and labor-
intensive process [23].

4) Attack Trees: This process was originally developed
by Bruce Schneider in 1999 [27] and generally requires
highly skilled individuals in cybersecurity to be involved
in the process. It is a manual process without any guide-
lines for attack/risk identification, though some attempts
to automate the process has been explored [28].

5) OCTAVE: Operationally Critical Threat, Asset, and Vul-
nerability Evaluation (OCTAVE) is a risk-based and
strategic approach that consists of three phases [29].
It takes a different approach to threat modeling and
identifies organizational risks instead of technical risks.

6) VAST: Visual, Agile, and Simple Threat (VAST) Model-
ing is a threat modeling strategy utilized by a commercial
tool named ThreatModeler [30]. VAST uses application
and operational threat models - Process Flow Diagrams
(PFDs) are created for application threat models, and
operational threat models are built from analyzing the
PFDs. Although VAST is useful, detailed specifications of
VAST are not available since it is a commercial product.

7) CVSS: Common Vulnerability Scoring System (CVSS) is
a method that assigns a numerical score to a vulnerability
based on its severity [31]. Widely used to determine the
severity of vulnerabilities, it is not suitable to be used
on its own in SCI as it would only display potential
vulnerabilities in a numerical format. CVSS is often used
in conjunction with other threat modeling methods [23].

8) Trike: Introduced in 2006, Trike is a threat modeling
method that could generate threats and attack trees auto-
matically [32]. However, the methodology and tools have
not been updated for a long time and may not be suitable
for modern SCI.

9) Persona non Grata: Persona non Grata is a threat
modeling method that focuses on the human aspects of
threats [33]. Although it has low false positives, it only
identifies the human aspects of threats.

10) Security Cards: Developed in 2013, Security Cards is
geared towards brainstorming about non standard situa-
tions and rarely used in the industry [23].

11) Quantitative Threat Modeling Method: Developed in

2016 and synergizing STRIDE, Attack Trees and CVSS,
the creators aimed to address issues arising from com-
plex interdependence in components [34]. Unfortunately,
while this method appears to be comprehensive and struc-
tured, the tool mentioned in the paper was not released
publicly for usage.

12) hTMM: Hybrid Threat Modeling Method (hTMM) com-
bines threat modeling methodologies such as STRIDE,
Persona non Grata and Security Cards for a focused
threat modeling activity [35]. However, the process is still
largely manual and lacks a dedicated tool that can execute
the entire process of hTMM.

TABLE III
COMPARISON OF VARIOUS THREAT MODELING METHODOLOGIES

Threat Modeling
Methodology

Software Tool
Support

Ongoing Up-
dates

Suitability for
Smart City
TM

STRIDE ✓ ✓ ✓

PASTA ✗ ✗ ✓

LINDDUN ✗ ✗ ✓

Attack Trees ✓ ✗ ✗

OCTAVE ✗ ✗ ✗

VAST Modeling ✓ ✓ ✓

CVSS ✗ ✗ ✓

Trike ✗ ✗ ✗

Persona non
Grata ✗ ✗ ✗

Security Cards ✗ ✗ ✗

Quantitative
Threat Modeling

Method
✗ ✗ ✗

hTMM ✗ ✗ ✗

1) Assessment Criteria for Threat Modeling Methodologies:
We examined all twelve threat modeling methodologies to
assess if there were any methodologies that would be a
good fit for our research objectives. We believe that all the
twelve threat modeling methodologies were worth examining
as discussed by Shevchenko et al. [23] accounts for the most
popular and state-of-the-art threat modeling techniques. There
were three key requirements - support for software tools based
on the threat modeling methodology, ongoing updates and
suitability for Smart City threat modeling.

These three essential requirements were identified as sig-
nificant and relevant when determining the suitability of the
chosen threat modeling methodologies. Firstly, a threat mod-
eling methodology that is supported by a software tool allows
collaborative work, enhances design efficiency and reduces
potential errors when designing a threat model (e.g. in-built
notations and feedback notifications). Secondly, a constantly
updated threat model methodology ensures that it remains
relevant to the ever-changing cybersecurity landscape. Finally,
not all threat modeling methodologies may apply to the SCI
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context. As such, it is vital to identify which methodology is
appropriate for SCI.

The details of our assessment are summarized in Table III,
and we selected STRIDE as our main Threat Modeling
methodology for SCI systems designed based on Definition 1.
There were a multitude of reasons why STRIDE was selected.
Firstly, a freely available and consistently updated threat
modeling tool was available. As research into threats on
SCI should be an ongoing process, the tool used for threat
modeling should also be actively maintained. Secondly, the
STRIDE threat modeling methodology pays close attention
to threats in the systems while being less complex than
other methodologies such as LINDDUN, PASTA and VAST.
Although it was also argued that STRIDE could grow in
complexity as the systems grow larger [23], the availability
and usage of the Microsoft Threat Modeling Tool (TMT) [25]
could reduce the potential complexity. Finally, the Microsoft
TMT is freely available for all, while methodologies such as
VAST and tools such as IriusRisk [36] remain as commercial
products. As costs associated with security can sometimes be
an important factor, especially in novel systems, we aim to
remove that barrier and foster the creation of secure systems
during the design phase.

