
Journal of Systems Architecture 127 (2022) 102518

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Symbolic identification of shared memory based bank conflicts for GPUs
Adrian Horga a,∗, Ahmed Rezine a, Sudipta Chattopadhyay b, Petru Eles a, Zebo Peng a

a Linköping University, Sweden
b Singapore University of Tech. and Design, Singapore

A R T I C L E I N F O

Keywords:
GPU
Shared memory
Formal verification
Performance evaluation
Software security

A B S T R A C T

Graphic processing units (GPUs) are routinely used for general purpose computations to improve performance.
To achieve the sought performance gains, care must be invested in fine tuning the way GPU programs interact
with the underlying architecture, accounting for the shared memory bank conflicts and the entailed shared
memory transactions. Uncovering inputs leading to particular bank conflicts can turn out to be quite hard
given the intricacy of the access patterns and their dependence on the inputs. We propose a symbolic execution
based framework to systematically uncover shared memory bank conflicts, to propose inputs to realize a given
number of shared memory transactions, and to refute the existence of such inputs if the number of shared
memory transactions is impossible to achieve during the execution. This allows programmers to more formally
reason about the shared memory conflicts and to validate their impact on performance and security. We
have implemented our approach and report on our experiments to explore its usefulness towards performance
enhancement and quantifying shared memory side-channel leakage in security applications.
1. Introduction

Graphic processing units (GPUs) are routinely used for parallel
general purpose applications as they can leverage on the possibility
to run programs on a large number of cores sharing several levels of
memory. Cores in modern GPUs are less complex and slower than those
found in modern CPUs. However, their sheer number and the possibility
they have to efficiently switch among threads and to share data allows
them to trade latency for throughput and to outperform modern CPUs
on suitable applications.

Programming these platforms requires to fine tune the way data is
partitioned, transferred and accessed by the large number of identical
program instances. In particular, the way the GPU’s shared memory is
accessed can have an important impact on performance. Shared mem-
ory is partitioned into regions (so called banks) that can be separately
and simultaneously accessed. Simultaneous accesses (so called bank
conflicts) to the same bank have to be sequentialized into shared mem-
ory transactions yielding an important performance penalty. Works
in [1–3] show that shared memory bank conflicts can have a direct
impact on program performance through increased latency. The results
in [2] show that, after a certain threshold, the shared memory bank
conflicts require a latency beyond even the latency of reading directly
from the GPU’s global memory.

Traditionally, GPUs were used for graphical applications where
shared memory was accessed according to fixed patterns that did not

∗ Corresponding author.
E-mail addresses: adrian.horga@liu.se (A. Horga), ahmed.rezine@liu.se (A. Rezine), sudipta_chattopadhyay@sutd.edu.sg (S. Chattopadhyay),

petru.eles@liu.se (P. Eles), zebo.peng@liu.se (Z. Peng).

depend on the inputs. For such applications, it was enough to run the
program on some arbitrary valid input to deduce the patterns and to
fine tune the shared memory access to avoid bank conflicts. This is not
anymore the case in modern applications of GPU platforms as they are
being adopted for general purpose applications ranging from financial
optimization [4] to security [5,6], and from graph manipulation [7,8]
to machine learning [9–11]. Running GPU programs on concrete input
values, which can consist of large arrays, to profile the way shared
memory is accessed is not viable. For such programs, several shared
memory access patterns may turn out to be very hard to uncover and
their significant impact on performance will likely remain unnoticed
during testing.

We propose a framework to systematically uncover inputs resulting
in given shared memory access patterns. This framework allows us
to ensure the absence of, or to produce, concrete inputs that lead
to a given number of shared memory transactions resulting from the
underlying bank conflicts. For this, we propose to augment symbolic
execution for GPU programs to reason about the possibilities of shared
memory bank conflicts and the patterns in which shared memory is
accessed. The idea is to encode conflicts between simultaneous accesses
to shared memory and to leverage on existing Satisfiability Modulo
Theories (SMT) solvers to establish impossibility of the conflicts or to
propose concrete inputs that will lead to such conflicts. We propose
vailable online 20 April 2022
383-7621/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2022.102518
Received 15 October 2021; Received in revised form 14 April 2022; Accepted 15 A
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

pril 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:adrian.horga@liu.se
mailto:ahmed.rezine@liu.se
mailto:sudipta_chattopadhyay@sutd.edu.sg
mailto:petru.eles@liu.se
mailto:zebo.peng@liu.se
https://doi.org/10.1016/j.sysarc.2022.102518
https://doi.org/10.1016/j.sysarc.2022.102518
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102518&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

o
g
e
t
b
t
p
t
u

p
p
G
a
o
w
a
i
t
w

s
s
c
b
F
b
p
t
t

two feasible encodings: (1) a direct encoding that completely delegates
the check to the underlying SMT solver and (2) an on-demand and
incremental encoding that allows us to direct the search for feasibility
and to cache intermediary results. We have implemented the approach
on top of the CUDA [12] symbolic execution tool GKLEE [13]. We have
tested our approach in the context of two important applications: per-
formance evaluation and security analysis. For performance evaluation,
we were able to deduce inputs that exhibit the best or worst numbers
of shared memory transactions. We have also tested these inputs and
validated the results on a real platform. For security analysis, we could
leverage our approach on the possibility to refute the existence of inputs
resulting in given shared memory conflicts. This allows us to establish
bounds on the amount of information leaked by bank conflicts in GPU
implementations of cryptographic algorithms.

To summarize, the contributions of this work are:

• We augment the symbolic execution for GPU programs with the
possibility to establish, or refute, the possibility of shared memory
bank conflicts.

• We propose and test three approaches to symbolically encode
feasibility of numbers of shared memory transactions.

• We report on our experiments to systematically uncover possible
bank conflicts for GPU programs and on our validation on a real
GPU platform.

• We report on our experiments to establish bounds on the amount
of information leaked by bank conflicts for two GPU-
implementations of the AES cryptographic algorithm.

Shared memory is a central component of most modern GPU plat-
forms. Leveraging on it to speed up memory accesses opens the possibil-
ity of bank conflicts and varying numbers of entailed shared memory
transactions. Our contributions are valid for any modern GPU with a
shared memory.

Our implementation and all experimental data are publicly available
here: https://bitbucket.org/AdrianHorga/gpu_symbolicbankconflicts.

Related work. Shared memory bank conflicts have an important impact
n latency and performance of GPU programs [1–3]. Typically, pro-
rammers use profilers [14,15] to track bank conflicts during concrete
xecutions. Importantly, this only explores the behavior corresponding
o a single concrete input and, therefore, only a tiny portion of the
ehavior of programs where shared memory accesses do depend on
he input. This is not acceptable for a large class of applications where
erformance and/or security matters, including real-time [16,17], con-
rol [18] or cryptographic applications [5,6]. With the widespread
sage of GPU platforms this limitation becomes more acute.

Work has been done on estimating program performance on GPU
latforms [19–23]. The works in [19,20] approximately model the
erformance of GPU architecture. Other approaches on estimating
PU performance include machine-learning-based methods [21,22]
nd measurement-based methods [23]. In contrast to these works,
ur work has a significant testing flavor. For example, unlike the
orks focusing on empirical performance modeling, we can generate
concrete input that leads to a number of shared memory transactions

nduced by the underlying bank conflicts. We can also guarantee,
hrough the leverage on symbolic execution and SMT solvers, that a
orst case performance path is possible.

Symbolic execution explores one control path at a time. Following
uch a path, pairs of memory accesses in the same warp and at the
ame instruction can be compared to identify the possibility of a bank
onflict. The exploration is however directed by the control path, not
y the bank conflicts and the resulting shared memory transactions.
or instance, the work in [13] only reports on the possibility of a
ank conflict between two synchronization barriers. It does not explore
ossible simultaneous bank conflicts and resulting memory transac-
ions. Simply answering whether there are bank conflicts at all between
wo barriers is not enough to explore or refute the possibility of bank
2

conflicts leading to given numbers of shared memory transactions. The
work in [24] also checks the possibility of a bank conflict due to
shared memory accesses performed by an arbitrary pair of threads.
For this, a path condition for one thread is duplicated to represent
the path condition of a second thread in the same warp. This can
be challenging due to branch divergence. In addition, the work only
attempts to answer whether some bank conflict is present. It does not
deduce the resulting number of shared memory transactions. Further-
more, the results (presence of bank conflicts) are not validated on a
real GPU platform. All other applications of formal methods to GPU
programs that we are aware of target checking race conditions, branch
divergence or assertion violations. For instance the work in [25]
analyzes arbitrary pairs using an over-approximation that havocs the
shared state while the work in [26] adopts an under-approximation
of the number of context switches. The work in [27] adapts permis-
sion based reasoning and requires annotation. The annotations are
then validated to establish freedom from race conditions or assertion
violation. Recently, the LLVM based static analysis proposed in [28]
targets the problem of identifying uncoalesced memory accesses. This
is a related, but different, problem from identifying shared memory
bank conflicts and the resulting number of shared memory transactions.
Our approach leverages on symbolic execution but focuses on tracking
and checking the possibility of bank conflicts and the resulting shared
memory transactions. In addition, if the targeted number of memory
transactions is possible, our approach can supply a witness.

In [29], shared memory is proven to be a possible side channel
for GPU cryptographic implementations. The work has since been
expanded [30] to test multiple NVIDIA GPU generations. We aim
to quantify the security impact of such a side channel through our
approach. Work exists on quantifying side-channel leakage via cache
behaviors for CPU implementations [31–34]. Shared memory in a GPU
is a user controlled memory, as opposed to the cache. The specific
behavior of shared memory compared to cache behavior requires a
different modeling approach. Furthermore, the existence of multiple
threads running in lockstep (in a warp) and in parallel during GPU
program execution introduces further complexity in creating such a
model when compared to cache models.

Our previous work [35] has targeted such a side channel through
the use of genetic-algorithm-powered test input generation. Our current
approach to expose the side channel differs from our previous work in
several ways. First, by using a white box testing approach as opposed
to a black box testing approach. Second, by leveraging the power
of a symbolic execution tool and SMT solvers as opposed to genetic
algorithms for generating test inputs. The third and most important
difference in approaches is that the current approach can provide a
more precise input selection and pruning method. This difference is
important since it can help to prove whether certain bytes of a key
can/cannot ever produce a targeted number of shared memory bank
conflicts.

To the best of our knowledge, our work provides the first sym-
bolic approach allowing to formally reason about feasibility of shared
memory bank conflicts and the entailed shared memory transactions.

2. Background

We introduce in the following the execution model for programs
running on CUDA [12] enabled Graphical Processing Units (GPUs),1
describe the adopted symbolic execution model for such programs and
briefly introduce how our work builds on solvers for SMT (satisfiability
modulo theories) problems.

Execution model and shared memory. A kernel is a routine meant to
execute on a GPU by a specified number of threads. Each thread is

1 Our models could be equally applicable for OpenCL applications.

https://bitbucket.org/AdrianHorga/gpu_symbolicbankconflicts

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.
Fig. 1. Example on how 𝚕𝚒𝚗𝚎𝚜 are extracted from the symbolic execution of a kernel code. We assume that three active warps, each with 32 threads, execute the code snippet
shown. The third warp, 𝚆𝚊𝚛𝚙 𝟸, does not enter the branch statement, therefore no lines are extracted for it.
identified using a unique identifier. Threads are grouped into thread
blocks. There is an upper bound (usually 1024) on the maximum
number of threads in each thread block. In the same thread block,
the threads are further grouped into warps. Threads in a single warp
execute each instruction in lockstep. Threads in a warp may diverge in
case they follow different branches of a condition. In such a case, only
a subset of the threads inside a warp may be active.

