
SweynTooth: Unleashing Mayhem over Bluetooth Low Energy

Matheus E. Garbelini
SUTD

Chundong Wang∗

ShanghaiTech University
Sudipta Chattopadhyay

SUTD

Sumei Sun
Institute for Infocomm Research, A*Star

Ernest Kurniawan
Institute for Infocomm Research, A*Star

Abstract

The Bluetooth Low Energy (BLE) is a promising short-range
communication technology for Internet-of-Things (IoT) with
reduced energy consumption. Vendors implement BLE pro-
tocols in their manufactured devices compliant to Bluetooth
Core Specification. Recently, several vulnerabilities were dis-
covered in the BLE protocol implementations of a few specific
products via a manual approach. Considering the diversity and
usage of BLE devices as well as the complexity of BLE proto-
cols, we have developed a systematic and comprehensive test-
ing framework, which, as an automated and general-purpose
approach, can effectively fuzz any BLE protocol implemen-
tation. Our framework runs in a central device and tests a
BLE device when the latter gets connected to the central as
a peripheral. Our framework incorporates a state machine
model of the suite of BLE protocols and monitors the periph-
eral’s state through its responses. With the state machine and
current state of the central, our framework either sends mal-
formed packets or normal packets at a wrong time, or both, to
the peripheral and awaits an expected response. Anomalous
behaviours of the peripheral, e.g., a non-compliant response
or unresponsiveness, indicate potential vulnerabilities in its
BLE protocol implementation. To maximally expose such
anomalies for a BLE device, our framework employs an opti-
mization function to direct the fuzzing process. As of today,
we have tested 12 devices from eight vendors and four IoT
products, with a total of 11 new vulnerabilities discovered and
13 new Common Vulnerability Exposure (CVE) IDs assigned.
We call such a bunch of vulnerabilities as SWEYNTOOTH,
which highlights the efficacy of our framework.

1 Introduction

The Bluetooth Low Energy (BLE) is one of the key wireless
communication technologies behind the massive progress of
internet-of-things (IoT). Hence, vulnerabilities in the BLE

∗This work was done when C. Wang worked at SUTD.

protocol implementation may lead to concrete and serious af-
termath. For instance, through reverse engineering on Broad-
com’s BLE System-on-Chip (SoC) devices, Mantz et al. [24]
performed remote code execution in the device’s functions
with a malformed over-the-air packet. Similarly, Bleeding-
Bit [15], discovered in Texas Instruments BLE SoCs, allows
adversaries to install a shellcode, which thereafter permits
remote execution and authentication bypass upon receiving
specific sequences of manipulated advertisement packets.

The preceding examples indicate that faulty BLE proto-
col implementations may exist in various IoT devices and
potentially bring about chaotic consequences. In this paper,
we propose a systematic and automated fuzzing framework
that is able to discover vulnerabilities in the BLE protocol im-
plementation of any device. Our framework neither requires
access to the source code of an implementation nor changes
a single line of code in a device’s OS or firmware. In a nut-
shell, it runs in the user space of a customized BLE dongle
(i.e., central) to test a BLE device (i.e., peripheral) during the
process of establishing a connection between the two.

The essence of our framework is a fuzzer that systemati-
cally subjects the BLE implementation to adversarial con-
ditions. However, it is non-trivial to develop a fuzzer to
generate such adversarial conditions. Firstly, we construct
a BLE state machine model from the Bluetooth Core Specifi-
cation [36–38] to make valid BLE packets. This is essential,
as a randomly generated, meaningless packet is likely to be
rejected by any BLE implementation. Secondly, testing a
BLE implementation with valid BLE packets is improbable
to reveal flaws, because such compliant cases should have
been covered in manufacturing tests [22, 41] as well as in
Bluetooth stack certification [39]. Thus, our framework ei-
ther sends malformed packets based on mutation, or normal
packets at a wrong time or inappropriate state, or both, to a
BLE peripheral. Through manipulating packets, our frame-
work intends to bring on adverse corner cases. Thirdly, the
complex structure of BLE packets (cf. Figure 1) and the versa-
tile communication regulations necessitate a comprehensive
and directed strategy for generating test cases of packets and

their timings. This aims to drive and stress non-compliant
behaviours at the peripheral. To this end, our fuzzer mutates
fields of a layer in the BLE stack and employs a particle
swarm optimization (PSO) to heuristically refine the mutation
probability distribution at both dimensions of each protocol’s
layers and each layer’s fields. Finally, our framework validates
any response from a peripheral on-the-fly according to a set
of expected packets in each protocol state. This enables it to
detect security issues beyond crashes, e.g., security bypass.

Our framework distinguishes itself from existing works [6,
15, 24] in view of being automated and comprehensive. Exist-
ing works require manual and tedious efforts, such as reverse
engineering and attentive inspection of source code, to dis-
cover potential security flaws in the BLE implementation of
specific devices [34]. By contrast, our framework is fully au-
tomated and embraces the capability to uncover more security
issues than a manual approach. Concurrently, although a few
scattered approaches have been presented in fuzzing Blue-
tooth devices [3, 9, 11, 18], they only cover a fraction of the
Bluetooth stack. To the best of our knowledge, we compose
the first comprehensive approach for BLE fuzzing that is not
limited to one or several particular layers, e.g., L2CAP or
ATT [3, 11], but fully controls the communication at the Link
Layer (LL) as well as the interaction with the Secure Manager
Protocol (SMP) for encrypted message exchanging. This, in
turn, establishes the efficacy and viability of our framework
in fuzzing arbitrary BLE protocol implementations.

The remainder of this paper is organized as follows. In
particular, we present the following contributions.

• We present our fuzzing framework to discover implemen-
tation flaws for BLE protocols (Section 2).
• We present the optimization process embodied in our

fuzzing framework to discover critical security vulnerabil-
ities. We also discuss the systematic process of validating
responses from BLE peripheral (Section 3).
• We discuss the implementation specific challenges in our

approach and evaluate our fuzzing framework on several
commodity BLE SoCs, including SoCs from NXP, Dia-
log, Texas Instruments, Microchip, ST Microelectronics
and Cypress, among others. Our evaluation has revealed
11 unknown security vulnerabilities (nicknamed SWEYN-
TOOTH) and seven non-compliant behaviours. 13 new
common vulnerability exposure (CVE) IDs are assigned
and they potentially affect a few hundred types of IoT
products. As all the vulnerable SoCs have passed the
Bluetooth stack certification, our evaluation also clearly
highlights the incompleteness of the certification process
(Section 4).
• We evaluate the impact of new vulnerabilities, as discov-

ered by our framework, on four IoT products (Section 4).
• We compare our framework with three other fuzzers and

show that our framework is significantly more effective,
in terms of finding security vulnerabilities in BLE imple-
mentations (Section 4).

PHY
LM

RFCOMM

Application

L2CAP

User

Controller

Host
SDP

(a) Classic

PHYPHY
LL

GATT
ATTSMP

Application

L2CAP

User

Controller

Host
GAP

(b) BLE

Figure 1: The Stacks of Bluetooth Classic and BLE

After discussing related work (Section 5), we conclude the
paper and provide future directions (Section 6).

2 Overview of Our Framework

BLE is the successor of Bluetooth Classic to build a short-
range wireless network with reduced energy consumption and
improved usage capability. In this section, we first describe
the BLE model used in our fuzzing and illustrate the chal-
lenges in developing a systematic fuzzing framework for BLE
protocols with an example. Then we present an overview of
our framework with its main components and workflow.

2.1 The Model of BLE Protocols
We aim to detect implementation flaws in BLE protocols
defined in the Bluetooth Core Specification [36–38]. Particu-
larly, we study the interactions on Attribute Protocol (ATT),
Logical Link Control and Adaptation Protocol (L2CAP), Se-
cure Manager Protocol (SMP), and Link Layer (LL), as shown
in Figure 1. L2CAP and ATT are common to both Bluetooth
Classic and BLE, while LL and SMP are exclusive to BLE.

Figure 2 illustrates the process of establishing the BLE
connection between a central and a peripheral. Our fuzzer
works during this process and it is guided by a BLE proto-
col model we have developed. A simplified representation of
the model is presented in Figure 3. Initially, the peripheral
periodically broadcasts advertisements to nearby devices
and the central starts in the scanning state. The central scans
for such advertisements and gets further information from
the peripheral such as its name by sending a scan request
(1 in Figure 2). After receiving a scan response (2 in Fig-
ure 2) from the peripheral, the central can choose to start a
connection by sending a connection request (3 in Fig-
ure 2) and proceeds to the connection state. On receiving
an acknowledgment from the peripheral (4 in Figure 2),
the central proceeds to the initial_setup state (see Fig-
ure 3). As the connection request contains connection
parameters relevant to the synchronization and communi-
cation timing between central and peripheral, after transit-
ing to initial_setup state, the central requests information
from the peripheral by sending version request, feature
request, length request and MTU length request (5
to 8 in Figure 2) with the intention to know the peripheral’s

LL Encryption procedure

version / feature / length / MTU length
(request / response)

connection request

Data channel connection

5

Peripheral/Slave Central/Master

scan response

scan request

Pairing procedure

6 7
4

3

1

pairing (request / response)

SMP Legacy pairing or Secure Connections
9

10

Link Layer encrypted
Keys distribution procedure

11

12
ATT request / response

(GATT services discovery)

2

STK

Channels
advertisement

Peripheral/Slave

8

13

Connection response (empty PDU)

Figure 2: Message exchanges during BLE connection process

supported LL features and capabilities such as the maximum
length of the packet it can send or receive. Likewise, the pe-
ripheral also gets the central’s LL information during the
same exchanges. Note that the preceding messages are not
necessarily sequentially exchanged, because vendors are free
to implement how the peripheral handles such messages. For
instance, a peripheral may reply to version before feature.
Similarly, the peripheral may choose to directly read some
ATT atributes from the central and go to the gatt_server
state or skip the state length before proceeding. To ensure
compatibility with different implementations, we employ sev-
eral transitions in the state initial_setup for the flexible
message ordering, as shown at the upper-left of Figure 3.