C. Threat Modeling Smart City Infrastructure

As explained in Section III-B, the STRIDE threat modeling
methodology and the Microsoft TMT are used to create the
corresponding threat model of the proposed Smart City System
based on Definition 1. A threat model designed with the
Microsoft TMT can contain up to four layers, and are as
follows [37]:

1) Layer 0: This is known as the system layer (it can also
be called the context layer), and is a compulsory layer
in a threat model designed in Microsoft TMT as it is
deemed as a starting point for any system [38]. Layer 0
contains core parts and processes of the system, and the
corresponding data-flow diagrams should fit into a single
page [38].

2) Layer 1: This is known as the process layer, and contains
the secondary system parts that originate from Layer
0. Like the system layer, the diagram should also be
contained within a single page.

3) Layer 2: This is known as the sub-process level, and
contains details of the various components that the sec-
ondary systems are composed of. This layer is utilized
when the corresponding systems handle sensitive data or
are deemed as high-risk.

4) Layer 3: This is known as the lower-level layer, and
used when a kernel-level system is constructed. Every
process and sub-process is described in detail via data-
flow diagrams.

Based on our defined Smart City Infrastructure, we have
deliberately designed the threat model to be up to Layer 1.
Firstly, we envision our threat model to be used and applicable
to the international audience and community. Different gov-
ernments and countries may have additional requirements and

Fig. 4. Smart City System Threat Model - Layer 0

Fig. 5. Smart City Citizen Service System Threat Model - Layer 1

technological preferences for their Smart City Infrastructure.
If we had designed our threat model down to Layer 3, that
would have been very specific. Being overly detailed and
specific could result in our threat model being overlooked
instead. This is because it would require further efforts to
review and amend the threat model. We have assessed that
designing our threat model up to Layer 1 offered the best
baseline - It was not overly simplistic and contained the
necessary core and secondary systems required to capture the
data defined by Definition 1. It also sets the stage for potential
users to customize their desired Layers 2 and 3 threat models
(if applicable). With reference to Figure 4 and Figure 5, a
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screenshot of Layer 0 and Layer 1 of the Citizen Service
System (one of the secondary systems) is shown.

In the next section, we discuss the threats analyzed from
our SCI threat models (Figure 4 and Figure 5).

D. Threats in Smart City Infrastructure

The threat modeling activity in Section III-C yielded in-
teresting results. There were a total of 1768 potential threats
across the six threat categories of STRIDE. The total number
and types of each threat category are summarized in Table IV
and Figure 6, with threats from the Elevation of Privilege
category having the greatest variety of threats.

TABLE IV
TYPES OF THREATS IDENTIFIED DURING THREAT MODELING

Category (Total
Number of Threats) Types of Threats

Spoofing (485) 1. Spoofing in various processes
2. Spoofing of various source data stores

Tampering (114) 1. Potential lack of input validation

Repudiation (114) 1. Potential data repudiation

Information Disclosure
(370)

1. Data flow sniffing
2. Potential weak access control for a re-
source

Denial of Service (228) 1. Potential process crash or stop
2. Data flow potentially interrupted

Elevation of Privilege
(457)

1. Systems may be subject to elevation of
privilege using remote code execution
2. Elevation using impersonation
3. Cross site request forgery
4. Elevation by changing execution flow in
various systems

Spoofing
27.4%

Elevation of Privilege
25.8%

Information Disclosure
20.9%

Denial of Service
12.9%

Tampering
6.45%

Repudiation
6.45%

Fig. 6. Overview of Threats Derived from Threat Model Grouped by Category

Figure 7 shows the breakdown of potential threats in our
proposed SCI systems, with the Smart City System Dashboard
(Level 0) and Resource Systems Indicators (Level 1) having
a lower percentage of potential threats (5.09% and 11.3%,
respectively). The smaller number of threats was expected
as the Smart City System Dashboard only contained major
system processes and was less complex since it was at Layer 0.
Meanwhile, the Resource Systems Indicators had the smallest
number of data indicators (as shown in Figure 3). Thus, they
had a smaller number of potential threats than the other Level
1 systems.

Essential Service Systems
Indicators (Layer 1)

30.5%

Citizen Service Systems
Indicators (Layer 1)

27%

Livelihood Support Systems
Indicators (Layer 1)

26%
Resource Systems
Indicators (Layer 1)

11.3%

Smart City System

Dashboard (Layer 0)

5.09%

Fig. 7. Overview of Threats Derived from Threat Model

From the threat mitigation perspective, stakeholders can
consider a few possible approaches based on the information
presented in the preceding (i.e., Table IV, Figure 6 and Fig-
ure 7). For a quick-win approach, stakeholders could consider
mitigating threats related to the Tampering and Repudiation
category and target the Smart City System Dashboard and
Resource Systems Indicators first, as they are the lowest in
number. If the stakeholders are interested in mitigating a
system with the highest number of potential threats and its cor-
responding category, the Essential Service Systems Indicators
and Spoofing category threats could be reviewed. Ultimately,
the threat model allows stakeholders to start studying or
mitigating any threat they wish. Armed with the knowledge of
potential threats that the SCI may face, defenders could also
use these threats to anticipate potential cybercrime occurring
on these systems.