A GPU contains several streaming multiprocessors. Each streaming
multiprocessor contains multiple computation cores. Each computation
core can run a single warp at a time. Every streaming multiprocessor
comes with a scratchpad memory (more than 48 KiBs on current plat-
forms) that can be shared among the threads running on the streaming
multiprocessor. This scratchpad memory is referred to as shared memory
in CUDA [12] enabled GPUs.2 Access to the shared memory is orders of
magnitude faster than the access to the global memory of the GPU. The
shared memory is controlled by the user. When starting a kernel, the
user needs to specify how much shared memory the kernel will need
or declare all the shared memory variables as static.

Each thread in a thread block is guaranteed to run on the same
streaming multiprocessor and has access to the same shared memory.
Such a thread can only synchronize with threads in the same thread
block. Based on the requirements of shared memory, registers and
synchronization barriers, the GPU scheduler is free to schedule multiple
thread blocks on the same streaming multiprocessor. The actual limits,
such as the number of threads per thread block or the number of
streaming multiprocessors and computing cores, are dependent on the
compute capability of the underlying GPU.

Symbolic execution for GPU programs. Conceptually, symbolic execution
assumes symbolic values for program inputs and collects constraints on
such values along the explored paths yielding a symbolic trace for each
path. The symbolic trace accounts for encountered branches and up-
dates along the explored path. It adds conditions on existing variables
(for encountered branches) and on relations between new and existing
variables’ values (for encountered updates). Obtained constraints can
then be solved by a suitable Satisfiability Modulo Theories (SMT) solver
to obtain a concrete model (see later in this section) from which it is
easy to extract a concrete program input that triggers the considered
path.

We focus in this work on analyzing warp accesses to shared memory
in GPU programs. For this, we build on existing works on symbolic

2 Called local memory in OpenCL.
3

execution for GPU programs [13]. Such works assume a data-race-
free GPU program as input and can give, for each program path, a
symbolic trace where conditions and updates corresponding to each
warp instruction can be captured in terms of symbolic variables. Given
such a symbolic trace, we focus on the shared memory accesses and
regard such a trace as a sequence of ‘‘lines’’ : 𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛
where each 𝚕𝚒𝚗𝚎𝑖 reflects accesses to shared memory performed during
a memory instruction in lockstep by some threads of a warp. Each
line, 𝚕𝚒𝚗𝚎𝑖, is effectively a list of addresses (symbolic or concrete) that
each active thread of the warp accesses through the memory instruction
(i.e., 𝚕𝚒𝚗𝚎𝑖 = (𝑎𝑑𝑑𝑟0𝑖 , 𝑎𝑑𝑑𝑟

1
𝑖 ,… , 𝑎𝑑𝑑𝑟𝑚−1𝑖)) We write 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) to

mean the set of thread identifiers that perform the shared memory
access at 𝚕𝚒𝚗𝚎𝑖 and 𝚝𝚊𝚛𝚐𝚎𝚝𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) to mean the array in shared
memory that might be accessed at 𝚕𝚒𝚗𝚎𝑖. Due to warp divergence,
this set of threads can be a strict subset of the total set of threads
of the warp (warps are typically 32 threads large) that performed the
memory instruction. Given a line 𝚕𝚒𝚗𝚎𝑖 and a thread identifier 𝚝𝚒𝚍

in 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖), we write 𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍] to mean the value of the
shared memory address accessed by the thread 𝚝𝚒𝚍. This value is in
𝚝𝚊𝚛𝚐𝚎𝚝𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) by definition. Symbolically executing the paths means
values and addresses may be expressed symbolically in terms of the
inputs to the kernel.

Fig. 1 describes how extracted 𝚕𝚒𝚗𝚎𝚜 are related to the shared
memory accesses during execution of a kernel code. In this work,
we only associate lines to shared memory accesses. We assume three
warps, each with 32 threads, will execute the code snippet in the
figure. We can see from Fig. 1 that the third warp, 𝚆𝚊𝚛𝚙 𝟸, does not
execute the branch instructions due to having the threads with an
ID higher than 47. For the same reason, only half the threads of the
second warp, 𝚆𝚊𝚛𝚙 𝟷, are active during the execution of the branch
statements. Furthermore, in Fig. 1, we can see the concrete values that
𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) and 𝚝𝚊𝚛𝚐𝚎𝚝𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) contain.

Solvers for SMT (satisfiability modulo theories) problems. SMT solvers
can check the satisfiability of first-order logic formulas involving pred-
icate and function symbols that are to be interpreted in some back-
ground theories [36]. Examples of background theories include lin-
ear integer arithmetic, linear real arithmetic, bitvectors, uninterpreted
functions, arrays or strings. The formulas are typically quantifier-free.
Recent advances resulted in more powerful and more scalable solvers
that became key enablers in several research and industrial applica-
tions, including testing, verification, scheduling and artificial intel-
ligence. In this work, SMT solvers are used to solve quantifier-free

constraints involving uninterpreted functions, bitvectors and arrays

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

(
s
c
v
b
s
c
a
c
b
Q
o
s
A
s
f

3

p
w
p
i
o

A
e
1
r
t
a
t
p
a
o
a
f

a
g
6

Fig. 2. A simple constraint involving bitvectors and a bitvector array.
i.e., the QF_AUFBVA combination of background theories). For in-
tance, Fig. 2 defines a constraint in the SMT2LIB [37] format. The
onstraint involves a byte-indexed array input of bytes and two values
al0 and val1 respectively representing the first and the second
ytes of the array input. The constraint requires that val0 is strictly
maller than val1 and that their difference is a multiple of 32. Such
onstraints can arise, for instance, during symbolic execution where

path requires that val0 is strictly smaller than val1, or when
hecking for the possibility that the values can be used as indices for
ank conflicting shared memory accesses. An SMT solver that handles
F_AUFBV formulas can answer whether such a constraint is satisfiable
r not. If it is, the solver can return a model, i.e., a valuation that
atisfies the constraint and that associates a value to each free variable.
n off-the-shelf SMT solver can show the above constraint is indeed
atisfiable and might give a model where the first byte of input is,
or example, 35 and the second one is 67.

. Identifying bank conflicts in a simple example

We use the simple kernel program of Listing 1 to illustrate the
roblem we solve in this work and how we tackle it. The goal of the
ork is to exhibit, or to refute, the existence of an input to a kernel
rogram that results in a given number of shared memory transactions
nduced by the resulting bank conflicts. A more detailed description of
ur symbolic approach can be found in Section 4.

simple example. To simplify the discussion, assume the size SIZE of
ach of the three argument arrays vector, filter and output is
024. In addition, assume all values in the vector array are in the
ange [𝟶…(𝚂𝙸𝚉𝙴 − 𝟷)] and that the kernel is launched with as many
hreads as the size of the input arrays (i.e., SIZE). These assumptions
re solely adopted in this section for simplification purposes. With 1024
hreads in a thread block and 32 threads per warp, the execution of the
rogram results in 32 warps. These threads fit in a single thread block
nd can access the same shared memory (see Section 2). The number
f threads per block and per warp is a consequence of the underlying
rchitecture and of the compute capability and our analysis accounts
or them.

1 #def ine SIZE 1024
2
3 _ _ g l o b a l _ _ void simple (i n t∗ vector , i n t∗ f i l t e r , i n t∗ output) {
4 _ _ s h a r e d _ _ i n t s h a r e d _ f i l t e r [SIZE] ;
5 i n t t i d = gridDim . x ∗ blockIdx . x + threadIdx . x ;
6 s h a r e d _ f i l t e r [t i d]= f i l t e r [t i d] ;
7 _ _ s ync th reads () ;
8 out [t i d] = s h a r e d _ f i l t e r [vector [t i d]] ;
9 }

Listing 1: Simple kernel with a fixed (row 6) and an input-dependent
(row 8) access pattern.

First, each thread computes its thread identifier at row 5. Then,
ll threads in the block copy the values from the filter array in
lobal memory to the shared_filter array in shared memory (row
) and wait for each other at the barrier on row 7. The order in which
4

the 32 warps (with 32 threads each) perform the read from global
memory and the write to shared memory (row 6) is determined by
the scheduler. However, this order does not matter with regard to the
bank conflicting accesses since the program is data-race free. Indeed,
data-race freeness ensures that obtained values and addresses do not
depend on the scheduling of the warps. Occurrences of bank conflicting
accesses, and hence required numbers of shared memory transactions,
are determined by the values of the shared memory addresses. Since
these addresses are independent of the scheduler, they can be computed
for any scheduler. After the barrier, each thread fetches the value
vector[tid] corresponding to its thread identifier tid. It then uses
this value to read from the shared_filter array and writes the
result to the output array. The execution of this kernel will therefore
result in 32 writes per warp at row 6 to shared memory (each write is
performed by one of the 32-threads warps) before the barrier at row 7.
This is followed by 32 additional accesses (reads at row 8) from shared
memory (each read is performed by one of the 32-threads warps) after
the barrier. We will use line to denote a shared memory access (read or
write) performed in lockstep by a warp (see Section 2). In this kernel
program, all threads of a warp are active during each access (this would
not have been the case if branches would have been involved). Each
line therefore involves 32 shared memory reads or writes performed in
lockstep. From a shared memory perspective, the program boils down
to 64 lines: 32 writes followed by 32 reads.

Shared memory banks and resulting conflicts. Shared memory can be
viewed as an array of 𝚂𝙷𝙰𝚁𝙴𝙳_𝚂𝙸𝚉𝙴 bytes indexed from 0 to
𝚂𝙷𝙰𝚁𝙴𝙳_𝚂𝙸𝚉𝙴 − 1. Shared memory is partitioned into a number of
equally-sized memory modules called banks, typically 32 banks as
assumed in this work. Banks are non-contiguous regions of shared
memory. Each 𝚋𝚊𝚗𝚔𝑘 (for 𝑘 ∶ 0 ≤ 𝑘 < 32) handles accesses for the set
of all 4-contiguous-bytes words (hereafter word) starting at some byte
index {𝑗| 0 ≤ 𝑗 < 𝚂𝙷𝙰𝚁𝙴𝙳_𝚂𝙸𝚉𝙴 and (𝑗∕4)%32 = 𝑘}. The kernel in the
example of Listing 1 accesses the array shared_filter consisting
in 1024 words of 4 bytes each. This array has therefore 32 words in
each one of the 32 banks.

When a thread in some warp requests access to a shared memory
location, the request is handled by the bank to which the location
belongs. A bank conflict appears when two or more threads be-
longing to the same warp simultaneously request access to different
shared memory locations in the same bank. Conflicting memory ac-
cesses cannot be handled in the same memory transaction. Recall that
all active threads in a warp need to finish the current instruction before
progressing to the next one due to lockstep execution. If active threads
in a warp simultaneously request shared memory locations handled
by different banks, then all requests can be handled in parallel by all
the different banks. Only one memory transaction involving all banks is
needed. However, if some active threads in the warp execute an instruc-
tion that results in pairwise bank-conflicting accesses (i.e., accesses to
distinct shared memory locations in the same bank), then the requests
have to be handled sequentially by the corresponding bank in as many
memory transactions as the number of accesses.

As a result, requests to different banks result in parallel and ef-

ficient memory transactions. Requests to different locations in the

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

(

𝚌

i
w
v

𝚌

m
r
t

same bank result in sequentialized and slower memory transactions.
The non-contiguous organization of shared memory banks is useful
when threads in the same warp access contiguous words in the shared
memory. For instance, accesses by each warp at row 6 in Listing 1
do not result in bank conflicts. They can be efficiently parallelized
because the targeted locations in shared memory belong to different
banks. They result in one memory transaction per warp executing the
instruction. Other access patterns can however result in bank conflicts
and in degraded performance. For instance, accesses to shared memory
at row 8 depend on the values in the input array vector. Some inputs
may result in no bank conflicts, while others may result in accesses,
by the same warp on the same instruction, to 32 different words of
a bank. Such an access would result in a sequentialization of the 32
accesses. Such sequentialization would require 32 serialized memory
accesses that will lead to the worst case execution time for the shared
memory instruction.