After the initial setup is done, the central proceeds to the
list_pri_services state. Here it scans for peripheral’s
main services via the Generic Attribute Profile (GATT) Ser-
vice Discovery procedure and stores their attributes in a local
array. The central then proceeds to the state pairing_req
and starts to establish an encrypted communication with the
peripheral. The central sends a pairing request packet
to the peripheral (9 in Figure 2), indicating the preferred
pairing mode to be used in the next state. If the peripheral
accepts the pairing mode proposed by the central, it replies
to the central and both proceed to the smp_pairing state.
As there are two pairing modes for them to choose, i.e., the
Legacy pairing or Secure Connection (SC) pairing via SMP
exchanges, they go through the pairing procedure from ei-
ther the legacy_pairing or sc_pairing state, as shown at
the middle-right of Figure 3. Once the pairing procedure is
successful, the central derives a sessionKey from a Short
Term Key (STK) received from smp_pairing, transits to the
ll_encryption state and starts the challenge with the pe-
ripheral by sending an encryption_req (10 in Figure 2).
With the peripheral’s response, the central sends an encrypted
encryption_res packet by using the obtained sessionKey.
If the peripheral is able to correctly authenticate and decrypt
the encryption_res from the central, it sends another en-
crypted encryption_res to the central, indicating that the
connection is successfully encrypted.

AES-CCM Encrypted�Payload

scanning

connection

pairing_req

smp_pairing

ll_encryption

key_distribution

legacy_pairing

sc_pairingencryption_req

encryption_res

Advertisements

list_sec_services

gatt_read/write

Peripheral Discovery

BLE Pairing procedure

Link Layer Encryption Procedure

initial_setup

or

list_pri_services

Central-Peripheral Setup

mtu_length

gatt_server

feature

length

version

LTK/STK

Figure 3: Simplified BLE Protocol Model

If legacy_pairing is used, the central and periph-
eral may optionally go through the keys distribution
procedure (12 in Figure 2) to exchange a long term key
(LTK).Otherwise, in sc_pairing, the LTK is the STK instead.
The LTK can then be used by the central to avoid repeating
the pairing process in subsequent connections and directly go
to the step 11 in Figure 2. In the following stages, the central
and peripheral exchange an LTK based on what has been ne-
gotiated in pairing_req and the central reads more services
from the peripheral at the state list_sec_services.

After LL connection and pairing, the central discovers all
the peripheral’s available attributes (i.e., information) by per-
forming the GATT Primary Service Discovery. This consists
of sending and receiving a number of ATT requests and
ATT responses (13 in Figure 2). so as to fetch predefined
ATT attributes. In the next state gatt_read/write, we cap-
ture the read and write of locally stored ATT attributes at the
list_pri_services and list_sec_services states. This
step is to emulate writing malformed ATT attributes via our
fuzzing methodology. Thus, the state gatt_read/write at
the bottom of Figure 3 is not part of the BLE protocol speci-
fication. However, it is required to check the behaviour of a
peripheral in the presence of malformed ATT attributes.

2.2 Problem Formulation with An Example

In this paper, we consider developing a systematic fuzzing
framework that is 1) comprehensive with respect to all BLE
stack layers, 2) directed as being with an optimization mech-
anism to maximally expose anomalies in BLE protocol im-
plementations, and 3) applicable to fuzzing any product em-
bracing BLE SoCs for wireless connectivity. Anomalous be-
haviours capture non-compliance against the Bluetooth Core
Specification. To guarantee the comprehensiveness of cov-

Peripheral/Slave Central/Master
Paring Procedure
pairing request 8

pairing response

10

LL Encryption procedure
encryption request

Central skips pairing
and starts encryption

Peripheral accepts out of order
encryption request and crashes

Peripheral accepts Key size of 253

Figure 4: Key Size Overflow in Telink SoC (CVE-2019-19196)

ering all protocol layers, we attentively study the Bluetooth
Core Specification and incorporate an all-inclusive state ma-
chine model as presented in Section 2.1 at the central side.
Thus, at the current state of the central, we monitor responses
from the peripheral to check whether they are aligned with
the Bluetooth Core Specification or not.
Technical Challenges: Section 2.1 indicates that devising a
comprehensive state machine model itself is the first chal-
lenge due to the complexity of BLE connections. As shown
in Figure 1, each of the BLE layers contains multiple fields
that might be an exploitable factor. Furthermore, compared to
Wi-Fi, BLE allows move-back and move-forward state transi-
tions if a timeout event occurs and an expected response ar-
rives, respectively. This also introduces the second challenge,
i.e., the timing-critical constraints that must be accounted for
fuzzing BLE SoCs. Thirdly, an online validation of periph-
eral responses is non-trivial at the central side. According to
the Bluetooth Core Specification, at a given state, the central
waits for two types of responses, i.e., normal responses and
failure responses. The latter is a valid response, as a well-
formed peripheral has the right-of-way to deny any illegal
or unaligned request. Such a feature, again, does not exist in
Wi-Fi protocols. Consequently, special care is demanded to
distinguish expected and anomalous packets in the context
of BLE communications. Last but not the least, uncovering
vulnerabilities in BLE implementations requires systemati-
cally directing the fuzzing framework. In the following, we
take an example vulnerability, i.e., Key Size Overflow (CVE-
2019-19196) discovered by our framework, to illustrate how
we resolve the aforementioned challenges.
Discovering Key Size Overflow Vulnerability: The Key Size
Overflow vulnerability is caused only if the three following
conditions are jointly satisfied: 1) key_size field of SMP
pairing request is fuzzed, 2) the peripheral receives a cer-
tain packet in an inappropriate state, and 3) the peripheral may
send a connection failure packet depending on the received
fuzzed packet. The vulnerability is illustrated in Figure 4.

In brief, as a fuzzer, our framework mutates protocol layers
and each layer’s fields in a packet sent from the central to the
peripheral under test. The mutation is based on probabilities
assigned at both dimensions of layers and fields. It refines such

Fuzzing
&

Optimization

Protocol Model
(State Machine)

6. Anomaly Report &
Cost Calculation (CFi)

Packet
Manipulation

2.a Normal Packet (P)

3.a Fuzzed Packet (P’)

Packet
Validation

4. Device Response Packet (Pr)

2.b Mutation Probabilities ()

5. Validation

1. Initialization MBLE

3.b Well-crafted Packet sent at wrong state (Pdup)

Packet
Redundancy

BLE
Controller

USB
Serial

TX

RX

(Smart Home,
Wearables,

Trackers, etc.)

Peripheral

(i) (ii)

(iv)

(iii)

Figure 5: An Illustration of Fuzzing Architecture.

probabilities via a cost function with a return value, say, the
count of discovered anomalies, to direct the fuzzing process.
Our framework identifies an anomaly by validating received
responses. It discovers Key Size Overflow as follows. Initially,
there is no information about the vulnerabilities. Therefore,
the mutation probabilities are randomly assigned. Eventually,
at the paring_req state, the fuzzer sends a paring_request,
yet with fields other than key_size mutated. The peripheral
sends a response SM failure, which is still deemed to be
normal by the online validation of our fuzzer. Next, the fuzzer
sends a malformed packet with mutated key_size. Caveat
Lector: the peripheral of Telink Semiconductor unexpectedly
replies with a valid paring_response for such a fuzzed, in-
valid request. Our framework legitimately catches this re-
sponse as an anomaly. As a result, the mutation probability to
fuzz the field key_size is increased. Thus, more malformed
pairing_request packets with mutated key_size are sent
to the peripheral. We note that our fuzzer also sends valid
packets, but at an inappropriate state of the client. Eventually,
the fuzzer sends an encryption_request to the peripheral
immediately after the malformed pairing_request pack-
ets with mutated key_size. This crashes the peripheral, as
detected due to the lack of any response from it.

To sum up, the Key Size Overflow presents an anomaly
and a crash for BLE SoCs manufactured by Telink. Dur-
ing the fuzzing process, the scenario to send a malformed
paring_request (with mutated key_size) followed by an
encryption_request increases. This is because the re-
sponse to these malformed packets are anomalous and such
anomalous responses increase the value of the cost function
(i.e., anomaly count). This, in turn, further increases the prob-
ability to fuzz key_size and indirectly, the likelihood of dis-
covering the scenario causing the vulnerability.