In the next section, we leverage our SCI threat models to
identify the cybercrimes on SCI systems.

IV. CYBERCRIME ON SMART CITY SYSTEMS

Just like SCI, the term "cybercrime" could have differing
interpretations. It is vital to iron out a few key terms that may
cause confusion and set the scope of discussion. After defining
cybercrime for SCI, we map threats to offences that could
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occur in SCI and, finally, the associated evidence classification
and requirements.

A. Defining Cybercrime in Smart City Systems

Based on our literature review, we observed a few key terms
that appeared to be used interchangeably, which could cause
confusion and disagreement in our paper if not defined appro-
priately. The terms in question are "cybercrime", "computers",
and "computer crime". The exact definition of cybercrime has
been debated at length, especially with the evolution of the
threat landscape over the years. Gillespie [39] asserts that it
is a crime committed or facilitated by the Internet, with no
distinguishing factor as to how access to the Internet was
obtained. Meanwhile, with the advancement of technology,
computers now come in various form factors and periph-
erals. Given the broad spectrum of hardware configuration,
formally defining what a "computer" entails is difficult. The
Budapest Convention on Cybercrime gave a broad definition
and considered devices capable of transmitting data (whether
in silo or networked) as a computer [40]. Finally, "cybercrime"
and "computer crime" have often been used interchangeably
to describe illegal activities on systems. Going by how the
Budapest Convention on Cybercrime defines computers, "com-
puter crime" should be defined as crimes carried out using
computers. Since this paper uses the term "cybercrime", our
scope would be limited to the crimes committed or facilitated
by the Internet as described earlier.

B. Mapping Threats to Cybercrime and Offences

Given the borderless nature of the Internet, cybercrime is
inevitably an international issue that is further complicated
by geopolitical boundaries. In an attempt to achieve some
form of consensus between nations and various stakeholders,
the Budapest Convention on Cybercrime (also known as the
Budapest Convention) was formed on 23rd November 2001
by the Council of Europe [40]. As of April 2022, a total of 81
States are now either Parties (66), or have signed it or been
invited to accede (15) [41]. This accounts for only about 42%
of the represented members in the United Nations (there are
currently 193 members in the United Nations [42]). Notable
absentees from the signatories of the Budapest Convention
include the Russian Federation and China (both permanent
members of the United Nations Security Council). The absence
of their support for the Budapest Convention could be due to
geopolitical tensions and that they were not consulted when
the Budapest Convention was first formulated, an observation
that was also noted by Gillespie [39].

Unfortunately, there is yet a global consensus on cyber-
crime. Geopolitical issues, potential lack of awareness and
urgency by international governments inadvertently facilitate
cybercrime. However, there is a strong need for a collective
agreement for cybercrime to be addressed primarily due to
its potential global reach. This is especially so if various
governments are working towards the implementation of SCI.
Academic research, coupled with suitable theoretical models
and adaptation of a sensible definition of cybercrime should

help governments be more cognizant of the crimes that could
occur.

TABLE V
MAPPING THREATS ON SCI TO CRIMES AND OFFENCES

Type of
Crime
(based
on [39])

Threats on SCI
(based on Ta-
ble IV)

Possible Offences Committed (based
on [40])

Crimes
against
computers

Spoofing in vari-
ous processes

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), System Interference
(Article 5), Misuse of Devices (Article
6)

Spoofing of var-
ious source data
stores

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Data Interference
(Article 4), System Interference (Arti-
cle 5), Misuse of Devices (Article 6),
Computer-related Forgery (Article 7)

Potential lack of
input validation

Data Interference (Article 4), Misuse of
Devices (Article 6), Computer-related
Forgery (Article 7)

Potential data re-
pudiation

Data Interference (Article 4), System
Interference (Article 5), Misuse of
Devices (Article 6), Computer-related
Forgery (Article 7)

Data flow sniff-
ing

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Misuse of Devices
(Article 6)

Potential weak
access control
for a resource

Illegal Access (Article 2), Data Inter-
ference (Article 4), System Interference
(Article 5), Misuse of Devices (Article
6)

Potential process
crash or stop

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Data Interference
(Article 4), System Interference (Article
5), Misuse of Devices (Article 6)

Data flow poten-
tially interrupted

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Data Interference
(Article 4), System Interference (Article
5), Misuse of Devices (Article 6)

Systems may be
subject to ele-
vation of privi-
lege using remote
code execution

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Misuse of Devices
(Article 6)

Elevation using
impersonation

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Misuse of Devices
(Article 6)

Cross site request
forgery

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), Misuse of Devices
(Article 6)

Elevation
by changing
execution flow in
various systems

Illegal Access (Article 2), Illegal Inter-
ception (Article 3), System Interference
(Article 5), Misuse of Devices (Article
6), Computer-related Forgery (Article
7)

After evaluating state-of-the-art works on cybercrime, we
assessed that the adaptation of a subset of the taxonomy of
cybercrime categories proposed by Gillespie [39] and a subset
of the offences outlined by the Budapest Convention would be
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suitable to represent cybercrime in SCI. We mapped the types
of threats outlined in Table IV to the corresponding cybercrime
categories and offences, as shown in Table V below.