Our approach, as described later in this paper, can provide con-
crete inputs that exhibit the worst case execution time for the shared
memory instruction. We show in Section 5 how our approach can
aid a programmer in analyzing the worst case memory behavior of a
program.

It is also important to note that there are fewer possible combina-
tions of thread accesses to the shared memory when an instruction
exhibits the minimum or the maximum number of shared memory
transactions. This knowledge can be used as a side channel by an
attacker to reduce the search space when trying to deduce secret
information. We will show in Section 6 how our approach can quantify
the leakage of such a side channel if an attacker observes the maximum
number of shared memory transactions during the execution of a
cryptographic GPU program.

4. Symbolic identification of bank conflicts

Given a kernel, this work aims to (i) check feasibility of a given
number of shared memory transactions due to bank conflicts and (ii)
exhibit an input in case this number is feasible. For this, we leverage on
symbolic execution in order to encode executions and bank conflicts.
Recall from Section 2 that symbolic execution of a path in a GPU
program results in a sequence 𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛 of shared memory
accesses. We assume such a sequence in the following and describe how
we check feasibility of a number of memory transactions for the whole
program. We will describe three different approaches in this section.

The first approach (Section 4.1) delegates the search to the un-
derlying SMT solver. The idea is to introduce an integer variable for
each shared memory word in order to capture whether the word is
accessed in a line or not. Constraints are then added to relate these
variables to bank conflicts by stating whether simultaneous accesses by
some warp to different words belonging to the same bank are possible.
The number of conflicts in the same bank captures the number of
required shared memory transactions for that bank. The total number
transactions to the shared memory is then the maximum number of
required transactions for each bank. This encoding requires a number
of variables that is linear in the size of the shared memory and delegates
the search of possible inputs to the underlying SMT solver.

In our second approach (Section 4.2), the idea is to avoid enumerat-
ing the shared memory words and instead to encode possible conflicts
between threads of the same warp, regardless of the actual words on
which they conflict. Such conflicts can be used to define ‘‘cliques’’, used
here to mean threads belonging to the same warp and resulting in
pairwise conflicting memory accesses in a line. This allows for a clique-
based exploration of possible inputs which allows for a higher level of
abstraction.

Since the number of such cliques explodes combinatorically, we
finally introduce our lazy approach (Section 4.3) to enumerate cliques
on-demand. Reasoning at the level of cliques allows us to cache prior
results and to guide the search using conflicts between thread accesses.
5

Fig. 3. Overview of the analysis framework.

Fig. 3 gives an overview of our proposed analysis framework.
The modified symbolic execution framework in Fig. 3 is based

on GKLEE [13]. We have modified GKLEE to capture all the shared
memory accesses during the execution of the GPU kernel. Using this
information we can build our lines. We provide the lines and targeted
number of transactions to the shared memory to our selected ap-
proach in the shared memory transaction analysis. We can then produce
concrete inputs that exhibit the targeted number of transactions or
establish that such inputs do not exist. The approaches leverage on the
underlying SMT solver to achieve this goal. The approaches differ in
the queries and in how much they delegate to the solver. In the next
subsections we present, in detail, our three approaches.

4.1. Direct approach

This approach encodes possible accesses to each shared memory
word and uses the encoding to impose constraints on the numbers
of different accessed words in the same bank. For each 4-bytes word
beginning at byte address 𝚠𝚊𝚍𝚍 in 𝚝𝚊𝚛𝚐𝚎𝚝𝙾𝚏(𝚕𝚒𝚗𝚎𝑖), we introduce an
integer variable 𝚊𝚌𝚌𝚎𝚜𝚜

𝚠𝚊𝚍𝚍

𝚕𝚒𝚗𝚎𝑖
. The value of such a variable is 1 if the

word starting at 𝚠𝚊𝚍𝚍 is indeed accessed by some thread in 𝚕𝚒𝚗𝚎𝑖. The
value is 0 otherwise. For each such word in the shared memory, the
following constraints are added to the encoding:
(

⋁

𝚝𝚒𝚍∈𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)
(𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍] = 𝚠𝚊𝚍𝚍)

)

⇒ (𝚊𝚌𝚌𝚎𝚜𝚜𝚠𝚊𝚍𝚍
𝚕𝚒𝚗𝚎𝑖

= 1) (1)

⋀

𝚝𝚒𝚍∈𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)
(𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍] ≠ 𝚠𝚊𝚍𝚍)

)

⇒ (𝚊𝚌𝚌𝚎𝚜𝚜𝚠𝚊𝚍𝚍
𝚕𝚒𝚗𝚎𝑖

= 0) (2)

For each 𝚋𝚊𝚗𝚔 ∶ 0 ≤ 𝚋𝚊𝚗𝚔 < 32, we introduce an integer variable
𝚘𝚗𝚏𝚕𝚒𝚌𝚝

𝚋𝚊𝚗𝚔

𝚕𝚒𝚗𝚎𝑖
. The value of this variable, for the given 𝚋𝚊𝚗𝚔 and 𝚕𝚒𝚗𝚎𝑖,

s equal to the number of all simultaneous requests to the different
ords in the shared memory. For a line, 𝚕𝚒𝚗𝚎𝑖, we will have 32 such
ariables, one for each bank.

The following constraint is therefore added to the encoding:

𝚘𝚗𝚏𝚕𝚒𝚌𝚝
𝚋𝚊𝚗𝚔

𝚕𝚒𝚗𝚎𝑖
=

∑

𝚠𝚊𝚍𝚍%32 = 𝚋𝚊𝚗𝚔

𝚠𝚊𝚍𝚍in𝚝𝚊𝚛𝚐𝚎𝚝𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)

𝚊𝚌𝚌𝚎𝚜𝚜
𝚠𝚊𝚍𝚍

𝚕𝚒𝚗𝚎𝑖
(3)

The number of transactions 𝚝𝚛𝚡𝚕𝚒𝚗𝚎𝑖
required by 𝚕𝚒𝚗𝚎𝑖 is then the

aximum conflicts over all banks. The total number of transactions
equired for the sequence 𝚜𝚎𝚚 = 𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛 is the sum of
he required number of transactions for each line:

𝚝𝚛𝚡 = 𝙼𝚊𝚡

{

𝚌𝚘𝚗𝚏𝚕𝚒𝚌𝚝
𝚋𝚊𝚗𝚔

| 𝑘 ∶ 0 ≤ 𝑘 < 32
}

(4)
𝚕𝚒𝚗𝚎𝑖 𝚕𝚒𝚗𝚎𝑖

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

t

t
o
s

4

a
S
t
A
⟨

s
d
t
o
w
t
c
t
s

t
g
f
w
t
i
𝚖

f
f
a

𝚝𝚘𝚝𝚊𝚕𝚜𝚎𝚚 =
∑

𝑖∶1≤𝑖≤𝑛
𝚝𝚛𝚡𝚕𝚒𝚗𝚎𝑖

(5)

Checking whether the program can generate 𝚝𝚊𝚛𝚐𝚎𝚝 memory trans-
actions amounts to adding the constraints 𝚝𝚛𝚡𝚕𝚒𝚗𝚎𝑖

= 𝚝𝚊𝚛𝚐𝚎𝚝 and
querying the underlying SMT solver for satisfiability. This approach
requires one query to the SMT solver during the shared memory
transaction analysis step from Fig. 3.

4.2. Conflict-guided approach

For the approach presented in the previous section (see Section 4.1),
the size of the formulas depends on the size of the shared memory
that might be accessed. We aim to remove this dependency to shared
memory size with this current approach. However, this approach will
present other limitations that will be mitigated by the approach pre-
sented in Section 4.3. This approach can also be used in the shared
memory transaction analysis step from Fig. 3. Instead of focusing on
whether each word in the shared memory is accessed, we focus on
whether active threads in a warp perform bank conflicting accesses.
This approach is guided by sets of pairwise conflicting threads be-
longing to the same warp. We call these cliques. Informally, a clique
 for a line 𝚕𝚒𝚗𝚎𝑖 is a set of active threads performing pairwise
bank conflicting memory accesses in 𝚕𝚒𝚗𝚎𝑖. Given a symbolic sequence
𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛, the idea is to find possible maximal cliques for
each line. If is a clique for 𝚕𝚒𝚗𝚎𝑖, then the line will result in at least
|| memory transactions. If there are no cliques of some size 𝑐 for 𝚕𝚒𝚗𝚎𝑖,
then it cannot result in 𝑐 or more memory transactions.

Given a line 𝚕𝚒𝚗𝚎𝑖 and a set of threads in 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖), the
constraint 𝚖𝚔𝚏(, 𝚕𝚒𝚗𝚎𝑖) defined in Eq. (6) enforces that the shared
memory accesses performed by the threads in result in pairwise bank
conflicts, and hence in at least || memory transactions.

𝚖𝚔𝚏(, 𝚕𝚒𝚗𝚎𝑖) =
⋀

𝚝𝚒𝚍1 ≠ 𝚝𝚒𝚍2
𝚝𝚒𝚍1, 𝚝𝚒𝚍2 ∈

(

𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍1] ≠ 𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍2] ∧
(𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍1] − 𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍2])%32 = 0

)

(6)

If 𝚖𝚔𝚏(, 𝚕𝚒𝚗𝚎𝑖) is satisfiable, we say the clique is enforceable
for 𝚕𝚒𝚗𝚎𝑖. Otherwise, is said to not be enforceable. A line 𝚕𝚒𝚗𝚎𝑖
where exactly 𝑛𝑖 shared memory transactions are possible has at least
one enforceable clique of size 𝑛𝑖 and no enforceable clique with a
strictly larger size. We use this in Algorithm 1. The algorithm takes
a 𝚝𝚊𝚛𝚐𝚎𝚝 number of transactions and a symbolic sequence 𝑠𝑒𝑞 =
𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛 of 𝑛 warp accesses to shared memory. The al-
gorithm uses cliques to guide the search for possible inputs that result
in 𝚝𝚊𝚛𝚐𝚎𝚝 memory transactions. It instantiates a generator 𝛤 at row 1.
In addition to the target number of transactions, 𝚝𝚊𝚛𝚐𝚎𝚝, the generator
takes as argument the set of threads active at each line. Intuitively,
the generator will be used to propose sequences of cliques of the form
⟨1,… ,𝑛⟩ where (i) the set of threads 𝑖 is a subset of 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖),
and (ii) the sum ∑

𝑖∶1≤𝑖≤𝑛
|

|

𝑖|| coincides with the target number 𝚝𝚊𝚛𝚐𝚎𝚝

of shared memory transactions. The generator is used to produce, at
row 3, a sequence of 𝑛 candidate maximal cliques. One clique for each
line. This could for instance be implemented using iterators. In row 5,
the algorithm encodes, for each 𝚕𝚒𝚗𝚎𝑖 with a candidate clique 𝑖, that
there is at least a clique with a cardinality that is strictly larger than
|

|

𝑖||. The SMT solver is called at row 6. It checks the satisfiability of the
constraint stating that for each line 𝚕𝚒𝚗𝚎𝑖, the clique 𝑖 is enforced but
no clique with more than |

|

𝑖|| threads can be enforced. This amounts,
for each line 𝚕𝚒𝚗𝚎𝑖, to enforcing that 𝑖 is a maximal set of threads with
pairwise bank conflicting shared memory accesses at line 𝚕𝚒𝚗𝚎𝑖. The
underlying SMT solver returns a model 𝚖 if the constraint is satisfiable.
The model is a valuation of all free variables in the checked constraint.
A concrete input (i.e., a test) can be easily extracted from it. Such
6

an input will satisfy the constraint and will therefore result, for each
line 𝚕𝚒𝚗𝚎𝑖, in |

|

𝑖|| shared memory transactions. A concrete input is
therefore returned at row 7. Otherwise, the constraint is not satisfiable
and the produced sequence of cliques is excluded at row 8 before a new
iteration of the algorithm.