2.3 High Level Workflow

System Architecture: Figure 5 illustrates the architecture of
our fuzzer, which is composed of four main modules orga-
nized around the BLE model MBLE : (i) the module of packet
manipulation that mutates a packet, (ii) the module of packet

Algorithm 1 Main Steps of our fuzzer
1: i← 0 . i captures fuzzing iteration
2: . generate BLE protocol model (cf. Figure 3)
3: MBLE ← Generate_Protocol_Model()
4: . wait to receive mutation probabilities from PSO
5: Xi L99 Particle_Swarm_Opt()
6: . initialize history of sent packets and redundant packets
7: Phist ← /0, P′← /0, Pdup← /0, Ph

dup← /0, S0← /0

8: repeat
9: Set central to be in scanning state

10: . assign expected layers
11: For each S ∈MBLE , assign {expected(S),rejection(S)}
12: repeat
13: Wait for peripheral’s packet
14: Let the central receives packet Pr from the peripheral
15: . monitor states and checks anomalies
16: (θanom,Pr)← Run_Validation

(
S,P′,Ph

dup,Pr

)
17: S0← S; S← Get_Current_State(MBLE , Pr)
18: . exit the iteration on anomalies and no transition
19: if θanom is false or S0 = S then
20: goto line 37
21: end if
22: . generate a valid packet from the model
23: P← Get_Packet_from_Model(MBLE , S)
24: . generate fuzzed packets from P via mutation
25: P′← Mutate_Packet(P,Xi)
26: Send fuzzed packets P′ to the peripheral
27: Ph

dup← Pdup

28: Choose a packet Pdup ∈ Phist ∪{ /0} s.t. Pdup 6= P
29: Send redundant packet Pdup to the peripheral
30: . switch expected layers after fuzzing
31: if P′ 6= P then
32: expected(S)← rejection(S)
33: end if
34: Phist ← Phist ∪{P}
35: until central does not reach the scanning state
36: . measure cost function value for Xi
37: CFi← Measure_Cost_Function(Xi)
38: . send cost function value to PSO
39: Particle_Swarm_Opt() L99 CFi
40: . wait to receive new mutation probabilities from PSO
41: Xi+1 L99 Particle_Swarm_Opt()
42: i← i+1
43: until timeout

redundancy that sends arbitrary packets of MBLE to the periph-
eral at unaligned states (i.e., out of order) with the intention
to trigger anomalies on the peripheral’s protocol state ma-
chine, (iii) the module of packet validation that is responsible
for checking the responses from the peripheral and detecting
anomalies based on the current state of MBLE , and (iv) the
module of fuzzing & optimization that can direct the mutation
of packets based on a cost function.

As shown by the arrows in Figure 5, the four modules of
our fuzzer interact and collaborate with each other to attain
the aim of discovering potential vulnerabilities in a peripheral

device. Algorithm 1 illustrates the workflow of it.
Initialization: The fuzzer relies on the protocol model MBLE
to generate valid packets and a set of mutation probabilities
Xi to probabilistically mutate such valid packets. At the ini-
tialization stage (Lines 3 to 5 in Algorithm 1), the fuzzer first
loads the model MBLE and receives initial mutation proba-
bilities Xi from the optimization module (iv in Figure 5) by
calling the Particle_Swarm_Opt function (Line 5). Next,
the central is set to the scanning state and proceeds to wait
for the peripheral’s advertisement (Lines 9, 13 to 14). Once
the central receives a packet Pr from the peripheral, the vali-
dation module (iii in Figure 5) checks whether Pr is expected
or not via the Run_Validation function (Line 16). In short,
the validation module decides the correctness of Pr based
on a set of expected layers expected(S) or rejection layers
rejection(S), which are generated for every state S∈MBLE
(Line 11) at startup. The validation is detailed in Section 3.2.
Fuzzing Iteration: If the validation does not detect any
anomaly, Pr is fed to trigger the state transition in the model
MBLE by calling the Get_Current_State function (Line 17).
Get_Current_State strictly follows the protocol model de-
scribed in Section 2.1 and returns the new state S of MBLE .
Then at the state S, our framework generates a valid packet
P (Line 23), which serves as an input to the manipulation
and redundancy modules (i and ii in Figure 5). Starting with
the packet manipulation via the Mutate_Packet function
(Line 25), the contents of P are mutated according to the mu-
tation probabilities Xi associated with the state S, resulting in
a mutated packet P′ (see Section 3 for details of mutation).
Due to the probabilistic nature of Xi, the mutation yields either
an incorrect packet such that P′ 6= P (i.e., malformed) or a
mutated packet which doesn’t differ from the original packet
(i.e., P′ = P). If a malformed packet P′ is sent to the periph-
eral, the Bluetooth Core Specification allows the peripheral
to respond with a packet that rejects P′, i.e., one with a layer
in the rejection(S). Thus, the fuzzer perceives an anomaly
if the response for a malformed P′ is other than a legitimate
packet with one of its layers in rejection(S). To this end,
the expected set of layers (expected(S)) for state S is set to
the rejection layers for state S (rejection(S)) (Line 32).

The redundancy module (iii in Figure 5) keeps a history
Phist (initialized as /0 at Line 7) of all the packets P generated
by the model MBLE (Line 34) and sends a redundant packet
Pdup ∈ Phist to the peripheral at random chance (Lines 28
to 29). The intention of this logic is to send out-of-order
packets that may cause crash or anomalous behaviour onto
the peripheral. However, using redundancy may trigger some
ambiguous behaviour which is not necessarily an anomaly.
For example, some BLE packets are not only tied to one
single state and responses to them at a different state should
not be flagged anomalous by the fuzzer. In Section 3.2, we
present how the validation module resolves such challenges
and avoids reporting false positives.

The fuzzing iteration finishes in one of three circum-

BLE

Layers

Data Ch. L2CAP SMP Public
Key

Layers mutation probabilities
0.2 0.7

Fields
Key_YKey_X

0.5 0.5

BLE Packet

PK Fields mutation probability

Public Key (PK) Layer

0.2

L t ti b biliti

Fields
CIDLength

0.4 0.4
L2CAP Layer

L2CAP Fields mutation probability

0.4 0.4 ...

Mutation probabilities

0.7 0.5 0.5

Fields of L2CAP Fields of PK

L2CAP Layer PK Layer

(Xi)

Figure 6: An illustration of our fuzzing. Xi shows the proba-
bility values for the packet public_key at state S.

L2CAP

mtu_length

list_pri_services

pairing_request SMP
Failure

STATES

Pair.
RSP ...

ATT
Read

ATT
Error

MTU
RSP

Length
REQ

...

Received: Pairing Response

CURRENT STATE

SMP

Expected layers

...

L2CAP
Received: ATT Response

...
Valid

Invalid
ATT ATT RSP

...

Rejection layers

L2CAP
Received: SMP Failure

SMP... SMP Failure

Pair. RSP

(A) Invalid Response

(B) Valid Response

(C) Fail Response
Valid

LL
Unknown

ATT
Error

...

...

...
SMP

Failure

Figure 7: Packet dissection and validation during fuzzing

stances: 1) when the model MBLE reaches the end state
gatt_read/write (cf. Figure 3) and goes back to scanning
state, 2) an anomaly is detected (Line 20), or 3) the fuzzer
times out due to a crash in the peripheral (Line 13).
Optimization: Once a fuzzing iteration finishes, the muta-
tion probabilities Xi are refined by the optimization module
(iv in Figure 5) via particle swarm optimization (Lines 37
to 41). The optimization uses the value of cost func-
tion CFi obtained at the end of every fuzzing iteration
(Measure_Cost_Function). The rationale of optimization
is to guide the mutation probabilities Xi in such a fashion
that the value of cost function CFi is maximized. Specifically,
the value of CFi represents a metric that can direct Xi to fuzz
packets that are more likely to optimize CFi (e.g., the number
of anomalies). Moreover, the refined mutation probabilities
Xi+1 are computed iteratively via Particle_Swarm_Opt and
carried over to the next iteration (Line 41). This approach
allows our fuzzer to be directed and facilitates the search for
anomalies in the peripheral’s protocol implementation.

3 Design of Fuzzer

3.1 Fuzzing and Optimization

The fuzzing effectiveness critically depends on the generation
of malformed packets based on mutation. In the following,
we discuss how such mutations are performed in detail.
Mutation: On receiving a generated packet from the protocol
model, the fuzzing module evaluates it according to the set
of mutation probabilities Xi. Xi represents the probabilities
to mutate a packet along two dimensions: 1) the layers,
which correspond to different protocols or packet types of a

packet, and 2) the fields, each belonging to a layer in the
packet. Figure 6 exemplifies the assignment of Xi over the
layers and fields of a BLE packet. For instance, consider the
Public Key layer to illustrate the use of Xi in generating a
packet. The fields of Key_X and Key_Y can be mutated in an
iteration only if the manipulation module randomly hits the
layer probability chance (70%). Once a hit happens, the fuzzer
needs to decide the set of fields in the layer to be mutated. To
this end, the fuzzer iterates over each field within the layer
and uses the individual mutation probability (50%) to mutate
such fields. We note that all the fields of one layer shares the
same mutation probability. This is to reduce the number of
parameters during the iterative optimization (cf. Line 39 in
Algorithm 1) without losing the efficacy significantly. When
the mutation indeed occurs onto a field, the field value is
changed via a randomly-chosen Mutation Operator.