There were other categories that Gillespie [39] proposed
(e.g., crimes against property, illicit content and individuals).
Similarly, the Budapest Convention had also included other
types of offences e.g., child pornography, infringement of
copyrights and abetting crimes. These are excluded from Ta-
ble V for being out of scope as we only focus on crimes on
SCI.

C. Evidence Requirements for SCI Threats and Offences

Although the issue of pinpointing offences to threats on SCI
has been addressed, it is necessary to identify the evidence
required to prove such offences have occurred. Based on our
earlier efforts in identifying types of threats during threat
modeling SCI and the associated offences in Table V, we
further identified the possible evidence types that investigators
could use. The evidence types were identified by referring to
the threats on SCI and examining the corresponding possible
evidence sources. After the evidence sources were determined,
types of possible evidence (sorted in order of volatility [43])
linked to evidence sources were established. This is presented
in Table VI below.

It can be observed that evidence sources and the various
types of possible evidence are repeated in some threats on
SCI. Although the types of possible evidence may be similar
for the various threats on SCI, the context and content within
the evidence would be the critical difference for investigators.
For example, the threat of spoofing in various processes and
potential process crash or stop are different in nature, but the
types of possible evidence to distinguish the threat are the
same (e.g., network traffic and memory images).

V. DIGITAL FORENSICS IMPLICATIONS AND
OPPORTUNITIES

The earlier sections of the paper defined SCI, identified SCI
threats, offences committed and the corresponding evidence
that could prove such offences were committed. However,
it can be argued that SCI is still a work in progress as an
international implementation of SCI has yet to be completed.
Although SCI has yet to be implemented globally, it presents
a chance for law enforcement agencies and investigators to
quickly seize the opportunity to develop their digital forensics
capabilities. We first discuss how DFI and LEA could benefit
from our research and then discuss the possible future oppor-
tunities in digital forensics. These are divided into 2 major
categories - research and legal opportunities.

A. Implications for Smart City Digital Forensics

We previously identified three issues that would hamper
DFI and LEA in their investigation work on SCI attacks
(namely definition, interoperability and cybercrime issues). Let
us assume a theoretical scenario where a SCI has been fully
implemented and consists of various technological implemen-
tations by multiple vendors. The successful implementation

of the SCI draws the attention of cybercriminals and so-
phisticated state-sponsored adversaries, who commence their
cyber offensive operations on SCI (e.g. energy monitoring
systems and the associated sensors of the nation’s households).
DFI and LEA are called upon to investigate the multitude
of cyber-attacks. Still, they have to contend with current
investigative workloads, understand the nuances of SCI, and
various underlying technologies and finally obtain the proper
evidence to determine the offences that had taken place. In this
instance, DFI and LEA could expect to take a long time to
investigate the attacks while also trying to resolve their current
workload.

However, with our contributions, DFI and LEA can mitigate
many challenges. Assuming that the SCI was designed using
our threat model, the corresponding threats, cybercrime, and
evidence required to identify the offences would have been
documented. For example, based on Table V, DFI and LEA
would know that there are twelve types of threats within SCI.
The adversaries caused a process crash or stop and might
have exploited vulnerabilities to change execution flows in
the energy monitoring systems and gained elevated privileges.
The offences committed would be illegal access, illegal inter-
ception, data interference, system interference and misuse of
devices for process crash or stop, while the offences committed
for gaining elevated privileges via changing execution flow
would be illegal access, illegal interception, system interfer-
ence, misuse of devices and computer-related forgery. After
knowing the offences the adversaries committed, DFI and
LEA can retrieve the possible evidence sources based on the
information presented in Table VI. After consulting Table VI,
the investigators know that the evidence sources are the SCI
systems, SCI network infrastructure and the systems used by
adversaries to commit the crimes. DFI and LEA are further
guided to the types of evidence they could obtain, such
as network traffic captures, device logs, server logs, system
logs and malicious binaries. Moreover, since the various data
sources of SCI were already determined and implemented
by the chosen vendors, retrieving the evidence would be
significantly less challenging for SCI and LEA as methods
or capabilities to retrieve these types of evidence should have
been supported or documented as these SCI are constructed. In
contrast to the instance discussed in the preceding paragraph,
DFI and LEA enjoy the benefit of being prepared (knowing
potential threats, types of cybercrime related to SCI, and types
of evidence that could be collected). They can commence
investigations effectively, efficiently, and with confidence.