input : a 𝚝𝚊𝚛𝚐𝚎𝚝 number of transactions and a symbolic sequence of
𝑛 lines 𝑠𝑒𝑞 = 𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛.

output: not_feasible or a concrete input with 𝚝𝚊𝚛𝚐𝚎𝚝 transactions.
1 𝛤 ← 𝐺𝑒𝑛(⟨𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎1),… , 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑛)⟩ , 𝚝𝚊𝚛𝚐𝚎𝚝);
2 while (¬ (𝛤 .𝚒𝚜_𝚎𝚖𝚙𝚝𝚢())) do
3 ⟨1,… ,𝑛⟩ ← 𝛤 .𝚐𝚎𝚝_𝚌𝚊𝚗𝚍𝚒𝚍𝚊𝚝𝚎();
4 foreach 𝑖 ← 1 to 𝑛 do
5 𝚊𝚝_𝚖𝚘𝚜𝚝𝑖 ←

⋁

 ⊆ 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)
|| = |

|

𝑖|| + 1

𝚖𝚔𝚏(, 𝚕𝚒𝚗𝚎𝑖);

6 𝚜𝚊𝚝, 𝚖 ← 𝚌𝚑𝚎𝚌𝚔

(

∧1≤𝑖≤𝑛𝚖𝚔𝚏(𝑖, 𝚕𝚒𝚗𝚎𝑖) ∧ ¬∨ 1 ≤ 𝑖 ≤ 𝑛 𝚊𝚝_𝚖𝚘𝚜𝚝𝑖
)

;

7 if 𝚜𝚊𝚝 then return 𝚒𝚗𝚒𝚝_𝚘𝚏(𝚖);
8 else 𝛤 .𝚏𝚘𝚛𝚋𝚒𝚍_𝚎𝚡𝚊𝚌𝚝(⟨1,… ,𝑛⟩);
9 return not_feasible

Algorithm 1: Conflict-guided exploration
Termination of the algorithm is ensured by the finite number of

candidates and the fact that each sequence of candidates is checked
at most once. The algorithm has the advantage of avoiding the explicit
enumeration of all words in the shared memory. It has also the advan-
tage of directing the search by reasoning at the level of cliques, and not
at the level of accessed words. This level of abstraction is not available
when relying on the SMT solver directly as in the first approach. An
important limitation of this approach is, however, the combinatorial
explosion of the number of candidate cliques. For |

|

𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)||
hreads in a 𝚕𝚒𝚗𝚎𝑖 (up to 32 threads), there will be

(

|𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)|
𝚌𝚊𝚗𝚍𝚒𝚍𝚊𝚝𝚎_𝚜𝚒𝚣𝚎

)

candidate cliques of size 𝚌𝚊𝚗𝚍𝚒𝚍𝚊𝚝𝚎_𝚜𝚒𝚣𝚎. To become a clique, such a
candidate clique 𝑖 requires that its elements have pairwise conflicting
accesses to shared memory. To be maximal, there should be no clique
with a larger cardinality. For each such candidate clique 𝑖 at row 6,
here are

(

|𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)|
1 + |𝑖|

)

subsets that should not form a clique. Instead
f eagerly enumerating all such constraints, we propose in the next
ection to generate them on-demand.

.3. On-demand conflict-guided approach

The conflict-guided approach from Section 4.2 does not enumerate
ll shared memory words as described in the direct approach from
ection 4.1. It, however, suffers from the combinatorial explosion in
he number of cliques to be refuted at each SMT query at row 6 in
lgorithm 1. For each candidate clique 𝑖 in a sequence of cliques
1,… ,𝑛⟩, there are

(

|𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)|
1 + |𝑖|

)

cliques to be refuted. In this

ection, we aim to mitigate this limitation by refuting cliques on
emand. The idea is to first perform simpler queries one line at a
ime (i.e., locally to the lines), to cache the answers together with
n-demand generated cliques that need to be refuted. This allows us,
hen performing queries for all the lines together (i.e., globally for

he candidate sequence of cliques) to avoid non-enforceable candidate
liques and strictly larger cliques that appeared in previous checks. This
hird approach can be used in the shared memory transaction analysis
tep in Fig. 3. Algorithm 2 describes this approach.

The generator used in Algorithm 2 caches more information than
he one used in Algorithm 1. For each line 𝚕𝚒𝚗𝚎𝑖, with 𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛, the
enerator can associate a set 𝑖 of spoilers to each candidate clique 𝑖
or the given line. A spoiler for 𝑖 at line 𝚕𝚒𝚗𝚎𝑖 is a clique for 𝚕𝚒𝚗𝚎𝑖
ith || = 1 + |

|

𝑖||. The algorithm lazily identifies such spoilers from
he concrete models found by the SMT queries. A spoiler for a clique 𝑖
n a model 𝚖 returned by an SMT query refutes the maximality of 𝑖 in
. Concretely, it means that the input extracted from 𝚖 would result,
or 𝚕𝚒𝚗𝚎𝑖 in strictly more transactions than |

|

𝑖||. Instead of eagerly
orbidding all spoilers as done in rows 5 and 6 of Algorithm 1, this
lgorithm considers that all candidate cliques for all lines are initially

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

f
i
l
c

s

𝚕

c
i
A
i

e
c
i

a
i
a
e
i
a
f
t
f
e
s
c
e

t
t
f
w
s
c
t
a
i
n
s
A
t
a
2
p

s
t
g
c
c
s
i
t
S

4

t
a
s
b
d
a
o
w

c
a
T

d
s
T
t
s
i
(

n

associated to an empty list of spoilers to be forbidden. The first time
a candidate clique is proposed in a sequence in row 3, it is associated
to an empty set of spoilers to be forbidden. Then, it lazily forbids,
for each line and each candidate clique, spoilers based on the models
returned by the SMT queries at rows 6 and 21 of Algorithm 2. A call to
𝚌𝚘𝚖𝚙𝚞𝚝𝚎_𝚊_𝚜𝚙𝚘𝚒𝚕𝚎𝚛(𝚖, 𝚕𝚒𝚗𝚎𝑖,𝑖) at rows 8 or 26 finds a spoiler , if any,
or the candidate clique 𝑖 at 𝚕𝚒𝚗𝚎𝑖 in 𝚖. Indeed, all values are concrete
n 𝚖. This includes the shared memory addresses corresponding to the
ine 𝚕𝚒𝚗𝚎𝑖. The procedure 𝚌𝚘𝚖𝚙𝚞𝚝𝚎_𝚊_𝚜𝚙𝚘𝚒𝚕𝚎𝚛(𝚖, 𝚕𝚒𝚗𝚎𝑖,𝑖) identifies the
onflicting pairs for line 𝚕𝚒𝚗𝚎𝑖 and can find, if any, some spoiler clique
. It returns the empty set if there are no such spoilers. A found

poiler is associated to clique 𝑖 for 𝚕𝚒𝚗𝚎𝑖 with existing spoilers 𝑖,
using 𝛤 .𝚞𝚙𝚍𝚊𝚝𝚎_𝚜𝚙𝚘𝚒𝚕𝚎𝚛({} ∪ 𝑖, 𝚕𝚒𝚗𝚎𝑖,𝑖) as done in rows 13 and 28
of Algorithm 2. For each candidate sequence with its cached spoilers
⟨(1,1),… , (𝑛,𝑛)⟩, the algorithm starts by issuing an SMT query for
each line on its own and caching the obtained results (rows 5–19).
Based on the cached information, it may issue an SMT query for all
lines (rows 21–32). We describe these steps in the following.

input : a 𝚝𝚊𝚛𝚐𝚎𝚝 number of transactions and a symbolic sequence of
𝑛 lines 𝑠𝑒𝑞 = 𝚕𝚒𝚗𝚎1, 𝚕𝚒𝚗𝚎2,… , 𝚕𝚒𝚗𝚎𝑛.

output: not_feasible or a concrete input with 𝚝𝚊𝚛𝚐𝚎𝚝 transactions.
1 𝛤 ← 𝐺𝑒𝑛(⟨𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎1),… , 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑛)⟩ , 𝚝𝚊𝚛𝚐𝚎𝚝);
2 while (¬ (𝛤 .𝚒𝚜_𝚎𝚖𝚙𝚝𝚢())) do
3 ⟨(1,1),… , (𝑛,𝑛)⟩ ← 𝛤 .𝚐𝚎𝚝_𝚌𝚊𝚗𝚍𝚒𝚍𝚊𝚝𝚎();
4 𝚗𝚎𝚠_𝚌𝚑𝚘𝚒𝚌𝚎 ← 𝚝𝚛𝚞𝚎 ;
5 foreach 𝑖 ← 1 to 𝑛 do
6 𝚜𝚊𝚝, 𝚖 ← 𝚌𝚑𝚎𝚌𝚔

(

𝚖𝚔𝚏(𝑖, 𝚕𝚒𝚗𝚎𝑖) ∧ ¬(
⋁

∈𝑖
𝚖𝚔𝚏(, 𝚕𝚒𝚗𝚎𝑖))

)

;
7 if 𝚜𝚊𝚝 then
8 ← 𝚌𝚘𝚖𝚙𝚞𝚝𝚎_𝚊_𝚜𝚙𝚘𝚒𝚕𝚎𝚛(𝚖, 𝚕𝚒𝚗𝚎𝑖, ||𝑖

|

|

);
9 if .𝚒𝚜_𝚎𝚖𝚙𝚝𝚢() then
10 𝚗𝚎𝚠_𝚌𝚑𝚘𝚒𝚌𝚎 ← 𝚏𝚊𝚕𝚜𝚎;
11 continue;
12 𝚗𝚎𝚠_𝚌𝚑𝚘𝚒𝚌𝚎 ← 𝚝𝚛𝚞𝚎 ;
13 𝛤 .𝚞𝚙𝚍𝚊𝚝𝚎_𝚜𝚙𝚘𝚒𝚕𝚎𝚛({} ∪ 𝑖, 𝚕𝚒𝚗𝚎𝑖,𝑖);
14 else
15 if 𝑖.𝚒𝚜_𝚎𝚖𝚙𝚝𝚢() then
16 𝛤 .𝚏𝚘𝚛𝚋𝚒𝚍_𝚜𝚞𝚙𝚎𝚛𝚜𝚎𝚝𝚜(𝚕𝚒𝚗𝚎𝑖,𝑖);
17 else
18 𝛤 .𝚏𝚘𝚛𝚋𝚒𝚍_𝚎𝚡𝚊𝚌𝚝(𝚕𝚒𝚗𝚎𝑖,𝑖)
19 break;
20 if 𝚗𝚎𝚠_𝚌𝚑𝚘𝚒𝚌𝚎 then continue;
21 𝚜𝚊𝚝, 𝚖 ← 𝚌𝚑𝚎𝚌𝚔

(

∧1≤𝑖≤𝑛
(

𝚖𝚔𝚏(𝑖, 𝚕𝚒𝚗𝚎𝑖) ∧ ¬∨∈𝑖
𝚖𝚔𝚏(, 𝚕𝚒𝚗𝚎𝑖)

))