Mutation Operators: The fuzzing module offers three
Mutation Operators: 1) Random bytes that mutates the
value of a packet’s fields with random bytes, 2) Zero filling
that clears the field value to zero, and 3) Bit setting that sets
the most significant bit of a single-byte field value. The ra-
tionale of choosing such operators is to accelerate the search
process for an anomaly. In practicality, Zero filling and
Bit setting correlate to setting lower or higher values of a
field value to manifest corner cases. These, in turn, are proba-
ble to trigger a buffer overflow or underflow in a peripheral’s
implementation that lacks comprehensive bound checks.

Optimizing Mutation Probabilities: In order to effectively
discover anomalies (e.g., crashes or non-compliant behaviours
against the Bluetooth Core Specification), our fuzzer employs
a cost function to systematically guide the optimization pro-
cess. The rationale behind such an approach is to measure a
cost function value CFi that informs how well a certain set of
mutation probabilities Xi perform with respect to finding new
anomalies. Therefore, the goal of the fuzzer is to maximize
the discovery of potential anomalies by also maximizing the
value of such a cost function. We use the number of unique
anomalies discovered throughout the fuzzing session as the
cost function. This is measured for each individual set of
mutation probabilities Xi (cf. Line 37 in Algorithm 1).

The set of mutation probabilities Xi are refined while maxi-
mizing the cost function value on each fuzzing iteration by an
optimization algorithm (cf. Line 41 in Algorithm 1). For the
optimization, we apply the particle swarm optimization (PSO)
due to its superior performance in the light of non-linear and
stochastic behaviour shown in the protocol model [32]. More-
over, PSO has been successfully applied in a state-of-the-art
software fuzzer [23]. The goal of PSO is to optimize the value
of a chosen cost function via regulating the position of the
swarm of particles (i.e., the population). In the context of
our framework, the position is a probability value and each
particle within the swarm of particles represents a different
set of mutation probabilities Xi.

3.2 Packet Validation

The validation module detects responses that deviate from the
Bluetooth Core Specification. It emphasizes on the correct-
ness of a response in its internal packet structure, i.e., layers
of the response, and the correct reception order, i.e., the re-
sponse’s arriving state. In particular, given a response packet
received at state S, the validation module checks it among
Expected layers or Rejection layers that are dedicated
to state S in accordance with the protocol model MBLE .
Validation Exemplified: Figure 7 shows three different cases
where a packet from the peripheral arrives in response to a
packet sent to the peripheral at state S = pairing_request.
The packet sent to the peripheral can either be a valid packet
P or a mutated packet P′. In case (A), on receiving the ATT
Response due to a valid P, the validation module flags it as
anomaly as none of the layers in the response is found in
the Expected layers of state S. In case (B), the response
packet is deemed to be valid (i.e., pairing_response) since
its layer is found in the Expected layers. On the other hand,
after sending a malformed packet to the peripheral, our fuzzer
only expects Rejection layers (Line 32 in Algorithm 1).
In this sense, in case (C), our fuzzer sends a mutated packet
P′ to the peripheral, and the response with SMP Failure is
valid as a rejection of P′, as SMP Failure ∈ rejection(S).
Validation Procedure: More involved cases beyond Figure 7
exist. The validation module must correctly handle responses
received due to legitimate, mutated, and/or redundant requests
sent at both proper and improper states.

Algorithm 2 illustrates the function Run_Validation
called in Algorithm 1. It validates if a response Pr is anoma-
lous or not. The response Pr, received at state S, might be due
to possible P′ and Pdup sent in an arbitrary fuzzing iteration
(Lines 1 to 5). At start, the validation module prepares the
Expected layers in ε to be searched for Pr, as Pr might
be a response to a non-empty Pdup (Line 6 to 10). We first
compute the flag Ψ for state S. Ψ holds if the expected layers
at S overlap with the expected layers of some other state S′

in the protocol model MBLE (Line 7). The flag Ψ does not
hold for security-related states such as states involved in SMP
pairing and Link Layer encryption, e.g., smp_pairing and
ll_encryption. Specifically, these states (with Ψ false) do
not accept any response except those aligned to their respec-
tive Expected layers. We then check whether a non-empty
Pdup has been sent at any state Mp

BLE (Line 8). The set Mp
BLE

is a subset of all BLE states (MBLE). Specifically, response to
a packet sent at a state S′ ∈Mp

BLE is allowed to be received
at any state where Ψ holds (i.e., states other than security-
related ones). Thus, given a non-empty Pdup sent at a state
of Mp

BLE , the validation module needs to extend ε if Ψ holds.
This is accomplished by joining ε with Expected layers of
the state Pdup belongs to (Lines 8 to 10). With the updated ε,
the validation module sets a validity flag based on whether
the layers of Pr are expected or not (Lines 11 to 12).

Algorithm 2 Run_Validation Procedure

1: Input: Current state S of BLE protocol model (cf. Figure 3)
2: Input: Packet P′ sent from the current state S
3: Input: Packet Pdup sent at the immediately preceding state of S
4: Input: Packet Pr sent from BLE peripheral
5: Output: Absence of anomaly (true or false)
6: ε← expected(S)
7: Ψ←∃S′ ∈MBLE \{S}. (ε∩ expected(S′)) 6= /0

8: if
(
Pdup 6= /0

)
∧Ψ∧

(
state_of (Pdup) ∈Mp

BLE
)

then
9: ε← ε∪ expected(state_of (Pdup))

10: end if
11: . Check if the received packet Pr is valid
12: is_valid←∃ l ∈ layers_of (Pr) s.t. l ∈ ε

13: if
(
Pdup 6= /0

)
∧
(
state_of (Pdup) ∈Mo

BLE
)

then
14: Mp

BLE ←Mp
BLE \{state_of (Pdup)}

15: end if
16: Mp

BLE ←
(
S ∈Mo

BLE
)

?
(
Mp

BLE \{S}
)

: Mp
BLE

17: . Prevent redundant Pr from transiting the state machine
18: if

(
Pdup 6= /0

)
and (P′ and Pdup have the same response) then

19: Wait for peripheral’s response packet Pr
20: Run_Validation(S, P′, /0, Pr)
21: end if
22: return (is_valid, Pr)

The validation performs further acts before returning to
Algorithm 1. Firstly, in Mp

BLE there is a subset, i.e., Mo
BLE .

The response to the request sent at a state of Mo
BLE is al-

lowed to be received in other states, but only once. One such
state is the Version state. A normal peripheral responds to
the version request only once irrespective of how many
version requests it receives. Hence, if Pdup or P′ belongs
to some state S′ ∈Mo

BLE , then S′ is removed from Mp
BLE . This

ensures that future responses to Pdup, which belongs to state
S′, are classified as anomalies (Lines 13 to 16). Secondly, Pdup
and P′ may have the same response. In this case, we do not
trigger a state transition until a response to P′ is received (if
any before the fuzzer times out). Specifically, after handling
the response for Pdup, the validation module is recursively
called with an empty Pdup (Lines 17 to 21). In the end, the
anomaly flag and Pr are returned (Line 22).
Crash detection: There are two options to detect a crash or
unresponsiveness of the peripheral. The intrusive option is
applicable to BLE development boards that expose serial
debug ports of their respective SoCs. We can use the debug
information to detect a crash. For BLE products without such
debug ports, we use a global timer and clear it on every packet
response. If no response is received from the peripheral, the
timer eventually overflows and a crash is signalized.

3.3 Non-compliant BLE Controller
Manipulation of the Link Layer is essential for fuzzing. How-
ever, the Core Specifications [37] undermines Link Layer
(LL) manipulation from the host. Firstly, LL packets are heav-
ily timing critical due to BLE frequency-hopping. The host

cannot send a packet in a precise time due to the high time
variability of the OS scheduler. Secondly, the LL stack runs
on a separate and closed source Bluetooth chipset, i.e. the
controller. The chipset normally communicates with the host
via the Host Controller Interface (HCI) protocol, which does
not expose manual control over the LL stack.

To overcome the aforementioned challenges with a prac-
tical and low cost solution, we design a non-compliant BLE
controller firmware that ignores standardised conventions
such as HCI and abstracts away the timing and retransmis-
sion requirement between the central and the peripheral. This
abstraction simplifies the BLE state machine and allows the
host to manipulate all fields of the Link Layer packets.