Figure 8 depicts the potential scenario faced by DFI and
LEA and also shows how our proposed work can resolve their
future challenges preemptively.

B. Research Opportunities for Digital Forensics

Based on our research performed in Section II to Section IV,
we identified a few key technical research opportunities for
SCI digital forensics. These are outlined in the following:

1) Identification and Obtaining Dark Data: Drawing a
parallel connection with dark matter from Physics, Hand
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TABLE VI
MAPPING THREATS ON SCI TO POSSIBLE EVIDENCE TYPES AND SOURCES

Threats on SCI (based on Table IV) Types of Possible Evidence Possible Evidence Sources

Spoofing in various processes

1. Network traffic (captured from SCI systems), device logs, server logs, system logs, malicious binaries
2. Network traffic (captured from SCI network infrastructure)
3. Memory images, hard disk images, devices used to commit crimes

1. SCI systems
2. SCI network infrastructure
3. Adversarial systems

Potential process crash or stop

Data flow potentially interrupted

Elevation by changing execution flow
in various systems

Spoofing of various source data stores
1. Network traffic (captured from SCI systems), device logs, server logs, system logs, SCI data stores
2. Network traffic (captured from SCI network infrastructure)
3. Memory images, hard disk images, devices used to commit crimes

Potential lack of input validation 1. Network traffic (captured from SCI systems), device logs, server logs, system logs
2. Network traffic (captured from SCI network infrastructure)
3. Memory images, hard disk images, devices used to commit crimesPotential weak access control for a re-

source

Elevation using impersonation 1. Network traffic (captured from SCI systems), device logs, server logs, system logs, malicious binaries, SCI Executable
programs
2. Network traffic (captured from SCI network infrastructure)
3. Memory images, hard disk images, devices used to commit crimesSystems may be subject to elevation of

privilege using remote code execution

Potential data repudiation 1. Network traffic (captured from SCI systems), device logs, server logs, system logs
2. Network traffic (captured from SCI network infrastructure)

1. SCI systems
2. SCI network infrastructure

Data flow sniffing 1. Device logs, server logs, system logs, malicious binaries
2. Devices used to commit crimes, hard disk images, memory images

1. SCI systems
2. Adversarial systems

Cross site request forgery

1. Network traffic (captured from SCI systems), web server logs
2. Network traffic (captured from SCI network infrastructure)
3. Browser history, device artifacts (e.g. registry keys for Windows systems)
4. Memory images, hard disk images, devices used to commit crimes

1. SCI web servers
2. SCI network infrastructure
3. User devices
4. Adversarial systems

Digital Forensic Investigators,
Law Enforcement Agencies

Common Understanding
Different technology
perspectives

What evidence?

Smart City Infrastructure
(Implemented)

Smart City Infrastructure
(Attacks/Exploited)

Present/Potential Scenario

Research Contributions

Digital Forensic Investigators,
Law Enforcement Agencies

What threats?

What crimes?
Cybercriminals,

Hackers

Evidence Requirements for Threats and Offences (Section 4.3)

Digital Forensic Implications and Opportunities (Section 5)

Defining Cybercrime (Section 4.1)

Mapping Threats to Cybercrime and Offences (Section 4.2)

Common Understanding (Section 2)
Finding Threats using Threat Models (Section 3)

Smart City Infrastructure
(Operationally Healthy)

Threats found before being exploited

Threats mapped to cybercrime

Technical/Legal Gaps identified

Forensic artifacts relevant to cybercrime identified

Smart City Infrastructure
(Implemented)

Cybercriminals,
Hackers

Fig. 8. Overview of our contribution, specific sections are highlighted

contends that missing data is dark data [44]. Hand further
postulates that there are 15 types of dark data, and such data
is vital, although they have not been noted since the dark
data could have a huge impact on corresponding analysis
and actions [44]. The current state of digital forensics on
SCI exactly presents such a scenario. There is nothing wrong
with governments wanting to implement SCI to improve the
lives of citizens, but the corresponding identification of usable
digital artifacts when cybercrime occurs has not been fully
considered. Our research contributions (defining SCI, open-

sourcing our Smart City Threat Model and identification of
SCI evidence in Sections II to IV) attempts to address Dark
Data-Type (DD-Type) 1 and 2 highlighted by Hand [44]. DD-
Type 1 refers to data we know are missing, while DD-Type 2
refers to data we do not know are missing [44].

The premise of our research was mainly driven by DD-
Type 2 as we strove to identify the data we did not know that
was missing in SCI digital forensics. After determining that
there was a lack of a standard SCI definition, we formalize the
SCI to facilitate understanding the threats, SCI cybercrime and
subsequently, identifying SCI evidence sources. Consequently,
certain DD-Type 2 data related to SCI became DD-Type 1,
which were presented in our research. Given the nascent
nature of SCI digital forensics, it is likely that other forms
of dark data suggested by Hand exist in SCI deployments
[44]. Additionally, since various governments may customize
SCI depending on their use cases, the plethora of dark data
could differ, which offers a wealth of technical research op-
portunities. Having said that, our proposed SCI threat model,
identified threats, cybercrime and possible evidence provide a
baseline for researchers, DFI and governments to refer to.