;
22 if (¬𝚜𝚊𝚝) then
23 𝛤 .𝚏𝚘𝚛𝚋𝚒𝚍_𝚎𝚡𝚊𝚌𝚝(⟨1,… ,𝑛⟩);
24 else
25 foreach 𝑖 ← 1 to 𝑛 do
26 ← 𝚌𝚘𝚖𝚙𝚞𝚝𝚎_𝚊_𝚜𝚙𝚘𝚒𝚕𝚎𝚛(𝚖, 𝚕𝚒𝚗𝚎𝑖, ||𝑖

|

|

);
27 if .𝚒𝚜_𝚎𝚖𝚙𝚝𝚢() then continue;
28 𝛤 .𝚞𝚙𝚍𝚊𝚝𝚎_𝚜𝚙𝚘𝚒𝚕𝚎𝚛({} ∪ 𝑖, 𝚕𝚒𝚗𝚎𝑖,𝑖);
29 𝚗𝚎𝚠_𝚌𝚑𝚘𝚒𝚌𝚎 ← 𝚝𝚛𝚞𝚎 ;
30 break;
31 if 𝚗𝚎𝚠_𝚌𝚑𝚘𝚒𝚌𝚎 then continue;
32 return 𝚒𝚗𝚒𝚝_𝚘𝚏(𝚖)
33 return not_feasible

Algorithm 2: On-demand conflict-guided exploration

The first step has a local scope for each line. In the first step each
𝚒𝚗𝚎𝑖 is checked separately (rows 5–19 in Algorithm 2) without adding
onstraints for the other lines in the sequence. If the candidate clique 𝑖
s enforceable, i.e., we obtain a model 𝚖 from the SMT solver (row 6 in
lgorithm 2). In this case, we know there is at least an input resulting

n at least |
|

𝑖|| transactions.
If the concrete input results in exactly || transactions (empty spoil-

rs at row 9 in Algorithm 2), then we found a solution for 𝚕𝚒𝚗𝚎𝑖 and we
an proceed to checking the other lines separately. If the concrete input

| |
7

n 𝚖 results in at least 1+
|

𝑖| transactions, then we can find and forbid o
corresponding spoiler to symbolically eliminate a whole family of
nputs resulting in the same spoiler. Observe the particular model 𝚖 is
lso eliminated. If the candidate clique 𝑖 is not enforceable for 𝚕𝚒𝚗𝚎𝑖
ven without any enforced spoiler, then we can avoid issuing queries
nvolving supersets of 𝑖 for 𝚕𝚒𝚗𝚎𝑖 as the constraints imposed by 𝑖 were
lready not satisfiable (row 16 in Algorithm 2). Repeating the process of
orbidding spoilers based on the obtained models allows to lazily guide
he search for a given line (hence simpler queries) while eliminating
amilies of inputs, one for each found spoiler. This lazy approach will
ither find a concrete input resulting in exactly 𝑛𝑖 transactions (i.e., no
poiler) or will stop obtaining solutions. In the latter case we can
onclude that it is impossible to obtain exactly |

|

𝑖|| transactions when
nforcing 𝑖 for 𝚕𝚒𝚗𝚎𝑖 (row 18 in Algorithm 2).

The second step has a global scope for the whole sequence of lines. In
he second step (rows 21–32 in Algorithm 2), once we have obtained
he locally enforceable cliques (and the corresponding spoilers to be
orbidden) that can result in exactly 𝑛𝑖 transactions for each line 𝚕𝚒𝚗𝚎𝑖,
e can check whether the constraints obtained for each 𝚕𝚒𝚗𝚎𝑖 can be

atisfied together (row 21 in Algorithm 2). Indeed, there might be no
ommon input that would allow to enforce the candidate cliques. If
here is no model, then we need to proceed with other choices of cliques
fter forbidding the current sequence of clique candidates (rows 22–23
n Algorithm 2). If the query has a model 𝚖, then we check whether the
umber of transactions for each 𝚕𝚒𝚗𝚎𝑖 is still 𝑛𝑖. We can again forbid
poilers and restart with a new candidate sequence (rows 25–31 in
lgorithm 2). If there are no spoilers, then we found a model where

he lines give exactly 𝚝𝚊𝚛𝚐𝚎𝚝 shared memory transactions. We extract
n input from the obtained model and return it (row 32 in Algorithm
). This is repeated until a concrete input is found or we run out of
ossible candidate sequences.

Termination of Algorithm 2 is guaranteed by observing that a
equence of candidates and spoilers is proposed at most once, and
hat there are finitely many candidates and spoilers. Correctness is
uaranteed by observing that we only exclude spoilers or impossible
andidates. This approach tries to avoid, for a given sequence of
andidate cliques, to eagerly enumerate the intractable number of
poilers (like in the eager approach from Section 4.2) while explic-
tly manipulating cliques to identify the accesses responsible for the
argeted number of transactions (something the direct approach from
ection 4.1 misses).

.4. Direct approach vs. On-demand conflict-guided approach

We used a modified version of Listing 1 as a benchmark to compare
he direct and the on-demand conflict-guided approaches in terms of
nalysis time. The modifications differ in the number of lines and the
ize of the shared memory. Listing 1 adopts 1024 integer (i.e., 4096
ytes) and has one row reading shared memory with an input depen-
ent pattern. It corresponds to the first entry of Table 1. By adding
nother instruction to read from shared memory (like in row 8) we
btain a kernel with two lines. The performance results for the kernels
ith two and three lines can also be seen in Table 1.

Due to the combinatorial explosion explained in Section 4.2, the
onflict-guided approach was much slower compared to the other two
pproaches and, therefore, was not included in the comparison in
able 1.

The results in Table 1 show that the execution time for the on-
emand conflict-guided approach does not depend on the size of the
hared memory, but only on the number of lines being analyzed.3
he direct approach requires, as expected, increasingly more analysis
ime the more shared memory is being used. Considering these re-
ults, we have decided to use the on-demand conflict-guided approach
n our application to performance (Section 5) and security analysis
Section 6).

3 There are relatively minor disturbances in the execution times for a given
umber of lines, due to factors such as: the SMT solver internal workings,
ther active processes, the operating system, etc.

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

𝚕

a
o
c
b
t
t
𝚝

c
d

𝚝

5

f
c
S
c
E
I
a
i
I
s
s
o

h
t
T
i
c
a
c

5

c
t
(
u
o
c
m
a
m
i
t
h
a
b
r
i

c
t
a
m
t
a
v
o
w
f
d
a
e
(

o
n
(

a
t
w

Table 1
Comparing analysis time of the direct approach vs. the on-demand conflict-guided
approach for the maximum number of possible shared memory transactions of one
active warp.

Number of Shared memory Direct approach On-demand conflict-guided
lines size (bytes) (seconds) approach (seconds)

1
4096 87.59 4.7
8192 300.9 4.6
16 384 1059.21 4.5

2
4096 346.3 14.4
8192 537.48 12.9
16 384 4242.47 19.9

3
4096 453.98 27.39
8192 1010.21 25.7
16 384 5823.45 27.6

Improving analysis time. We have also implemented a heuristic to
speed-up the shared memory transaction analysis part from Fig. 3. It
corresponds to a preprocessing step that aims to reduce the number
of lines that need to be analyzed. The idea is to avoid analyzing two
lines if, no matter the input, the numbers of transactions required by
each one of them are always equal. We call such lines duplicates. This
preprocessing step leverages on the SMT solver for queries to recognize
duplicate lines (in terms of shared memory bank conflicts)

We consider that a line 𝚕𝚒𝚗𝚎𝑗 is a duplicate of line 𝚕𝚒𝚗𝚎𝑖 if no matter
the input, 𝚕𝚒𝚗𝚎𝑗 always produces the same number of shared memory
transactions as 𝚕𝚒𝚗𝚎𝑖. A sufficient condition to check whether 𝚕𝚒𝚗𝚎𝑖 and
𝚒𝚗𝚎𝑗 are duplicates is to test whether both lines have the same set of
ctive threads, and that the accessed memory addresses in 𝚕𝚒𝚗𝚎𝑖 can be
btained by shifting those in 𝚕𝚒𝚗𝚎𝑗 . Intuitively, this guarantees that ac-
esses by a pair of threads in 𝚕𝚒𝚗𝚎𝑖 result in a bank conflict iff accesses
y the same pair, and for the same input, also conflict in 𝚕𝚒𝚗𝚎𝑗 . Recall
hat 𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍𝑘] represents the value of the shared memory address
hat the thread 𝚝𝚒𝚍𝑘 accesses at line 𝚕𝚒𝚗𝚎𝑖. Practically, and assuming
𝚒𝚍0 ∈ 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) with 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖) = 𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑗), we
onclude that lines 𝚕𝚒𝚗𝚎𝑖 and 𝚕𝚒𝚗𝚎𝑗 are duplicates if the following
isjunction is unsatisfiable:

⋁

𝚒𝚍∈𝚊𝚌𝚝𝚒𝚟𝚎𝙾𝚏(𝚕𝚒𝚗𝚎𝑖)

(

𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍0] − 𝚕𝚒𝚗𝚎𝑗 [𝚝𝚒𝚍0] ≠ 𝚕𝚒𝚗𝚎𝑖[𝚝𝚒𝚍] − 𝚕𝚒𝚗𝚎𝑗 [𝚝𝚒𝚍]
)

(7)

. Application to performance analysis

Analyzing performance and latency of GPU programs is relevant
or most GPU applications. They are crucial for real-time systems and
ontrol applications where correctness and stability depend on them.
everal works have shown the direct impact shared memory bank
onflicts have on performance and latency in GPU programs [1–3].
stimation can proceed by testing as many concrete inputs as possible.
mportantly, this only gives a partial picture for programs where the
ccess patterns to shared memory depend on the input values. Test-
ng, therefore, only explores a tiny portion of the possible behaviors.
nstead, our approach formally represents constraints capturing the
hared memory transactions due to bank conflicts. This allows us to
ystematically explore the best and worst possible performances based
n the feasible numbers of shared memory transactions.

This section is organized in two parts. In the first part, we use a
eatmap example to describe how one can use our framework to iden-
ify concrete inputs for given numbers of shared memory transactions.
hen, we experimentally show that the obtained concrete inputs indeed

mpact the execution time. In the second part, we compare the worst
ase performance supplied by our on-demand conflict-guided approach
nd the one supplied by GDivAn [35], a recent tool for deriving worst
8

ase execution time for GPU kernels.
.1. Deriving extreme numbers of shared memory transactions

Our on-demand conflict-guided approach is useful for finding con-
rete inputs that lead to different numbers of shared memory transac-
ions. Typically, handling larger input sizes in GPU implementations
e.g., corresponding to richer input details or resolutions) entails the
sage of larger portions of the shared memory. However, the amount
f shared memory a program uses does impact the possibility of bank
onflicts. Indeed, access to larger shared memory means more accesses
ight conflict on the same banks. We use our framework to exhibit, for
program performing the same amount of work but for different shared
emory sizes reflecting different levels of handled details, concrete

nputs resulting in minimal and maximal numbers of shared memory
ransactions. We then use these inputs in a real implementation to show
ow this impacts execution time and performance. We argue that such
pplications of our framework can allow to strike different tradeoffs
etween shared memory usage (i.e., potential level of detail) and the
equired numbers of memory transactions (i.e., expected performance
mpact).

We adopt the heatmap kernel of Listing 2 to test our on-demand
onflict-guided approach and to derive concrete input values leading
o maximal and minimal numbers of shared memory transactions for
warp. This kernel is representative of GPU programs where shared
emory access patterns do depend on input values. We then use the ob-

ained concrete inputs in executions on an actual GPU with 220 threads
nd evaluate their impact on performance. The heatmap kernel uses the
alues stored in an array input to compute a coloring scheme for three
utput colors based on red, green and blue filters. The input filters are
ritten to shared memory (rows 14–19) and the shared-memory-saved

ilters are read in rows 24–34. The values passed in the input array
ictate the access patterns applied when the filters in shared memory
re read (rows 24–34). The size of the input and output arrays are
qual to the total number of threads the kernel has been started with
i.e., totalThreads). By changing the value of SHARED_ARR_SZ,

we allow for different sizes of the shared memory to be read. This
can give the possibility for a warp to simultaneously access different
locations in the same memory banks, and hence for different bank-
conflicts. Observe that given a size for SHARED_ARR_SZ and a number
f threads, the way warps write into shared memory (rows 14–19) does
ot depend on the input values. Instead, we focus on the reading part
rows 24–34) as input values can result in different access patterns.