Physical Channels (2.4 Ghz)
Advertisement: 37-39 / Data: 0-36

Sweyntooth

Receive and
Generate Packets

Transmission Path (TX)

Reception Path (RX)

Live Capture
(.pcapng)

Logs &
Reports

Packet
Buffer
Packet
Buffer

Data Packet
BufferCRCEncoding

(GFSK)
Adv. Address

Matching

Whitening

Decoding
(GFSK) CRCDe-

whitening
Packet
Filter

Data Channel PacketBLE Controller for LL Injection (nRF 52840 Dongle)

Address
Match Signal

Host (Ubuntu 18.04)

Adv. Channel Packet

Figure 8: An Illustration of the transmission and reception
path of a BLE Packet via the non-compliant BLE controller

Figure 8 details the internals of the non-compliant BLE
controller depicted in the fuzzer architecture (cf. Figure 5).
The controller reads packets from the host and transmits ac-
cording to their radio channel type, which is inferred from the
access address of the packet header. Data channel packets are
buffered in the Data Packet Buffer and released for trans-
mission after a time period defined by the connection interval.
Concurrently, an advertisement packet is only transmitted
to the peripheral after the controller receives an advertise-
ment packet from the peripheral first. Upon reception, the
Packet Filter checks the packet for the peripheral address
and upon a match, the advertisement packet stored in the Adv.
Address Matching is released and transmitted to the periph-
eral after the inter-frame spacing ∆IF = 150us. Other proce-
dures such as CRC calculation, whitening/dewhitening and
encoding/decoding are only necessary to ensure the correct
encoding of the packet during over-the-air transmission and
as such, do not expose fields for host side fuzzing.

4 Evaluation

Implementation: Our implementation efforts have been
mainly spent on two parts: 1) the fuzzer, including the mod-
ules of fuzzing, validation and optimization, and 2) the non-
compliant BLE controller that enables the over-the-air fuzzing.
The fuzzer is written in Python 2.7 and C++ with a total num-
ber of 2,836 lines of code (LOC). In brief, our fuzzer extends
the Scapy v2.4.3 [33] to recognize packet types, parse and val-
idate a response from the peripheral. It also uses the BLESuite
library [31] to handle the GATT Service Discovery. As to the

Table 1: Development Platforms used for evaluation
Silicon Vendor Development Platform BLE Ver. Sample Code Name

Cypress (PSoC 6) CY8CPROTO-63 5.0 Device_Information_Service
Cypress (PSoC 4) CY5677 4.2 Device_Information_Service
Texas Instruments LaunchXL-CC2640R2 5.0 project_zero
Texas Instruments CC2540EMK-USB 4.1 simple_peripheral
Telink TLSR8258 USB 5.0 8258_ble_sample
STMicroelectronics NUCLEO-WB55 5.0 BLE_BloodPressure
STMicroelectroncis STEVAL-IDB008V2 5.0 SlaveSec_A0
NXP USB-KW41Z 4.2 heart_heart_rate_sensor_bm
Dialog DA14681DEVKIT 4.2 ble_adv
Dialog DA14580DEVKIT 4.1 ble_app_peripheral
Microchip SAMB11 Xplained 4.1 blood_pressure_samb11
Nordic Semi. nRF51 Dongle 5.0 ble_app_hrs
Nordic Semi. nRF52840 Dongle 5.0 ble_app_gatts_c

fuzzing and optimization, our fuzzer leverages the PyGMO
library and its Generational PSO implementation [10] with
the optimizer following the common PyGMO structure and
the default pygmo.pso_gen optimization parameters.

The non-compliant BLE controller is written in C++ (1,096
LOC) within the nRF52840 dongle as the central device. It
overcomes the isolation enforced by HCI (cf. Section 3.3).
Evaluation Setup: Table 1 shows the peripheral devices that
we have tested. In each of these devices, the CPU is a micro-
controller (SoC) that runs an undisclosed BLE stack imple-
mentation. IoT products using these devices only have access
to interfaces for BLE communications provided by respective
manufacturer-provided libraries. As a result, the device’s BLE
implementation runs alongside the product’s main code, and
a BLE implementation vulnerability may lead to catastrophic
failure and insecurities into the product’s functionalities. In
other words, once BLE devices are found vulnerable, so are
the IoT products relying on them.

We need to install a firmware in each brand new device to
enable BLE connectivity. This is accomplished by compiling
and programming a sample code provided by the device’s
corresponding SDK. Once a programmed device advertises
itself as BLE peripheral, we can start our fuzzer to test it.

We answer the following research questions (RQs) through
the evaluation of our fuzzer.
RQ1: How effective is our fuzzer in terms of generating
error-prone inputs?

A summary of testing results is depicted by Table 2. The
prefix V means a vulnerability while the prefix A means some
anomalous behaviour that deviates from the legitimate be-
haviour defined by the Bluetooth Core Specification but is
not a vulnerability. Overall, our fuzzer has discovered 11 new
vulnerabilities and seven anomalous behaviours over all tested
devices. The SoCs of particular vendors, e.g., Texas Instru-
ments, NXP, Cypress and Dialog, have been used in many
IoT products for Smart Home, wearables and gadget tracking.
These vulnerabilities expose their respective SoCs to crashes,
deadlocks or even a complete or partial bypass of pairing
procedure. Hence the impact is significant. It’s important to
emphasize that all vulnerabilities have been automatically
discovered by our fuzzer during the packet exchange, except
for vulnerabilities classified as Security Bypass. After a
Security Bypass is detected and classified as an anomaly

Table 2: Summary of new vulnerabilities and other anomalies found on the tested platforms. * indicates the case, which is not
clear by the Bluetooth Core Specification [36–38]

Vulnerabilities / Inconsistencies Platform(s) Model state(s) Impact Type Compliance Violated

V1 - Link Layer Length Overflow (CVE-2019-16336, CVE-2019-17519)
V2 - Link Layer LLID Deadlock (CVE-2019-17061, CVE-2019-17060)

CY8CPROTO-063
CY5677
USB-KW41Z

initial_setup
Crash
Crash, Deadlock [Vol 1] Part E, Section 2.7

V3 - Silent Buffer Overflow (CVE-2019-17518) DA14681 DEVKIT-B smp_pairing Crash [Vol 1] Part E, Section 2.7
V4 - Truncated L2CAP Packet (CVE-2019-17517) DA14580 DEVKIT-B list_pri_services Crash [Vol 1] Part E, Section 2.7
V5 - Unexpected Public Key (CVE-2019-17520) Crash [Vol 1] Part E, Section 2.7
V6 - DHCheck Skipping (CVE-2020-13593) LaunchXL-CC2640R2 smp_pairing Security Bypass [Vol 3] Part H, Section 2.3.5.6.5
V7 - Invalid connection request (CVE-2019-19193) CC2540EMK-USB connection Deadlock N.A

V8 - Sequential ATT message (CVE-2019-19192)
NUCLEO-WB55
STEVAL-IDB008V2 gatt_read/write Crash [Vol 1] Part E, Section 2.7

V9 - Invalid L2CAP fragment (CVE-2019-19195) SAMB11 Xplained
list_pri_services
gatt_read_write Crash [Vol 1] Part E, Section 2.7

V10 - Key size overflow (CVE-2019-19196) pairing_req Crash [Vol 3] Part H, Section 3.5.1
V11 - Zero LTK installation (CVE-2019-19194) TLSR8258 USB sc_pairing Security Bypass [Vol 3] Part H, Section 2.4.4

A1 - Unexpected encryption start response*
SAMB11 Xplained
TLSR8258 USB
USB-KW41Z

pairing_request
smp_pairing Non-specified N.A

A2 - Accept non-zero EDIV and Rand during Secure Connection pairing

LaunchXL-CC2640R2
NUCLEO-WB55
STEVAL-IDB008V2
CY5677

sc_pairing
ll_encryption Non-Compliance [Vol 3] Part H, Section 2.4.4.1

A3 - Responds to VERSION_IND more than once many Non-Compliance [Vol 6] Part B, Section 5.1.5
A4 - Responds to data channel PDUs during encryption procedure ll_encryption Non-Compliance [Vol 6] Part B, Section 5.1.3.1
A5 - Sends unknown LL control PDU opcode

TLSR8258 USB
smp_pairing Non-Compliance [Vol 6] Part B, Section 2.4.2

A6 - Accepts malformed CONNECT_IND CC2540EMK-USB connection Non-Compliance [Vol 6] Part B, Section 2.3.3.1
A7 - Accepts CONNECT_IND with hopIncrement less than 5 All tested devices connection Non-Compliance [Vol 6] Part B, Section 2.3.3.1

Table 3: Vulnerabilities and SDK versions of the affected
SoCs. * indicates vendors that reported other affected SoCs.

Silicon Vendor BLE SoC SDK Ver. Vuln. / Anomalies
BLE Version 5.0
Cypress (PSoC 6) CYBLE-416045 2.10 V1,V2 / A7
Texas Instruments CC2640R2 2.2.3 V5,V6 / A1,A7
Telink* TLSR8258 3.4.0 V10,V11 / A3-A5,A7
STMicroelectronics WB55 1.3.0 V8 / A2,A7
STMicroelectroncis BlueNRG-2 3.1.0 V8 / A2,A7
Nordic Semi. nRF51422 11.0.0 A7
Nordic Semi. nRF52840 15.3.0 A7
BLE Version 4.2
Cypress (PSoC 4) CYBL11573 3.60 V1,V2 / A7
NXP KW41Z 2.2.1 V1,V2 / A1,A7
Dialog* DA14680 1.0.14.X V3 / A7
BLE Version 4.1
Texas Instruments CC2540 1.5.0 V7 / A6,A7
Dialog* DA14580 5.0.4 V4 / A7
Microchip ATSAMB11 6.2 V8 / A2,A7

by our fuzzer, a manual check is required to classify it as
a security issue. We note that twelve CVEs have been as-
signed, but at the time of writing this paper, the details of
vulnerabilities V1-V11 were publicly undisclosed for confi-
dentiality. Moreover, we followed responsible disclosures and
notified all vendors 90 days in advance for them to provide
corresponding patches. At the time of writing, all vendors
except STMicroelectronics and Microchip have released their
patches. Table 3 highlights the SoCs and the SDK versions
where these vulnerabilities were first discovered.