2) Enhancing Evidence Capture in SCI: Although we have
suggested possible evidence sources and types in Table VI,
evidence retrieval related to cybercrime will require human
intervention. It will be a significant challenge to capture and
identify the needed evidence at the right moment, especially
when it is hard to predict when and where cybercrime will
occur. A naive way would be to capture and store all evidence
sources indefinitely, retrieving them when such evidence is
required to investigate cybercrime. Unfortunately, such actions
would not be economically feasible for governments, given the
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associated economical cost required to store the evidence.
A possible solution to this dilemma could be using au-

tomated system processes to store evidence related to an
ongoing cybercrime. However, this would require the engi-
neering cooperation of the respective SCI vendors since this
feature requirement appears to be an optional choice and not
related to SCI core functionality. In the absence of vendor
support, academic researchers could also possibly create tools
or research on techniques that could be used in SCI to facilitate
the investigation.

Another possible solution could be the usage of Machine
Learning (ML) and Deep Learning (DL) techniques to process
the various evidence sources and types to identify potential
cybercrime that could have occurred. Such approaches have
been explored in general cybersecurity and intrusion detection
research [45], [46]. With the support of ML/DL techniques,
the strain of sifting through tremendous amounts of potential
evidence could be reduced greatly. Investigation support could
also be provided, though at this point of time, human supervi-
sion would still be a necessary thing due to the probabilistic
nature of ML/DL tools.

3) SCI Evidence Storage and Management: It is not un-
usual for DFI to work with large amounts of data. The
challenge of managing and working with large volumes of
data and evidence has been highlighted in traditional digital
forensic investigations [47]. In the case of SCI, the potential
amount of varied data gathered for forensic investigation could
be tremendous, given the complexity and scale of SCI (with
reference to Table VI). Researchers could adopt technical and
management perspectives to tackle this challenge.

From a technical perspective, there are a few potential fur-
ther research directions for forensic evidence storage. Firstly,
some efforts could be directed towards a new medium of
storage media or format where much more data could be stored
resiliently and reliably. Alternatively, a suitable data compres-
sion mechanism could be explored to optimize and reduce
evidence storage. Finally, the amount of evidence gathered
within SCI could be reduced by applying data deduplication
techniques. There has been open-sourced data deduplication
frameworks such as DeFrame [48] and data deduplication
extensions to open-sourced forensic tools such as The Sleuth
Kit (TSK) proposed [49].

From a management perspective, researchers could examine
various data policies related to SCI forensic evidence, such
as storage, usage, access and acquisition vis-à-vis cybercrime
investigation requirements. For example, it could be dictated
under SCI evidence processing policies that data deduplication
has to be carried out to reduce the potential amount of data
that has to be examined and stored. Further policies such as
access and storage would have to be determined ideally in
partnership with LEA and governmental agencies.

C. Legal Opportunities for Digital Forensics

On top of technical opportunities, we also identified some
legal opportunities that could facilitate SCI cybercrime inves-
tigation based on our work in Section II to Section-IV.

1) Legal Jurisdiction of Digital Forensic Investigation: The
availability of technology and access to the internet facilitates
cybercrime. As such, various SCI systems could potentially
be accessed or probed by international users. Adversaries and
cybercriminal groups could capitalize on such opportunities
to commit crimes and sabotage SCI. Even if SCI systems
had their access restricted to a user’s geolocation, adversaries
located elsewhere could breach into a local victim’s computer
to access SCI.

Since cybercriminals could be located in an international
location, it may be challenging for local legal jurisdiction
to prosecute cybercriminals located in another country in
the absence of reciprocal legal arrangements. However, LEA
should consider the possibility of exercising their rights to ex-
traterritorial jurisdiction. Gillespie suggests that there are four
possible grounds in which LEA could apply extraterritorial
jurisdiction [39]:

1) Universal jurisdiction: Reserved for the most grievous
offences that was committed. The concept of this ju-
risdiction was that any nation could charge perpetrators
regardless of their nationality and location where the
crime was committed [50]. For example, perpetrators
who interfere with the usual operations of SCI which
leads to massive loss of human lives could be potentially
considered under this category.

2) Protective principle: The protective principle proposes
to allow countries seek extraterritorial jurisdiction to de-
fend the victim country’s state interests and security [50].
For example, perpetrators who attempt cyberattacks on
governmental or military assets owned by international
governments could fall under this category.

3) Active personality principle: This form of extraterrito-
rial jurisdiction is based on the the perpetrator’s nation-
ality and/or place of residence, and legal action could
commence from there.

4) Passive personality principle: Similar to the active per-
sonality principle, this extraterritorial jurisdiction differs
in that legal action commences instead from the victim’s
nationality and/or place of residence.