When applying our on-demand conflict-guided approach, we adopt
warp of 32 threads accessing arrays of constant sizes (both values of
otalThreads and SHARED_ARR_SZ are fixed). At the same time,
e allow for the input values to be symbolic (hence for unknown

and potentially different reading patterns in rows 24–34). We then ask
our approach for input values leading to the maximal and minimal
numbers of shared memory transactions.

We employ our on-demand conflict-guided approach on different
values for the SHARED_ARR_SZ parameter in Listing 2. We have
32 banks handling the shared memory calls. Each bank controls 4
consecutive bytes at a time. We call these 4 consecutive bytes a box.
We expect that accesses by a 32-threads-warp to a shared memory with
128 bytes (32 boxes) or less will result in one memory transaction while
those to a shared memory with 4096 bytes or more will result in at most
32 transactions. Indeed, for a warp with 32 active threads, if we have
a shared memory size of 32 × 4 bytes or less, then we cannot have
more than one transaction since for a conflict to occur, a warp needs
to access two different boxes belonging to the same bank. On the other
hand, if the accessed shared memory is large enough so that each bank
has more than 32 integers (i.e., shared memory is at least 32 × 32 × 4
bytes), then the number of transactions is limited by the number of
threads in a warp since there cannot be more accesses than there are

threads in a warp.

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

i
m
a
t
O
o
C
w
d
2
o
w
T
r

f
m
F
w
G
r
R
s
L

1 #def ine SHARED_ARR_SZ (32 ∗ 32) //we analyze the impact of t h i s parameter
2 //on number of shared memory t r an sa c t i on s
3
4 _ _ g l o b a l _ _ void heatmapKernel (i n t∗ input ,
5 i n t∗ f i l t e rRed , i n t∗ f i l t e rGreen , i n t∗ f i l t e r B l u e ,
6 i n t∗ outputRed , i n t∗ outputGreen , i n t∗ outputBlue ,
7 long i n t to ta lThreads) {
8 _ _ s h a r e d _ _ memType sharedF i l te rRed [SHARED_ARR_SZ] ;
9 _ _ s h a r e d _ _ memType sharedF i l t e rGreen [SHARED_ARR_SZ] ;

10 _ _ s h a r e d _ _ memType sha redF i l t e rB lue [SHARED_ARR_SZ] ;
11 i n t gid = gridDim . x ∗ blockIdx . x + threadIdx . x ;
12 i n t pos = threadIdx . x ;
13
14 while (pos < SHARED_ARR_SZ) {
15 sharedF i l te rRed [pos] = f i l t e r R e d [pos] ;
16 sharedF i l t e rGreen [pos] = f i l t e r G r e e n [pos] ;
17 sha redF i l t e rB lue [pos] = f i l t e r B l u e [pos] ;
18 pos += blockDim . x ;
19 }
20
21 _ _ s ync th reads () ;
22
23 while (gid < to ta lThreads) {
24 outputRed [gid]= sharedF i l t e rRed [input [gid] % SHARED_ARR_SZ] ;
25 outputGreen [gid]= sharedF i l t e rGreen [input [gid] % SHARED_ARR_SZ] ;
26 outputBlue [gid]= sha redF i l t e rB lue [input [gid] % SHARED_ARR_SZ] ;
27
28 outputRed [gid]+= sharedFi l t e rRed [(input [gid] + 1) % SHARED_ARR_SZ] ;
29 outputGreen [gid]+= sharedF i l t e rGreen [(input [gid]+1) % SHARED_ARR_SZ] ;
30 outputBlue [gid]+= sha redF i l t e rB lue [(input [gid] + 1) % SHARED_ARR_SZ] ;
31
32 outputRed [gid]+= sharedFi l t e rRed [(input [gid] + 2) % SHARED_ARR_SZ] ;
33 outputGreen [gid]+= sharedF i l t e rGreen [(input [gid]+2) % SHARED_ARR_SZ] ;
34 outputBlue [gid]+= sha redF i l t e rB lue [(input [gid] + 2) % SHARED_ARR_SZ] ;
35
36 outputRed [gid] /= 3;
37 outputGreen [gid] /= 3;
38 outputBlue [gid] /= 3;
39
40 gid += blockDim . x ∗ gridDim . x ;
41 }
42 }

Listing 2: Heatmap kernel code.
We use our approach for a warp of 32 active threads to produce
nputs that lead to the minimum/maximum possible number of shared
emory transactions. Our approach established that the minimum is

lways one transaction per line for the kernel in Listing 2 and that
he maximum per line varies with the size of the shared memory.
btaining the concrete inputs for each SHARED_ARR_SZ value, for
ur on-demand conflict-guided approach, takes less than two minutes.
omparing the execution time, for the obtained inputs, on real hard-
are for only one warp does not yield measurable results since the
ifference is in tens of cycles. For our experiments we have considered
20 threads. For this reason, we scale the inputs we have obtained from
ur approach to be able to run with more than 32 threads (i.e., one
arp). For this, we replicate the input array for each new warp added.
his means that our initial array of 32 values (⟨𝑣𝑎𝑙0,… , 𝑣𝑎𝑙31⟩), will be
eused when adding a new running warp.

Fig. 4 shows the results of testing the kernel using inputs derived
rom our on-demand conflict-guided approach and corresponding to
inimum and maximum numbers of shared memory transactions. In

ig. 4 we are running with 220 threads (i.e., 215 warps). The experiments
ith 220 threads from Fig. 4 have been performed on an NVIDIA
eForce RTX 2060 SUPER GPU.4 The machine used for the tests was

unning Ubuntu 18.04 (64 bit) with an Intel i7-9700 CPU and 16 GB of
AM. The values on the 𝑋 axis in Fig. 4 reflect the size of the used
hared memory (i.e., the actual values set for SHARED_ARR_SZ in
isting 2) adopted in the respective experiment.

4 Our approach is valid for other modern GPUs that have shared memory.
9

We have set the value of 𝑡𝑜𝑡𝑎𝑙𝑇 ℎ𝑟𝑒𝑎𝑑𝑠 in the kernel in Listing 2 to
be 220 when collecting the results for Fig. 4. This was to guarantee the
same number of shared memory read instructions being executed for
all test results shown in Fig. 4. This is important since the same read
instructions can produce different shared memory transactions. This is
not the case for the shared memory write instructions in rows 14, 15, 16
of lines Listing 2 since they always produce one transaction per warp for
each line. To make sure that the number of write operations in rows 14,
15, 16 do not alter the results, we have also experimented with writing
a fixed amount of values into shared memory for all tests. This gave the
same results as the ones depicted in Fig. 4. Therefore, the fixed writing
patterns had no significant impact on execution time.

As expected, we can see in Fig. 4 that, for a shared memory size
of 128 bytes (32 boxes), the execution times are the same for both the
maximum and minimum possible numbers of transactions, since they
equal one possible transaction per line. We also note that going above
the 4096 bytes (1024 boxes) yields similar execution times to the case
when the shared memory is exactly 4096 bytes. The small variance in
execution time above 4096 bytes is expected as there are other factors
(other processes, cache, etc.) that might impact the execution time.
The same argument can be made regarding the minimum possible
number of transactions for different shared memory sizes. We expect
the execution times to be the same since the number of minimum
shared memory transactions are the same (i.e., one per line in this
experiment).

As we can see from Fig. 4, our on-demand conflict-guided approach
has helped produce inputs that do impact the execution time of a
GPU kernel even when the number of executed instructions remains
the same. Such inputs can provide a programmer, that needs to meet

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.
Fig. 4. Execution time for the heatmap kernel with different shared memory sizes (i.e., the value of SHARED_ARR_SZ) and inputs that yield minimum/maximum shared memory
transactions. All execution are performed with 220 threads. Each box is 4 consecutive bytes that are handled by the same bank.
execution time deadline requirements, with information on where the
trade-off point is when selecting between program performance and
output precision. The program’s worst case performance is better for
a smaller used shared memory in Listing 2 (see Fig. 4). However,
selecting a larger shared memory for the filters allows the programmer
to have a higher precision filter when representing heatmap colors. This
higher precision comes with the cost of a degrading performance, as our
results show in Fig. 4. Our approach allows the designer to choose the
best quality alternative affordable from the point of view of execution
time.

5.2. Additional experiments and comparison of WCET estimations

We have applied the same approach presented in Section 5.1 to
detect the worst case performance for two more GPU kernels. One
of them is a 256-bin histogram implementation [38]. The other is a
convolution kernel in which access to the shared memory depends on
the values of the input. Furthermore, we have compared the execution
time with respect to inputs derived by our on-demand conflict-guided
approach for maximum numbers of shared memory transactions against
the execution times produced by a recent WCET estimation tool for GPU
kernels. The tool (GDivAn [35]) uses a combination of symbolic exe-
cution and genetic algorithm to analyze the kernel structure (symbolic
execution part) and converge towards the WCET (genetic algorithm
part). The results of the comparison are listed in Table 2.

Like for the heatmap kernel procedure from Section 5.1, the on-
demand conflict-guided approach is used to find an input with a
maximum number of shared memory bank transactions. For this, the
code analysis needs to terminate before testing the obtained concrete
input on a real GPU. This is unlike the approach adopted by GDivAn
where new inputs are continuously generated via the genetic algorithm
part and tested on a real GPU. Therefore, during the execution of
GDivAn, the measured WCET might be found earlier than the allocated
analysis time. That is the reason the GDivAn tool has an extra column
in Table 2 which corresponds to when the measured WCET was found.
We also note that the GDivAn tool can continue to search for a
higher WCET if more analysis time is allocated. However, for all the
applications in Table 2, after the allocated analysis time (i.e., ‘‘Total
analysis time’’), at least 10 generations (in the genetic algorithm part)
have passed with no detected improvement.

We can see from Table 2 that our on-demand conflict-guided ap-
10

proach outperforms GDivAn by detecting inputs that lead to execution
times that are between 16,9% and 270,8% larger. This is due to the fact
that our proposed approach explicitly reasons about hardware related
aspects, specifically the number of shared memory transactions.

6. Application to side-channel analysis

Side-channel attacks leverage on observations of micro-architectural
behaviors during program executions to leak information about secret
inputs, including keys for cryptographic algorithms. Such observations
may involve estimating energy consumption, specific cache misses or
their numbers in sequential programs, or numbers of shared memory
transactions in GPU implementations.

Fig. 5 was obtained by observing the number of generated shared
memory transactions for a GPU implementation (provided in [5]) of
the cryptographic algorithm AES with a fixed plaintext and for 30 000
randomly chosen 128-bits long keys. The figure represents the distri-
bution of the sampled keys in terms of the number of shared memory
transactions they yield. Recall that the AES cryptographic algorithm
takes as inputs a secret key and a plaintext to be encrypted and
returns the encrypted text. The dependence of the number of shared
memory transactions on the input can be explained as follows. AES
implementations on GPU devices can store tables in the shared memory
of the device. Table values that are actually read from the shared
memory during execution depend on the plaintext and on the secret
key. The number of shared memory transactions for a fixed plaintext
can be observed by an attacker feeding the implementation with the
text and measuring the time taken by the execution or by profiling
the execution. Fig. 5 illustrates two relevant aspects for side-channel
attacks: (i) secret inputs may result in different observations, and (ii)
observations can leak different amounts of information. Indeed, an
observation that is only possible with few keys will be more valuable
to an attacker than an observation that can be obtained from most
keys. Extreme cases include situations where all keys give the same
observation (no information is leaked as attackers cannot differentiate
keys based on the observation) or when an observation is only possible
with a specific key (highest possible leakage as attackers can deduce
the key just from witnessing the observation).