For each anomaly, Table 2 also outlines the specific section
of the Bluetooth Core Specification being violated. To sum-
marize, the results signalize that the current status of BLE
security demands more attention not only onto the design of
protocols, but also onto the implementation phases. Specifi-
cally, the two critical security bypass vulnerabilities (V6 and

V11) are caused due to the lack of handling corner cases
in the Bluetooth Core Specification, causing misinterpreta-
tions and implementation flaws. A detailed description of the
vulnerabilities is shown in the supplemental material.

Table 4: A Summary of Evaluation Time for Each Device.
The connection interval is fixed to 20ms for all devices.

Platform Iterations Total Time 1st Crash 1st Anomaly Model Coverage
CY8CPROTO-63 1000 1 h. 06 min. 1 min. <1 min. 27 (50.0%)
CY5677 1000 2 h. 27 min. <1 min. 8 min. 29 (53.7%)
USB-KW41Z 1000 1 h. 30 min. <1 min. 2 min. 24 (44.4%)
DA14681DEVKIT 1000 1 h. 16 min. 10 min. 6 min. 30 (55.5%)
DA14580DEVKIT 1000 2 h. 7 min. 5 min. 1 min. 32 (59.3%)
CC2640R2 Devkit 1000 1 h. 57 min. 4 min. 1 min. 31 (57.40%)
CC2540 Devkit 1000 1 h. 37 min. 2 min. 19 min. 34 (62.96%)
Nucleo-WB55 1000 1 h. 45 min. <1 min. 2 min. 26 (48.15%)
BlueNRG-2 1000 1 h. 14 min. <1 min. 9 min. 30 (55.55%)
ATSAMB11 1000 2 h. 39 min. 2 min 10 min. 33 (61.1%)
TLSR8258 1000 1 h. 56 min. 5 min. <1 min. 36 (66.67%)

RQ2: How efficient is our fuzzer?
When our fuzzer exchanges packets with the peripheral, the

efficiency in finding anomalies mainly depends on two factors,
i.e., the connection interval and the peripheral’s capabilities.
While the first factor can be initiated by the central, the pe-
ripheral decides whether to accept the value of the connection
interval proposed by the central. The connection interval is
the time between consecutive messages and thus controls
the frequency of messages exchanged between central and
peripheral. It is negotiated at the connection state. A short
connection interval naturally leads to an efficient fuzzing pro-
cess. During the fuzzing process, the connection interval is
fixed to a value that is acceptable to all tested devices. Table 4
shows the overall time taken by our fuzzer to complete 1,000
iterations with a connection interval of 20ms. Due to the di-
verse capabilities of devices, the message-processing time
varies significantly even with the same connection interval.

For instance, the CY5677 device is much slower in the pairing
procedure, resulting in the longest evaluation time.

The time required to find the first vulnerability in a periph-
eral’s implementation depends on its features. As shown by
the rightmost two columns of Table 4, most of the first crash
or other anomaly have been discovered within 10 minutes.
As a result, our fuzzer is opportune to ascertain a vulnerable
implementation of BLE device.

Finally, the last column of Table 4 holds the number of dif-
ferent valid transitions traversed in our BLE state machine (cf.
Figure 3) after 1000 iterations. Specifically, the BLE model
employs a total of 54 valid transitions. Overall, each periph-
eral traverses the model differently and does not trigger all
possible valid transitions in our BLE model. This is because
states initial_setup, list_pri_services and list_sec_services al-
low multiple transitions and peripheral implementations differ
in terms of the exact packet sequence accepted in such states.
This results in peripherals missing some transitions employed
in the BLE model. As per coverage efficiency, the fuzzer takes
more time to fully explore unstable peripherals. This is the
case for peripherals impacted by vulnerabilities triggered in
states with multiple transitions (V1, V2 and V8). For exam-
ple, peripherals from Cypress, NXP and STMicroelectronics
exhibit a slightly lower coverage value for 1000 iterations.
RQ3: How do the different design choices contribute to
the effectiveness of our fuzzer?

To answer this question, we disable two components of
our fuzzer to make two variants, respectively. Firstly, we only
keep the redundancy module active without packet mutation
or optimization. This means packets are sent at a wrong state
to the peripheral. Secondly, our fuzzer solely relies on the
mutation module without optimization. In this sense, we mu-
tate valid packets from the protocol model MBLE according
to a random set of mutation probabilities Xi that is not re-
fined after each iteration. The two variants are referred to as
“Redundancy” and “Mutation”, respectively.

Figure 9 illustrates the number of anomalies with respect
to fuzzing iteration for each relevant BLE SoC. The “Evolu-
tion” represents the results achieved by our fuzzer with the
optimization, which serves as a reference to compare against
the two variants. In all cases, “Evolution” results in finding
all anomalies due to the collaborative contributions among
all fuzzing components, while the two variants miss some
anomalies (cf. Figure 9). This is expected and shows that
certain vulnerabilities can only be triggered by either redun-
dancy, mutation or a combination thereof. For example, the
vulnerability Key Size Overflow (V10, cf. Section 2) asso-
ciated with Telink TLSR8258, requires that the mutation and
redundancy complement during the fuzzing process to trig-
ger it. That explains the superior effectiveness of “Evolution”
in Figure 9(b). Also in Figure 9, “Mutation” cannot achieve
as many anomalies as “Redundancy”. This is because many
anomalies indicated for “Redundancy” are due to the fact that
A3 to A5 are triggered upon the peripheral receiving redun-

Table 5: A Comparison among Testing Tools: Handcrafted
means tests can be manually configured, whereas a Test
Database contains a corpus of tests for validation

Comparison Crashes / Anomalies
Tools Supported Layer(s) Fuzzing Strategy WB55, BlueNRG-2 Others
Stack Smasher L2CAP Random 0 / 0 0 / 0
BLEFuzz ATT Random / Handcrafted 1 / 0 0 / 0
bfuzz (IotCube) L2CAP Random / Test database 1 / 0 0 / 0
Our Fuzzer LL / L2CAP / SMP / ATT Evolutionary 1 / 2 10 / 7

dant packets in the BLE connection, but not by “Mutation”
through sending malformed packets.
RQ4: How effective is our fuzzer compared to existing
BLE fuzzing tools?

We compare the competitiveness of our fuzzer by eval-
uating it against publicly available tools, including Stack
Smasher, BLEFuzz, and bfuzz that most closely match the
objective of our fuzzer. We note that handcrafted efforts
were required to apply these tools. Firstly, bfuzz and Stack
Smasher demand modifications so that they can send mal-
formed packets through our BLE controller. Secondly, both
bfuzz and Stack Smasher were primarily developed for
Bluetooth Classic implementations supporting only a few
protocols like L2CAP and ATT. Therefore, they also require
adjustments for fuzzing L2CAP and ATT layers in BLE im-
plementations. Finally, BLEFuzz is the only tool that supports
fuzzing BLE implementations. Table 5 summarizes the com-
parison between our fuzzer and the three chosen competitors.

For a fair comparison, we run our fuzzer and all the com-
petitors for the same duration (≈ three hours). As shown
in Table 5, WB55 and BlueNRG-2 are the only two SoCs for
which the competitors discover crashes (third column in Ta-
ble 5). Specifically, BLEFuzz and bfuzz discovered only V8.
For all other SoCs (cf. the “Others" column in Table 5), none
of the competitors found either vulnerabilities or other anoma-
lies. In a nutshell, our fuzzer significantly outperforms all
competitors, as exemplified in Table 5. The reason is twofold.
Firstly, our fuzzer comprehensively models the BLE stack,
e.g., it includes modeling and fuzzing SMP and LL protocols,
which are not handled by other fuzzers. Secondly, none of the
competitors employ an optimization to refine mutation prob-
abilities or send redundant packets. As shown by Figure 9,
these features are critical for fuzzing effectiveness.

