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Abstract—Internet-of-Things (IoT) devices have become
widely popular and are being increasingly utilized in both home
and industrial environments. Such devices use a variety of
different protocols for communication. Considering the complex
and stateful nature of these protocols, their implementations
may contain security vulnerabilities and are subject to remote
exploitation. To address this, we present U-FUZZ, a framework
to systematically discover and replicate security vulnerabilities
on arbitrary wired and wireless IoT protocol implementations.
Given only a network capture file which contains the packet
traces of normal (i.e., benign) communication, U-FUZZ auto-
matically constructs a protocol state machine. Subsequently,
this state machine is leveraged via a stateful fuzzing engine to ar-
bitrarily manipulate and replay communicated packets. U-FUZZ

carefully disintegrates the design of state machine construction
from the fuzzing actions and optimizations, allowing U-FUZZ

to work with an arbitrary number of protocols without any
change in the stateful fuzzing engine. U-FUZZ does not require
any access to the source code of the protocol and it also does not
involve any instrumentation. This makes U-FUZZ to applicable
out-of-the-box for fuzzing arbitrary IoT devices employing a
variety of protocols. We implemented U-FUZZ and applied it
against ten subject implementations including implementations
on five commercial-off-the-shelf (COTS) devices employing three
popular IoT protocols: 5G NR, Zigbee, and CoAP. As of today,
U-FUZZ discovered a total of 11 new vulnerabilities (out of 16)
and CVEs have already been assigned to all of them.

I. INTRODUCTION

The massive progress of internet-of-things (IoT) has re-

sulted in a significant number of applications across various

domains including smart homes, healthcare and robotics.

However, security vulnerabilities in IoT communication

protocols may lead to severe consequences. Moreover, since

many IoT protocols are wireless, such security vulnera-

bilities can be exploited over-the-air, leading to denial-of-

service (DoS), security bypass, and information leakage [3],

[16]. Therefore, it is critical to systematically detect security

vulnerabilities in IoT protocol implementations. This is

also significantly challenging, as such implementation in

commercial-off-the-shelf (COTS) devices is closed-source,

rendering any instrumentation of its code impractical.

In this paper, we propose U-FUZZ, a framework to

systematically discover and replicate security vulnerabilities

in both wired and wireless IoT protocol implementations.

The key idea embodied in U-FUZZ is a generic state
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Fig. 1. Positioning of U-FUZZ in relation to previous state-of-the-art IoT
fuzzers. Semi. means semi-automatic state machine generation, while auto.
means automatic.

mapping technique, that takes as input a normal (i.e.,

benign) communication trace and automatically creates an

abstract state machine for arbitrary (IoT) protocol imple-

mentations. Along with the state machine, U-FUZZ also

creates a condition, which, is used during fuzzing to map

an arbitrary packet to a protocol state. Such an on-the-fly

state mapping then guides the fuzzing process to optimize

a user-configurable cost function e.g., maximizing the state

machine transitions. U-FUZZ fuzzing engine is placed as a

man-in-the-middle, which only intercepts regular packets

and systematically manipulates the communication traffic

as guided by the cost function. In this fashion, U-FUZZ

aims to provide a general methodology for stateful fuzzing

of arbitrary IoT protocols even without any access to the

source code. To minimize developer effort, U-FUZZ employs

a simple heuristic to create an exploit script with minimal

malformed communication. Such an exploit replicates each

discovered vulnerability via fuzzing.

Figure 1 illustrates the positioning of our work with

respect to the existing works on (stateful) fuzzing. Existing

works on protocol fuzzing have only focused on specific

protocols e.g., DTLS [10] [11], Bluetooth Low Energy [29],

MQTT [1], EDHOC [36] to learn the state machine auto-

matically (indicated in Figure 1 by arrow 3 and the cus-

tom interface icon). Furthermore, other works on protocol

fuzzing demand: 1 the availability of source code and

code instrumentation [4], [30], 2 manually creating state

machines for fuzzing [15], [16] and 3 manually creating



state mapping rules for stateful fuzzing [13]. Finally, even

though a recent work 3 supports multiple IP-based proto-

col fuzzing [9], [21], it is not applicable for fuzzing many

widely used wireless protocols in IoT such as Zigbee that

uses the ZNP protocol with serial interface, and 5G NR

protocol that is shared-memory controllable. Thus, extend-

ing such work [9], [21] for COTS IoT protocol implementa-

tions involves significant engineering to mention the least.