2) International Cooperation in Digital Forensics: We dis-
cussed the possibility of extraterritorial jurisdiction in Sec-
tion V-C1. However, it would not be possible without a global
consensus. The International Criminal Court (ICC) could be a
potential platform where serious cybercrimes are judged, but
it was observed that the ICC usually handles crimes against
humanity [39].

A potential avenue could be the Budapest Convention on
Cybercrime where the Second Additional Protocol to the
Convention was recently put up for signing with the vari-
ous parties and signatories [51]. Although the current scope
of cooperation was limited to domain name and subscriber
information, there was also consideration for extraterritorial
cooperation via joint investigations and disclosure of electronic
evidence [51]. However, the effectiveness of the Budapest
Convention is only as effective as the parties and signatories
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who sign the Convention.

VI. LIMITATIONS

Our proposed SCI threat model and the corresponding SCI
threats, cybercrime and potential evidence are dependent on
Definition 1, the STRIDE threat model and the four ISO
standards mentioned in Section II-B. There is a possibility
that governments vested in alternative types of SCI (such
as proprietary SCI not based on Definition 1) would find a
lack of alignment in our work. Nonetheless, the foundation
of Definition 1 is based on the goals of an intergovernmental
organization (17 United Nations SDGs) and several standards
from an international standards body (ISO). Therefore, Defi-
nition 1 is technology agnostic and broad. While government
agencies are free to select an SCI that best fits their needs, we
believe that Definition 1 can assist governments in establishing
a solid foundation in cybercrime prevention.

We used Microsoft TMT to create our threat model. As
such, there is a dependency on a third-party tool. However, we
believe the advantages outweigh the disadvantages of relying
on a third-party tool. Threat modeling could be a herculean
effort for complex systems such as SCI. Compared to manually
creating threat models or using visualization tools with limited
automation while creating threat models, the Microsoft TMT
could track the list of identified threats, generate a summary
report of threats and even provide suggested ways to mitigate
identified threats.

The possible evidence sources and types in Table VI are
dependent on the threat model. In our research, we have
limited the depth of our threat model at Level 1 as it was
intended to serve as a baseline template for interested adopters.
If we went down to more granular levels (e.g. Level 2 or
3) as specified by Microsoft, we would risk being overly
specific and may outline redundant threats and evidence.
Hence, although Table VI comprehensively maps threats on
SCI to possible evidence sources and types, our threat model
does not entirely outline all potential threats faced by SCI.
Nonetheless, our baseline threat model provides a platform
for extending towards different SCI customizations made by
a specific organization or vendor.

VII. RELATED WORK

In our preparatory work for the paper, we performed a
literature review of state-of-the-art works with the keywords
“Smart City”, “Smart Cities”, “Smart City Digital Forensics”,
“Cybercrime”, “Threat Modeling” and “Threat Models”. The
keywords were used in our searches via Google Scholar,
journal databases such as ScienceDirect, IEEE and Association
of Computing Machinery (ACM), and search engines such as
Google. We manually checked the literature for the relevancy
of the topics discussed in this paper and excluded papers
unrelated to our research goals.

The idea of cybercrime had been widely discussed on sev-
eral platforms but was first formally defined and classified by
Gordon and Ford [52]. Gordon and Ford described cybercrime
as any crime that was aided or executed via electronic devices

such as computers or devices [52]. They also further classified
cybercrime into Type I and II crimes - the former is often
supported by malicious software such as keyloggers, viruses
and vulnerabilities, while the latter uses day-to-day software
and protocols. Type I cybercrime also usually happens as a
specific event from the victim’s perspective, while Type II
cybercrime could repeatedly happen from the user’s point of
view. Gordon and Ford further argues that pure Type I or
II cases are rarely observed and that cybercrime is usually
broad [52]. Our work, particularly Table V, aims to resolve
this conundrum by first identifying and mapping the possible
threats to related offences. This prevents any confusion faced
by DFI and LEA, albeit targeted specifically towards SCI-
related cybercrime.

There have also been calls for digital forensics to evolve.
MacDermott et al. [53] highlighted that new ways to inves-
tigate IoT-related crime have become a growing necessity
- threats and criminal abuses in smart cities are increasing
while securing the infrastructure was a challenge. Moreover,
MacDermott et al. [53] further stated that new threats would
have to mitigate by a new generation of digital forensics
and best practices to ascertain and identify evidence in an
evolving regulatory landscape concurrently. Our research pre-
cisely attempts to address this problem by combining digital
forensics and industry best practices (e.g. threat modeling sys-
tems before implementation) to identify threats preemptively
and to highlight cybercrime and needed digital evidence for
investigation.