It is worthwhile to mention that a comparison with the
aforementioned tools requires the usage of our non-compliant
BLE controller (cf. Section 3.3). This approach is justifiable,
as currently there is no accessible BLE fuzzing alternative
with the same level of control and flexibility as provided by
our non-compliant BLE controller. Finally, our comparison
did not include traditional fuzzers such as AFL [44] due to
their reliance in code coverage. Such a metric is often diffi-
cult to obtain in the context of over-the-air-fuzzing, as com-
mercial BLE stacks are undisclosed. Furthermore, traditional
fuzzers (e.g. AFL) lack the capability to generate a specific
sequence of messages with strict timing constraints. To extend
traditional fuzzers with such capabilities requires significant
changes to the underlying fuzzing engine. Nevertheless, we

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

a) Fuzzing Iterations in TI CC2640

Mutation Redundancy Evolution

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

b) Fuzzing Iterations in Telink

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

c) Fuzzing Iterations in WB55

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

f) Fuzzing Iterations in PSoC 6

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

e) Fuzzing Iterations in NXP KW41Z

 0

 1

 2

 3

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

f) Fuzzing Iterations in PSoC 6

 0

 1

 2

 3

 0 100 200 300 400 500 600 700 800 900 1000

A
n

o
m

al
y

co
u

n
t

g) Fuzzing Iterations in DA14680

Figure 9: Fuzzing effectiveness w.r.t. design components

Table 6: Products verified to be vulnerable
Product Category BLE SoC Vulnerability Impact

Eve Energy Smart Home
August Smart Lock Smart Home DA14680 V3 Crash

Fitbit Inspire Wearables CY8C68237 V1,V2 Crash
CubiTag Gadget Tracking CC2640R2 V5 Deadlock
eGeeTouch TSA Lock Security CC2540 V7 Deadlock

envision that even a loose adaptation of traditional fuzzers
would yield results similar to Table 5, as anomalies other than
crashes cannot be detected out of the box.
Case Studies on IoT Products: The exploitation of SWEYN-
TOOTH vulnerabilities, as summarized in Table 2, offers dan-
gerous attack vectors against many IoT products. An investi-
gation of certified products on the Bluetooth Listing site [40]
reveals that SWEYNTOOTH is likely to affect ≈480 IoT prod-
ucts using the vulnerable SoCs from Table 3. These products
are mainly applied in Smart Home, Fitness, Entertainment
and Consumer Electronics. To raise awareness of the threats
and risks of potentially vulnerable products available on the
market, we performed attacks on some representative IoT
products that use the affected SoCs and recorded our obser-
vations. Some salient features of these products are outlined
in Table 6. In Table 6, we also indicate the BLE SoC used by
each product and the vulnerabilities discovered in these SoCs
by our fuzzer. We choose these products for their prevalence
in the relevant application domains, e.g., Smart Home.

To exploit SWEYNTOOTH on an IoT product, we launch
an attack code that captures the exact sequence of packet
exchanges in the respective SWEYNTOOTH vulnerability. One
such example is an attack code for vulnerability V5 (found in
CC2640R2) on CubiTag. Next, we describe, for each chosen
IoT product, the impact of the launched attack code.

When attacking Fitbit Inspire, the smartwatch freezes
its screen and immediately restarts when the Link Layer Over-
flow (V1) is attempted. By contrast, LLID Deadlock stops Fit-
bit advertisements for several seconds before the smartwatch
abruptly restarts. Similarly, when Silent Buffer Overflow is ex-
ploited on both Eve Energy and August Smart Lock, users
can immediately experience their smart things being restarted
(e.g., via a beep sound in the smart lock and switching off
the light attached to the Eve Energy plug). This is especially
crucial for Eve System products, as the company relies almost
entirely on the vulnerable DA14680. As for CubiTag, the
attack exploiting Public Key Crash (V5) immediately stops
the tracker to advertise and puts it in deadlock. Only a man-
ual restart by opening CubiTag (e.g., via a screwdriver) and
re-attaching its battery brings CubiTag back to a working
state. Finally, when the Invalid connection request (V7) is ex-
ploited on eGeeTouch TSA Lock, it hangs and the user needs
to manually press the power on button for further interaction.

5 Related Work

Security is critical for IoT devices [7]. Existing Bluetooth
vulnerabilities, such as Blueborne [34], BleedingBit [15] and

KNOB [1], allow unauthorized remote access or remote code
execution. They mostly require tedious manual effort (e.g., re-
verse engineering and inspecting code) and careful inspection
of the protocol standard. By contrast, we provide a system-
atic and automated approach to discover BLE implementation
flaws in any BLE device.

Existing works based on static analysis or verification tech-
nologies [14, 25, 27, 42] either suffer from false positives or
are incapable to generate concrete packet sequences to trigger
communication in real devices. An existing test generation
approach targeting network protocol implementations [30]
require access to the implementation code. Although a re-
cent work packetdrill [5] provides a testing framework of
the entire TCP/UDP/IP network stack, it lacks support for
automated test packet generation. Similarly, Jero et al. [16]
devised a technique to search a reduced state-space for suit-
able attack injection in stateful protocol implementations, but
does not employ a comprehensive and directed approach for
fuzzing packets. Furthermore, our validation strategy, being
employed directly at the central, differs from passive wireless
validation [35] that requires a sniffer. Finally, none of the
aforementioned works set foot in Bluetooth.

Directed fuzzing is a prevalent software testing strat-
egy [4, 17, 19, 21, 29, 43], yet faces significant challenges
in the context of over-the-air fuzzing. Firstly, vulnerabilities
in wireless protocol implementation often appear with a se-
quence of packets being injected even with strict time con-
straints. Traditional stateless fuzzers such as AFL [44] are
mostly suitable for single input leading to vulnerabilities. Sec-
ondly, most of the commercial wireless protocol stacks are
undisclosed. Thus, it is often not possible to have a grey-
box (e.g. based on code coverage) or whitebox approach (e.g.
based on symbolic execution) for wireless security testing.
Thirdly, wireless protocols often exhibit stochastic behaviour,
packet drops and packet retransmissions due to the inherent
nature of the wireless medium. This introduces additional
complexity in security testing, especially in terms of distin-
guishing normal and abnormal behaviour. Fourthly, wireless
protocol stacks often impose isolation between link layer and
host layer protocols. A comprehensive security testing should
break such isolation to find zero day vulnerabilities. Finally,
detecting critical security issues in a wireless implementation,
such as security bypass, requires significant changes to the
underlying vulnerability detection logic of traditional fuzzers.

Emulation-based fuzzing [13] can obtain coverage informa-
tion directly from the firmware and is faster than over-the-air
fuzzing [26]. Nonetheless, such approaches require extensive
reverse engineering of the firmware (if accessible at all) for a
substantial number of wireless devices. For example, Franken-
stein [20] is an emulation-based fuzzing approach that works
with only specific Cypress/Broadcom firmware and demands
significant engineering effort to handle other devices.

Previous works in Bluetooth fuzzing [3, 9, 18] support only
L2CAP and ATT layers and do not employ test optimiza-

tion for fuzzing effectiveness. InternalBlue [24] investigates
the lower level of Bluetooth implementation and allows BLE
packet sniffing and injection. However, InternalBlue can work
only after the peripheral is connected and the number of acces-
sible fields in a packet is limited. Our fuzzing framework, by
contrast, allows packets injection, fuzzing and sniffing directly
from the host and during the BLE connection process.

Our work is orthogonal to several works on network proto-
col testing [2, 12, 28] that target text structured protocols e.g.
ftp and http, yet they ignore wireless protocols including
BLE. A recent work [8] targets the discovery of memory cor-
ruptions in IoT devices by fuzzing the mobile app through
which the device is accessible. Our work neither intends to
fuzz the application layer nor relies on the availability of a
mobile app. Moreover, by design of our validation compo-
nent, our fuzzer can discover security vulnerabilities beyond
memory corruptions e.g. security bypass.

In summary, our work is the first comprehensive approach
to systematically and automatically fuzz arbitrary BLE pro-
tocol implementations. Also, this is accomplished without
changing anything in the OS/firmware of tested device.

6 Conclusion

This paper presents a systematic and automated framework for
fuzzing arbitrary BLE implementations. This is engineered
with the aim to discover implementation behaviours that de-
viate from Bluetooth Core Specification. The efficacy of this
framework is exemplified via the discovery of 11 new se-
curity vulnerabilities, named SWEYNTOOTH, across seven
BLE SoCs. Moreover, we exploit several SWEYNTOOTH vul-
nerabilities on popular IoT products used as wearable, smart
home products and logistic tracking, among others. This fur-
ther shows the danger and criticality of SWEYNTOOTH vul-
nerabilities, potentially affecting a few hundred types of IoT
products. Our fuzzer shares the limitation of any framework
based on testing. This means, our fuzzer does not guarantee
the security of a BLE device even if it fails to discover any
anomalous behaviour.

SWEYNTOOTH highlights concrete flaws in the BLE stack
certification process. We hope that our work provides an op-
portunity for further research in the area and initiates tech-
nologies to harden and secure current and next-generation
wireless protocol implementations. For reproducibility and
research, the fuzzer source code is available upon request to
sweyntooth@gmail.com. All exploits are publicly available
in the following URL:

https://github.com/Matheus-Garbelini/sweyntooth_
bluetooth_low_energy_attacks

Acknowledgement: We thank the anonymous reviewers and
our shepherd Kevin Butler for their insightful comments. This
work is partially supported by Keysight Technologies grant
no. RTKS171003.

sweyntooth@gmail.com
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks

References

[1] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B.
Rasmussen. The KNOB is broken: Exploiting low
entropy in the encryption key negotiation of Blue-
tooth BR/EDR. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1047–1061, Santa Clara,
CA, August 2019. USENIX Association.

[2] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin
Almeroth, Richard Kemmerer, and Giovanni Vigna.
SNOOZE: Toward a stateful network protocol fuzzer.
In Sokratis K. Katsikas, Javier López, Michael Backes,
Stefanos Gritzalis, and Bart Preneel, editors, Informa-
tion Security, pages 343–358, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[3] Pierre Betouin. Bluetooth stack smasher version 0.6.
http://www.secuobs.com/news/05022006-bluetooth10.
shtml, May 2006.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16,
pages 1032–1043, New York, NY, USA, 2016. ACM.