Attack models. Application of our framework to the analysis of side-
channel information leakage assumes the possibility for the attacker to
observe the number of shared memory transactions. We assume the

attacker can identify the start and the end of a GPGPU routine to

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.

t
v
p
a
m
o
f
i
a
a
b
c
g

Table 2
Analysis of WCET using GDivAn versus on-demand conflict-guided approach. All experiments were performed on an NVIDIA GeForce RTX
2060 SUPER GPU with an Intel i7 machine having 16 GB RAM and running Ubuntu 18.04.

Program GDivAn On-demand % increase by using
name conflict-guided the On-demand

approach conflict-guided approach

WCET WCET reached Total analysis WCET Total analysis WCET value
(ms) after (s) time (s) (ms) time (s) improvement (%)

Heatmap 0.140 1117 2000 0.482 90 244.2%
Histogram256 1.738 379 1709 2.033 6 16.9%
Convolution 1.083 2188 2339 4.016 316 270.8%
Fig. 5. Example of side-channel observations and their distribution. Plotting the number of keys (30 000 randomly chosen ones) leading to the same number of shared memory
transactions for a GPU implementation [5] of AES-128.
accurately attribute the number of shared memory transactions to the
routine. This is in line with the synchronous attack model explored in
earlier work [39]. Our work also assumes data-race free GPU programs.
Without this assumption, actual executions might depend on the under-
lying scheduler, something we do not have access to. In addition, we
do not account for executions of other kernels on the same device or
for transfers from global/main memory or for memory leakage outside
the GPU (e.g., in preprocessing steps involving the secret information
on the host). Executions of other kernels will result in additional shared
memory transactions, but these can be analyzed in isolation given there
is space for both kernels in the shared memory. We assume such a
strong attacker model as it helps us to stress the weaknesses of an
application in a favorable situation for the attacker. Still, symbolically
reasoning about observable shared memory transactions will be at the
core of extensions to this work. For instance, by developing bank-
conflict-aware abstractions for preprocessing steps and exposing them
to the analysis on the device.

Quantifying extreme leakage. In this section, we target GPU implemen-
ations of the AES-128 cryptographic algorithm and adopt as obser-
ations the number of shared memory transactions. We assume the
laintext is known to the attacker. We could use our conflict-guided
pproach to check feasibility of cliques corresponding to minimum and
aximum numbers of memory transactions. This would put a bound

n the number of possible observations. We choose to go one step
urther. We conjecture, based on the results from Fig. 5, that few secret
nputs result in maximum numbers of shared memory transactions
nd settle for quantifying information leakage when observing such
n extreme number of transactions. Quantifying this leakage is well
eyond capabilities of existing works and is made possible because our
onflict-guided approach can either provide secret keys that exhibit a
iven number of shared memory transactions or refute their existence
11
Table 3
Considered GPU implementations of AES-128.

Implementation Keys Min Min Rounds Lines Unique
plaintext threads (total) lines

OpenSSL [6] 16 bytes 16 bytes 4 2 (16) 24 12
ISPASS [5] 16 bytes 16 bytes 4 2 (16) 16 12

if no such keys exist. Recall that the keys are 128 bits long and
that enumerating all of them to count those resulting in the targeted
number of transactions is not feasible. To quantify memory leakage
we need to generate symbolic constraints capturing all keys that result
in a maximum number of shared memory transaction, and then to
count/estimate the number of keys satisfying the constraints.

Generating constraints and choosing plaintexts. We did experiment with
two GPU implementations (see Table 3). Each one of the two imple-
mentations performs 16 rounds in total. AES implementations strive
to hide input values (plaintext and secret keys) by repeatedly mixing
their values with those of the tables. Our tool could prune duplicate
lines according to Section 4.4. We could build symbolic constraints for
the maximum cliques for the first two rounds of each implementation.
The generated constraints became too large beyond these rounds. As
seen in Table 3, the constraints correspond to 12 unique lines for each
implementation and represents the first 24 lines of the OpenSSL [6]
implementation and the first 16 lines of the ISPASS [5] implementation.
The size of the secret key is fixed to 16 bytes for AES-128. We decided
to adopt 16 bytes plaintexts as they are the smallest size that the
considered AES implementations handle. Each 16 bytes of the plain
text are handled by 4 threads in the implementations. We used our
conflict-guided approach to check the existence of a plaintext and a key
corresponding to maximum numbers of shared memory transactions

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.
Fig. 6. Histogram of analysis times for AES ISPASS and OpenSSL versions. The X axis contains the interval for the analysis time in minutes. The Y axis shows how many of the
analysis executions are in each interval.
during the first two rounds. This maximum number corresponds to
the sum, over the considered lines of each implementation, of the
maximum numbers of transactions possible for each line. For each
implementation, we obtained, in less than 300 s, a concrete 16 bytes
plaintext and a concrete 16 bytes key. We checked that they did indeed
result in the maximum number of memory transactions. Now that we
know this maximum number of transactions possible for the obtained
plaintexts, we focus on quantifying the number of possible keys which
lead to that maximum.

Counting and approximation. For each implementation, we use the
plaintext found earlier and focus on quantifying the number of keys
giving a maximum number of shared memory transactions. Recall the
keys are 16 bytes long. Maintaining these 16 bytes as symbolic values
in the generated constraints would characterize all keys resulting in
a maximum number of transactions. A simple approach would be to
query an SMT solver for concrete values of the 16 bytes that ensure the
constraint is satisfied, to exclude these values in the next constraint, and
to repeat until the constraint is unsatisfiable. This naive approach timed
out in 48 h without finding a single key. We propose in the following
to instead approximate the counting problem using multiple ‘‘smaller’’
SMT queries.

The idea is to generate several constraints instead of one, to check
their satisfiability, and to deduce from the outcomes an upper bound on
the number of possible keys. Intuitively, these constraints characterize
subsets of the possible keys. Concretely, each constraint is obtained
by setting one of the bytes 𝚋 ∶ 0 ≤ 𝚋 < 16 of the secret key to
a concrete value 𝚟 ∶ 0 ≤ 𝚟 < 256 while maintaining the other 15
bytes symbolic. This results in 16 × 256 = 4096 constraints. Each with
15 symbolic bytes instead of the original 16. Intuitively, a constraint
corresponding to setting byte 𝚋 to value v characterizes all keys with
𝚋 equal to v and resulting in a maximum number of shared memory
transactions. If a corresponding query is unsatisfiable, then none of
the 215×8 = 2120 keys with the same fixed byte value can result in
the targeted maximum number of shared memory transactions. An
attacker observing this number of transactions can exclude all of the
2120 considered keys. We can launch the 4096 queries and set a timeout
for each query. For each byte 𝚋 this results in a partitioning of the 256
queries into 𝑠𝑎𝑡(𝚋), 𝑢𝑛𝑠𝑎𝑡(𝚋) and 𝑡𝑖𝑚𝑒𝑑_𝑜𝑢𝑡(𝚋) numbers of queries with
𝑠𝑎𝑡(𝚋)+ 𝑢𝑛𝑠𝑎𝑡(𝚋)+ 𝑡𝑖𝑚𝑒𝑑_𝑜𝑢𝑡(𝚋) = 256. An upper bound on the number of
secret keys yielding the observation is then ∏255 (256 − 𝑢𝑛𝑠𝑎𝑡(𝚋)).
12

𝚋=0
Obtained results. We launched the 4096 queries in parallel on the
Tetralith supercomputer [40] with hundreds of nodes each running
CentOS 7 with two Intel Xeon Gold 6130 and at least 96 GiB of RAM.
We installed the SMT solver Z3 [41] version 4.4.1 on the nodes and ex-
ported the 4096 SMT queries from the internal KQuery representation
of GKLEE to the standard SMT2 [42] format. We had one file per SMT
query and it took 3 h to sequentially generate all SMT2 files. Individual
files were approximately 50 MiB each for ISPASS and 30 MiB each for
the OpenSSL version. We used a timeout of 32 h per query. As depicted
by the histograms in Fig. 6, more than 75% of the queries terminated
within two hours and 96% of them terminated within ten hours. Only
nine (respectively 35) out of the 4096 queries timed out for the ISPASS
implementation (respectively the OpenSSL implementation).

We report on the outcome of the SMT queries in Fig. 7. The figure
shows, for each of the 16 bytes between 0 and 15, the number of queries
(between 0 and 256) for which the SMT solver returned UNSAT. As can
be observed from the figure, most queries were unsatisfiable. In fact, for
each version, only one query per byte was satisfiable. The other queries
being unsatisfiable or having timed out. That means that there are only
a few combinations of keys that can lead to the maximum possible
number of shared memory transactions for the chosen plaintexts. We
obtained different key and plaintext values for the two versions. We
also checked that the obtained concrete keys (when the SMT solver
returned SAT) did indeed result in the maximum numbers of shared
memory transactions for the corresponding implementation. Based on
the number of UNSAT queries for each byte, we can deduce the
following bounds:

• For the ISPASS implementation: there are at most (256 − 245)2 ×
(256−248)×(256−252)2×(256−254)2×(256−255)9 < 215.92 keys that
may result in a maximum number of shared memory transactions.
This represents an established leakage of at least 112.08 out of
the 128 bits of secret information.

• For the OpenSSL implementation: there are at most (256−253)3 ×
(256 − 254)3 × (256 − 255)10 < 26.17 keys that may result in a
maximum number of shared memory transactions.
This represents an established leakage of at least 121.83 out of
the 128 bits of secret information.

These results indeed confirm that very few keys may result in a
maximal number of shared memory transactions. Recall that we con-

jectured, based on testing 30 000 randomly chosen keys as depicted in

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.
Fig. 7. Histogram of leaked values per byte for AES ISPASS and OpenSSL versions. The X axis specifies which byte index was set during the analysis. The Y axis shows how many
of the analysis executions, out of 256 possible values, have returned unsatisfiable (UNSAT) from the Z3 solver analysis.
Fig. 5, that observing a maximal number of shared memory transactions
would leak an important amount of information about the secret keys.
Testing all possible 2128 keys to count how many result in the same
maximal number of shared memory transactions is not feasible. Our
on-demand conflict-guided approach allowed us to formally establish
lower bounds (at least 112 bits out of the possible 128 bits) on the
amount of information leakage.

7. Conclusion

We have introduced two encodings to symbolically reason about
possible occurrences of shared memory bank conflicts in GPU pro-
grams. One encoding captures bank conflicts by focusing on the number
of accesses to each shared memory word (used in the direct approach).
The other encoding captures bank conflicts by focusing on the possible
conflicts among threads of the same warp (used in the conflict-guided
approach). We have proposed a refined version of the conflict-guided
approach that proved to produce faster analysis times than the other
approaches. We call this refined version the on-demand conflict-guided
approach.

We have shown how our on-demand conflict-guided approach makes
it possible to provide concrete program inputs that lead to different
numbers of shared memory transactions. We give examples of how
this can be used for both performance and security analysis of GPU
programs. For performance analysis, our approach could provide inputs
that directly impact execution time. For security analysis, our approach
can be used to provide bounds on the amount of information leakage
when a number of shared memory transactions is observed.

In future work we plan to further refine our on-demand conflict-
guided approach with speed-ups regarding preprocessing of lines, mem-
ory management and multi-threaded GKLEE analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was partially supported by the Swedish Research
Council under grant number 2017-04194. This research was also par-
tially supported by the Singapore Ministry of Education (MOE) grant
13
number MOE2018-T2-1-098 and National Research Foundation (NRF)
grant number NRF2019-NRF-ANR092.

The computations and data handling were enabled by resources
provided by the Swedish National Infrastructure for Computing (SNIC),
partially funded by the Swedish Research Council through grant agree-
ment no. 2018-05973.