Baig et al. [1] proposed a study of digital forensics and
cybersecurity in smart cities based on NIST’s smart city model.
However, their study was only based on three categories
(smart environments, smart living, smart mobility) out of
the six categories mentioned in the NIST smart city model
(smart economy, smart governance and smart people were not
discussed). As such, this may lead to the misconception by re-
searchers, DFI and LEA that smart cities only comprise smart
environments, smart living and smart mobility. Meanwhile, our
paper fully follows all clauses and elements of data indicators
listed in the ISO standards we referenced. In addition, our
paper attempts to define smart cities at an even lower layer
of abstraction while embracing conformity to international
standards (i.e., Definition 1). Finally, governments will likely
implement SCI infrastructure in phases. Our work can factor
in technology evolution and facilitates requirement changes
by governments (if necessary), yet provides DFI and LEA
with the ability to prepare for cybercrime on existing SCI
infrastructure.

A digital forensic model to identify interconnectivity be-
tween things was proposed by Kim et al. [54], where the
authors proposed an improved framework to identify evidence
in interconnected devices. While the proposed model is infor-
mative, it lacks the context of SCI and assumes that DFI and
LEA have an in-depth knowledge of SCI. It also requires users
to follow the process iteratively. On the other hand, our threat
model lists all possible threats within SCI that are grouped by
data indicators via threat modeling immediately. The possible
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offences, forensic evidence types and sources based on the
threats are then linked together and presented in our research.
By using our threat modeling template, governments, DFI,
and LEA could obtain personalized guidance and direction
in identifying relevant threats and sources of forensic data.
If certain data indicators were not required, they could be
trimmed away from the template.

Kavallieratos et al. investigated threats in connected smart
homes using STRIDE and Microsoft TMT [55]. They ac-
knowledged the dynamic nature of smart, interconnected de-
vices but only outlined six smart home scenarios and solely
determined threats. Moreover, Kavallieratos et al. did not
adhere to Microsoft’s best practices for threat modeling and
failed to model their threat models according to appropriate
context levels [37]. As such, it is possible that Kavallieratos
et al. did not identify all existing threats in their scenarios.

Countries have attempted to specify technical references
and standards for smart cities/nations to enrich their citizens’
lives. For example, in Technical Reference (TR) 47, Singapore
attempted to specify a technology-agnostic reference archi-
tecture for IoT and sensor networks [56]. The motivation
of the TR was to create an anticipatory government that
could offer integrated city services while allowing citizens
to enhance their lives with data [56]. Other than technical
requirements specified by Singapore, it was observed that
TR 47 also mentioned the need for incident response and
investigations in the architecture [56]. Our work could provide
the investigative context and guidance required from a data
indicator perspective.

In summary and to the best of our knowledge, we provide
the first systematic SCI threat model that is technology-
agnostic and adopts data indicators that have been interna-
tionally agreed upon (i.e., ISO standards). Instead of focusing
on the technological aspect of SCI, we based our SCI on
indicators that reflected the quality of life and used the
corresponding data indicators in our SCI.

VIII. DISCUSSION AND CONCLUSION

Determining SCI threats, cybercrime, and retrieving related
forensic evidence is not a trivial task for DFI and LEA. Even
at a more fundamental level, the definition of SCI could differ
due to different needs and perspectives. Our research work led
us to the following key observations:

1) SCI Definition. A common definition of SCI supported
by international standards helped to reduce ambiguity
when we had to prepare for our threat modeling endeav-
ors. We could be technology-agnostic in our threat model
by viewing SCI as an outcome-based and data-driven con-
struct compared to a purely technological and role-based
construct. With a standard definition and understanding
of SCI, DFI and LEA would be better prepared to handle
SCI investigations.

2) SCI Threats, Cybercrime and Related Evidence. As
Horsman has succinctly pointed out, DFI and LEA have
already had their hands full with ongoing cybercrime
cases and are hard-pressed to perform further research in

emerging technologies [3]. We believe that adversaries
and cybercriminals are very likely to target SCI due
to their novelty and the data that flows through these
systems. Before SCI is fully implemented and deployed,
we preemptively highlight vital details that DFI and LEA
are likely to use in their course of investigation and
workflows. Based on a standard definition of SCI, we
derived potential threats and mapped them to possible
offences. We then further mapped the threats to possible
evidence types and sources. With these details, DFI and
LEA will have some guidance when they are required to
conduct investigations related to SCI.

3) SCI Technical and Legal Opportunities for Digital
Forensics. Although our research attempts to get DFI
and LEA up to speed about SCI, there are still multiple
opportunities for the digital forensics community to ex-
plore. We hope that the digital forensics community can
work together in looking into the opportunities identified
- a two-pronged approach from both a technical and legal
perspective would better assist DFI and LEA, who would
have to contend with SCI investigations in the future.

We have provided a threat model template freely available
for usage by interested parties to model their SCI and discover
potential threats. Following that, we also listed possible digital
evidence that DFI and LEA could use to investigate cybercrime
based on these threats. We believe that our work in this paper
will serve as a critical foundation in aiding DFI and LEA
in investigating SCI cybercrime, while also factoring in the
goal of improving citizens’ lives by aligning our threat model
with the UN sustainability issues and goals as specified in
ISO37101:2016.

Availability: Our threat models are publicly available at https:
//github.com/poppopretn/SmartCityThreatModel for investiga-
tion and further research.
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