[5] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo,
Matt Mathis, Barath Raghavan, Nandita Dukkipati,
Hsiao keng Jerry Chu, Andreas Terzis, and Tom Herbert.
packetdrill: Scriptable network stack testing, from sock-
ets to packets. In Presented as part of the 2013 USENIX
Annual Technical Conference (USENIX ATC 13), pages
213–218, San Jose, CA, 2013. USENIX.

[6] Damien Cauquil. Btlejuice: The Bluetooth smart MITM
framework. DEFCON 24, 2016. https://github.com/
DigitalSecurity/btlejuice.

[7] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Sote-
ria: Automated IoT safety and security analysis. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 147–158, Boston, MA, July 2018. USENIX
Association.

[8] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,
Menghan Sun, Ronghai Yang, and Kehuan Zhang. IoT-
Fuzzer: Discovering memory corruptions in IoT through
app-based fuzzing. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 2018.

[9] Hou-Fu Cheng and Yu-Qing Zhang. Bluetooth OBEX
vulnerability discovery technique based on fuzzing.
Computer Engineering, 34(19):151–153, 2008.

[10] Pagmo development team. Pagmo & Pygmo. https:
//esa.github.io/pagmo2/, 2019.

[11] Gianluigi Me. Exploiting buffer overflows over Blue-
tooth: the BluePass tool. In Second IFIP International
Conference on Wireless and Optical Communications
Networks, 2005. WOCN 2005., pages 66–70, March
2005.

[12] Serge Gorbunov and Arnold Rosenbloom. AutoFuzz:
Automated network protocol fuzzing framework. IJC-
SNS, 10(8):239, 2010.

[13] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye,
Koushik Sen, Michael Grace, et al. PARTEMU: En-
abling dynamic analysis of real-world trustzone soft-
ware using emulation. In 29th USENIX Security Sympo-
sium (USENIX Security 20), Boston, MA, August 2020.
USENIX Association.

[14] Endadul Hoque, Omar Chowdhury, Sze Yiu Chau,
Cristina Nita-Rotaru, and Ninghui Li. Analyzing oper-
ational behavior of stateful protocol implementations
for detecting semantic bugs. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 627–638, June
2017.

[15] Armis Inc. Bleedingbit vulnerability. https://armis.com/
bleedingbit/, 2018.

[16] Samuel Jero, Hyojeong Lee, and Cristina Nita-Rotaru.
Leveraging state information for automated attack dis-
covery in transport protocol implementations. In 2015
45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 1–12, June
2015.

[17] Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain,
Omar Chowdhury, and Elisa Bertino. Opening pandora’s
box through atfuzzer: dynamic analysis of at interface
for android smartphones. In Proceedings of the 35th An-
nual Computer Security Applications Conference, pages
529–543, 2019.

[18] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo
Oh. Poster: Iotcube: an automated analysis platform for
finding security vulnerabilities. In Symposium on Poster
presented at Security and Privacy (SP). IEEE, 2017.

[19] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungy-
oung Lee, Youngtae Yun, and Taesoo Kim. CAB-Fuzz:
Practical concolic testing techniques for COTS operat-
ing systems. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 689–701, Santa Clara,
CA, July 2017. USENIX Association.

http://www.secuobs.com/news/05022006-bluetooth10.shtml
http://www.secuobs.com/news/05022006-bluetooth10.shtml
https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://esa.github.io/pagmo2/
https://esa.github.io/pagmo2/
https://armis.com/bleedingbit/
https://armis.com/bleedingbit/

[20] Secure Mobile Networking Lab. Broadcom and Cypress
firmware emulation for fuzzing and further full-stack
debugging. https://github.com/seemoo-lab/frankenstein,
2020.

[21] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a
survey. Cybersecurity, 1(1):6, 2018.

[22] LitePoint. Practical manufacturing testing of
bluetooth R© wireless devices. https://mcs-testequipment.
com/resources/Datasheets_Downloads/Litepoint/
Practical-Testing-of-Bluetooth-Devices_WhitePaper.
pdf, 2012.

[23] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949–
1966, Santa Clara, CA, August 2019. USENIX Associa-
tion.

[24] Dennis Mantz, Jiska Classen, Matthias Schulz, and
Matthias Hollick. InternalBlue - Bluetooth binary patch-
ing and experimentation framework. In Proceedings
of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’19, pages
79–90, New York, NY, USA, 2019. ACM.

[25] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The tamarin prover for the symbolic analy-
sis of security protocols. In Natasha Sharygina and Hel-
mut Veith, editors, Computer Aided Verification, pages
696–701, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[26] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien
Francillon, and Davide Balzarotti. What you corrupt is
not what you crash: Challenges in fuzzing embedded
devices. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018. The Internet Society, 2018.

[27] Madanlal Musuvathi and Dawson R. Engler. Model
checking large network protocol implementations. In
Proceedings of the 1st Conference on Symposium on Net-
worked Systems Design and Implementation - Volume 1,
NSDI’04, page 12, USA, 2004. USENIX Association.

[28] Joshua Pereyda. boofuzz: Network protocol fuzzing
for humans. https://github.com/jtpereyda/boofuzz, April
2017.

[29] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. Model-based whitebox fuzzing for program bi-
naries. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE 2016, page 543–553, New York, NY, USA, 2016.
Association for Computing Machinery.

[30] JaeSeung Song ; Cristian Cadar ; Peter Pietzuch. Sym-
bexNet: Testing network protocol implementations with
symbolic execution and rule-based specifications. IEEE
Transactions on Software Engineering, 40(7):695–709,
July 2014.

[31] NCC Group Plc. BLESuite libirary. https://github.com/
nccgroup/BLESuite, 2019.

[32] Riccardo Poli, James Kennedy, and Tim Blackwell. Par-
ticle swarm optimization. Swarm Intelligence, 1(1):33–
57, Jun 2007.

[33] Rohith Raj S, Rohith R, Minal Moharir, and Shobha G.
SCAPY- a powerful interactive packet manipulation pro-
gram. In 2018 International Conference on Networking,
Embedded and Wireless Systems (ICNEWS), pages 1–5,
Dec 2018.

[34] Ben Seri and Alon Livne. Exploiting blueborne in
Linux-based IoT devices. https://go.armis.com/hubfs/
ExploitingBlueBorneLinuxBasedIoTDevices.pdf, 2019.
Armis, Inc.

[35] Jinghao Shi, Shuvendu K Lahiri, Ranveer Chandra, and
Geoffrey Challen. Wireless protocol validation under
uncertainty. Formal methods in system design, 53(1):33–
53, 2018.

[36] Bluetooth SIG. Bluetooth Core Specification v4.0,
June 2010. https://www.bluetooth.com/specifications/
bluetooth-core-specification.

[37] Bluetooth SIG. Bluetooth Core Specification
v4.2, December 2014. https://www.bluetooth.com/
specifications/bluetooth-core-specification.

[38] Bluetooth SIG. Bluetooth Core Specification
v5.0, December 2016. https://www.bluetooth.com/
specifications/bluetooth-core-specification.

[39] Bluetooth SIG. Bluetooth certification guideline:
Qualify your product. https://www.bluetooth.com/
develop-with-bluetooth/qualification-listing/, 2019.

[40] Bluetooth SIG. View previously qualified designs and
declared products, January 2020. https://launchstudio.
bluetooth.com/Listings/Search.

[41] Agilent Technologies. Bluetooth R© manufacturing test:
A guide to getting started. https://testunlimited.com/pdf/
an/5988-5412EN.pdf, 2006. Application Note 1333-4.

[42] Octavian Udrea, Cristian Lumezanu, and Jeffrey S Fos-
ter. Rule-based static analysis of network protocol im-
plementations. Information and Computation, 206(2-
4):130–157, 2008.

https://github.com/seemoo-lab/frankenstein
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://mcs-testequipment.com/resources/Datasheets_Downloads/Litepoint/Practical-Testing-of-Bluetooth-Devices_WhitePaper.pdf
https://github.com/jtpereyda/boofuzz
https://github.com/nccgroup/BLESuite
https://github.com/nccgroup/BLESuite
https://go.armis.com/hubfs/ExploitingBlueBorneLinuxBasedIoTDevices.pdf
https://go.armis.com/hubfs/ExploitingBlueBorneLinuxBasedIoTDevices.pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://launchstudio.bluetooth.com/Listings/Search
https://launchstudio.bluetooth.com/Listings/Search
https://testunlimited.com/pdf/an/5988-5412EN.pdf
https://testunlimited.com/pdf/an/5988-5412EN.pdf

[43] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Supe-
rion: Grammar-aware greybox fuzzing. In Proceedings
of the 41st International Conference on Software Engi-
neering, ICSE ’19, page 724–735. IEEE Press, 2019.

[44] Michal Zalewski. American fuzzy lop. https://github.
com/google/AFL, April 2017.

https://github.com/google/AFL
https://github.com/google/AFL

	Introduction
	Overview of Our Framework
	The Model of BLE Protocols
	Problem Formulation with An Example
	High Level Workflow

	Design of Fuzzer
	Fuzzing and Optimization
	Packet Validation
	Non-compliant BLE Controller

	Evaluation
	Related Work
	Conclusion