References

[1] J. Gomez-Luna, J.M. Gonzalez-Linares, J.I.B. Benitez, N.G. Mata, Performance
modeling of atomic additions on GPU scratchpad memory, IEEE Trans. Parallel
Distrib. Syst. 24 (11) (2012) 2273–2282.

[2] X. Mei, K. Zhao, C. Liu, X. Chu, Benchmarking the memory hierarchy of modern
GPUs, in: IFIP International Conference on Network and Parallel Computing,
Springer, 2014, pp. 144–156.

[3] X. Zhang, G. Tan, S. Xue, J. Li, K. Zhou, M. Chen, Understanding the gpu
microarchitecture to achieve bare-metal performance tuning, in: Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2017, pp. 31–43.

[4] G. Pagès, B. Wilbertz, GPGPUs in computational finance: Massive parallel
computing for American style options, Concurr. Comput.: Pract. Exper. 24 (8)
(2012) 837–848.

[5] S.A. Manavski, CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography, in: 2007 IEEE International Conference on Signal Processing
and Communications, IEEE, 2007, pp. 65–68.

[6] J. Gilger, J. Barnickel, U. Meyer, GPU-acceleration of block ciphers in the
OpenSSL cryptographic library, in: D. Gollmann, F.C. Freiling (Eds.), Information
Security, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 338–353.

[7] P. Harish, P.J. Narayanan, Accelerating large graph algorithms on the GPU using
CUDA, in: International Conference on High-Performance Computing, Springer,
2007, pp. 197–208.

[8] S. Hong, S.K. Kim, T. Oguntebi, K. Olukotun, Accelerating CUDA graph
algorithms at maximum warp, ACM SIGPLAN Not. 46 (8) (2011) 267–276.

[9] X. Sierra-Canto, F. Madera-Ramirez, V. Uc-Cetina, Parallel training of a
back-propagation neural network using CUDA, in: 2010 Ninth International
Conference on Machine Learning and Applications, IEEE, 2010, pp. 307–312.

[10] H. Grahn, N. Lavesson, M.H. Lapajne, D. Slat, CudaRF: a CUDA-based imple-
mentation of random forests, in: 2011 9th IEEE/ACS International Conference
on Computer Systems and Applications (AICCSA), IEEE, 2011, pp. 95–101.

[11] N. Mittal, S. Kumar, et al., Machine learning computation on multiple GPU’s us-
ing CUDA and message passing interface, in: 2019 2nd International Conference
on Power Energy, Environment and Intelligent Control (PEEIC), IEEE, 2019, pp.
18–22.

[12] CUDA toolkit documentation, 2021, URL http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

[13] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, S.P. Rajan, GKLEE: concolic
verification and test generation for GPUs, in: PPOPP, 2012, pp. 215–224.

[14] CUDA profiler page, 2021, URL https://docs.nvidia.com/cuda/profiler-users-
guide/index.html.

http://refhub.elsevier.com/S1383-7621(22)00085-6/sb1
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb1
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb1
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb1
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb1
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb2
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb4
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb5
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb6
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb7
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb8
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb8
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb8
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb9
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb10
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb11
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb13
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb13
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb13
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Journal of Systems Architecture 127 (2022) 102518A. Horga et al.
[15] Radeon GPU profiler page, 2021, URL https://gpuopen.com/rgp/.
[16] Y. Iwase, D. Abe, T. Yakoh, GPGPU aided method for real-time systems, in:

IEEE 10th International Conference on Industrial Informatics, IEEE, 2012, pp.
841–845.

[17] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, R. Rajkumar, RGEM:
A responsive GPGPU execution model for runtime engines, in: 2011 IEEE 32nd
Real-Time Systems Symposium, IEEE, 2011, pp. 57–66.

[18] A. Majumdar, L. Piga, I. Paul, J.L. Greathouse, W. Huang, D.H. Albonesi,
Dynamic GPGPU power management using adaptive model predictive control, in:
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA), IEEE, 2017, pp. 613–624.

[19] S. Hong, H. Kim, An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness, in: Proceedings of the 36th Annual
International Symposium on Computer Architecture, 2009, pp. 152–163.

[20] S.S. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp, W.-m.W. Hwu, An adaptive
performance modeling tool for GPU architectures, in: Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2010, pp. 105–114.

[21] I. Baldini, S.J. Fink, E. Altman, Predicting GPU performance from CPU runs using
machine learning, in: 2014 IEEE 26th International Symposium on Computer
Architecture and High Performance Computing, IEEE, 2014, pp. 254–261.

[22] M. Amaris, R.Y. de Camargo, M. Dyab, A. Goldman, D. Trystram, A comparison of
GPU execution time prediction using machine learning and analytical modeling,
in: 2016 IEEE 15th International Symposium on Network Computing and
Applications (NCA), IEEE, 2016, pp. 326–333.

[23] T.T. Dao, J. Kim, S. Seo, B. Egger, J. Lee, A performance model for GPUs with
caches, IEEE Trans. Parallel Distrib. Syst. 26 (7) (2014) 1800–1813.

[24] K. Hamaya, S. Yamane, et al., Detecting bank conflict of GPU programs using
symbolic execution—Case study, J. Softw. Eng. Appl. 10 (02) (2017) 159.

[25] A. Betts, N. Chong, A.F. Donaldson, J. Ketema, S. Qadeer, P. Thomson, J.
Wickerson, The design and implementation of a verification technique for GPU
kernels, ACM Trans. Program. Lang. Syst. 37 (3) (2015) http://dx.doi.org/10.
1145/2743017.

[26] P. Pereira, H. Albuquerque, I. da Silva, H. Marques, F. Monteiro, R. Ferreira,
L. Cordeiro, SMT-based context-bounded model checking for CUDA programs,
Concurr. Comput.: Pract. Exper. 29 (22) (2017) e3934.

[27] S. Blom, M. Huisman, M. Mihelčić, Specification and verification of GPGPU
programs, Sci. Comput. Program. 95 (2014) 376–388.

[28] R. Alur, J. Devietti, O.S.N. Leija, N. Singhania, Static detection of uncoalesced
accesses in GPU programs, Form. Methods Syst. Des. (2021) 1–32.

[29] Z.H. Jiang, Y. Fei, D. Kaeli, A novel side-channel timing attack on GPUs, in:
Proceedings of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 167–172.

[30] Z.H. Jiang, Y. Fei, D. Kaeli, Exploiting bank conflict-based side-channel timing
leakage of GPUs, ACM Trans. Archit. Code Optim. (TACO) 16 (4) (2019) 1–24.

[31] B. Köpf, L. Mauborgne, M. Ochoa, Automatic quantification of cache side-
channels, in: International Conference on Computer Aided Verification, Springer,
2012, pp. 564–580.

[32] G. Doychev, B. Köpf, L. Mauborgne, J. Reineke, Cacheaudit: A tool for the static
analysis of cache side channels, ACM Trans. Inf. Syst. Secur. 18 (1) (2015) 4.

[33] C.S. Pasareanu, Q.-S. Phan, P. Malacaria, Multi-run side-channel analysis using
symbolic execution and max-SMT, in: 2016 IEEE 29th Computer Security
Foundations Symposium (CSF), IEEE, 2016, pp. 387–400.

[34] S. Chattopadhyay, M. Beck, A. Rezine, A. Zeller, Quantifying the information
leakage in cache attacks via symbolic execution, ACM Trans. Embedded Comput.
Syst. (TECS) 18 (1) (2019) 1–27.

[35] A. Horga, S. Chattopadhyay, P. Eles, Z. Peng, Genetic algorithm based estimation
of non–functional properties for GPGPU programs, J. Syst. Archit. 103 (2020)
101697.

[36] L. De Moura, N. Bjørner, Satisfiability modulo theories: Introduction and
applications, Commun. ACM 54 (9) (2011) 69–77.

[37] C. Barrett, A. Stump, C. Tinelli, The SMT-LIB Standard: Version 2.0, in: A. Gupta
and D. Kroening (Eds.), Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[38] CUDA toolkit samples, 2021, URL https://docs.nvidia.com/cuda/cuda-samples/
index.html.

[39] E. Tromer, D.A. Osvik, A. Shamir, Efficient cache attacks on AES, and
countermeasures, J. Cryptol. 23 (1) (2010) 37–71.
14
[40] Tetralith supercomputer page, 2021, URL https://www.nsc.liu.se/systems/
tetralith/.

[41] Z3 SMT solver page, 2021, URL https://github.com/Z3Prover/z3.
[42] SMT2 language manual, 2021, URL https://smtlib.cs.uiowa.edu/language.shtml.

Adrian Horga is currently a Ph.D. student at the Depart-
ment of Computer and Information Science (IDA), Link̈öping
University. He received his M.Sc. in Information Technology
at Politehnica University of Timişoara (UPT), Romania in
2013. His research interests include parallel computing,
embedded systems, software analysis and testing.

Ahmed Rezine received his engineering degree from the
Polytechnic School of Tunisia in 2002, and his Ph.D. degree
in computer science from Uppsala University, Sweden in
2008. He was a Post-Doctoral Research Fellow both at the
University of Paris Diderot, France and at Uppsala Univer-
sity. He is currently an Associate Professor of Computer
Science at the Department of Computer and Information
Science, Linköping University, Sweden. His current research
interest includes extending the applicability of automated
formal verification to larger and more complex computer
systems. Dr. Rezine was a recipient of the Best Paper Award
at the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems.

Sudipta Chattopadhyay is an Assistant Professor at the
Information Systems Technology and Design (ISTD) Pillar
at Singapore University of Technology and Design (SUTD).
He received his Ph.D. in computer science from National
University of Singapore (NUS) in 2013. His research inter-
ests include software analysis and testing, with a specific
focus on designing efficient and secure software systems.

Petru Eles is Professor of Embedded Computer Systems with
the Department of Computer and Information Science (IDA),
Linköping University. Petru Eles’ current research interests
include embedded systems, real-time systems, electronic de-
sign automation, cyber–physical systems, hardware/software
codesign, low power system design, fault-tolerant systems,
design for test. He has published a large number of techni-
cal papers in these areas and co-authored several books.
Petru Eles received several best paper awards at major
Conferences.

Zebo Peng is currently Professor of Computer Systems,
Director of the Embedded Systems Laboratory, and Vice-
Chairman of the Department of Computer Science at
Linköping University. His current research interests include
design and test of embedded systems, electronic design
automation, SoC testing, fault tolerant design, hardware/-
software co-design, and real-time systems. He has published
more than 350 technical papers and five books in these
areas, and received four best paper awards and one best
presentation award in major international conferences.

https://gpuopen.com/rgp/
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb16
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb17
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb18
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb21
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb22
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb23
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb23
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb23
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb24
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb24
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb24
http://dx.doi.org/10.1145/2743017
http://dx.doi.org/10.1145/2743017
http://dx.doi.org/10.1145/2743017
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb26
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb27
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb27
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb27
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb28
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb28
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb28
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb30
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb31
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb31
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb31
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb31
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb31
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb32
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb32
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb32
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb33
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb33
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb33
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb33
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb33
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb34
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb35
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb35
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb35
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb35
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb35
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb36
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb36
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb39
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb39
http://refhub.elsevier.com/S1383-7621(22)00085-6/sb39
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/systems/tetralith/
https://github.com/Z3Prover/z3
https://smtlib.cs.uiowa.edu/language.shtml

	Symbolic identification of shared memory based bank conflicts for GPUs
	Introduction
	Background
	Identifying bank conflicts in a simple example
	Symbolic identification of bank conflicts
	Direct approach
	Conflict-guided approach
	On-demand conflict-guided approach
	Direct approach vs. On-demand conflict-guided approach

	Application to performance analysis
	Deriving extreme numbers of shared memory transactions
	Additional experiments and comparison of WCET estimations

	Application to side-channel analysis
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