Moreover, the unavailability of the implementation [21]

makes any extension to the work infeasible in practice. In

contrast, our U-FUZZ approach ( 4 in Figure 1) provides

an open platform, it applies to arbitrary wired and wireless

protocol implementations using generic fuzzing interfaces

and systematically explores the state-space of IoT protocols

without having access to the source code and without any

instrumentation. The open platform also makes it easy to

extend U-FUZZ for other IoT protocols. After providing

a brief overview of U-FUZZ (Section II), we make the

following contributions:

1) We present U-FUZZ state mapping technique, which

takes as input only a network capture file and con-

structs the state machine and conditions for state

mapping for arbitrary IoT protocols (Section III-A).

2) We present U-FUZZ stateful, man-in-the-middle

fuzzing engine that seamlessly integrates with the pro-

posed state mapping technique, thus, allowing guided

stateful fuzzing of IoT protocol implementations. Such

a disintegration of the state mapping and stateful

fuzzing engine easily allows to reuse the same fuzzing

engine across several protocols (Section III-B).

3) We present our simple heuristic to reproduce IoT

vulnerabilities with minimal manipulation to commu-

nication traffic (Section III-D) and launch concrete

attacks on COTS IoT devices exploiting the vulnera-

bilities found by U-FUZZ (Section V-E).

4) We present our implementation and integration of U-

FUZZ across popular IoT protocols with varying com-

plexities i.e., CoAP, Zigbee, and 5G NR. (Section IV).

5) We evaluate U-FUZZ against implementations of both

IP-based and wireless protocols using ten subject

implementations including implementations on five

commercial-off-the-shelf (COTS) devices. Our evalua-

tion reveals 11 new vulnerabilities (out of a total 16),

CVEs are already assigned to all. (Section V).

After discussing the related work (Section VI), we conclude

in Section VIII.

II. BACKGROUND AND FRAMEWORK OVERVIEW

A. Background

In this section, we introduce the background knowledge

for the IoT protocols targeted by our U-FUZZ approach.

1) 5G NR: 5G cellular network architecture consists of

three key components: The gNodeB (gNB), User Equipment

(UE), and Core Network. The gNB is also known as the

base station in the traditional cellular network. It serves as
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Fig. 2. Illustration of the U-FUZZ approach depicting key components: a
multi-protocol state mapper (highlighted in light yellow), communication
between IoT APP and SUT (in blue), interception of packets (via green
arrows) and fuzzing engine (highlighted in white) that mutates or injects
packets towards the SUT.

the access point for wireless communication between the

UE and the 5G core network. The UE refers to end-user

devices, such as smartphones. Lastly, the Core Network acts

as the backbone of the 5G architecture by providing con-

trol and management functions, including authentication,

security, mobility management, session establishment, and

data routing between network entities.

Multiple protocols including Radio Resource Control

(RRC), Non-Access Stratum (NAS), Medium Access Control

(MAC), Packet Data Convergence Protocol (PDCP) and Ra-

dio Link Control (RLC) from both network layer (OSI layer

3) and data link layer (OSI layer 2) are involved to ensure

that the connection is securely established. We employ our

U-FUZZ approach for downlink (i.e., the communication

from the gNB to the UE) fuzzing.

2) Constrained Application Protocol (CoAP): CoAP is

a specialized web protocol designed for computing envi-

ronments with constraints on processing power, storage,

memory, and battery life. To meet the resource constraints,

CoAP aims to minimize the amount of data sent over

the network. CoAP is designed in a familiar client-server

model used by the Hypertext Transfer Protocol (HTTP). In

this model, clients send requests to the server using spe-

cific method codes to perform actions on server resources,

identified by Uniform Resources Identifiers (URIs). CoAP

employs a set of method codes that align with the principles

of Representational State Transfer (REST). These methods

include GET, POST, PUT and DELETE
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Fig. 3. An illustration of the U-FUZZ workflow in discovering and replicating the zero-day vulnerability V1 (see Table V)

3) Zigbee: Zigbee is a wireless communication proto-

col designed for short-distance, low-power networks. It’s

distinguished by forming mesh networks, where devices

cooperate to relay messages, extending network reach and

reliability. Zigbee shines in smart homes, industrial automa-

tion and healthcare, offering secure and scalable solutions

for a variety of IoT needs. Within the Zigbee ecosystem,

devices fall into three categories: Coordinators, which man-

age the network; Routers, responsible for data relay and

specific tasks; and End Nodes, which communicate with

their parent nodes and can use batteries.

B. U-FUZZ workflow

Figure 2 outlines the workflow of U-FUZZ. Broadly, U-

FUZZ consists of three steps: State Machine Generation,

Fuzzing, and Post-Fuzzing Analysis.

One of the key contributions of our U-FUZZ approach

is to automatically construct the state machine of arbi-

trary (IoT) protocols (see the box highlighted in yellow in

Figure 2). Such is accomplished by subjecting our novel

state mapper to traces of network packet captures. The

state mapper embodied in U-FUZZ integrates all protocols

supported by Wireshark, as it relies on the Wireshark dis-

sectors for packet decoding. Nonetheless, custom protocols

can also be integrated within the U-FUZZ framework as

long as a custom dissector is provided. For example, in our

evaluation, we show the extensibility of U-FUZZ framework

beyond Wireshark by implementing a custom dissector for

Zigbee Network Processor (ZNP) interface. We detail the

state mapping process in Section III-A.

Once the state machine is generated by our state map-

ping process, it is leveraged systematically via a stateful

fuzzing engine (see “Fuzzing Engine" in Figure 2). Such a

fuzzing engine has two key functions: firstly, to generate

adversarial communication scenarios via packet mutation

and replay, and secondly, to perform an evolutionary search

on the possible packet mutations by employing a variety of

cost functions related to the state machine, as generated

by our state mapping process. For instance, we guide the

evolutionary fuzzing process to maximize the transition

coverage of the state machine. While we use the transition

coverage to compute the test adequacy of our fuzzing

sessions, other cost functions can easily be provided within

the U-FUZZ framework. We outline the key characteristics

of our stateful fuzzing engine in Section III-B.

It is worthwhile to mention that U-FUZZ incorporates

strategies to automatically detect crashes for effective

fuzzing. For 5G implementations on smartphones, the error

code and assertion violations can be easily collected from

device logs, whereas for CoAP, the server crash is also indi-

cated via the error code. However, for Zigbee devices, such

internal device logs are not available. Thus, we implement

custom crash detection techniques to reliably detect Zigbee

device crashes (detailed in Section III-C). As a byproduct of

crash detection, U-FUZZ also produces a communication

trace of the resulting crash. This communication trace is

a network capture that highlights the crash which subject

to the post-fuzzing analysis (see “Post-Fuzzing" analysis in

Figure 3) for automatically replicating SUT crashes obtained

during a fuzzing session. We discuss the details of our post

fuzzing analysis methodologies in Section III-D.

Running Example: Figure 3 illustrates U-FUZZ approach

in discovering and replicating vulnerability V1 – Invalid

CellGroupConfig (see Table V) on OnePlus Nord CE 2

smartphone employing MediaTek Dimensity 900 5G mo-

dem. Initially, 5G communication traces were provided

to the U-FUZZ for the 5G state machine generation. We

note that such a communication trace was valid packet

sequences captured during legitimate communication. After

the 5G state machine was generated, it was leveraged to

guide the fuzzing process to reach deeper states that result

in higher state machine coverage. In this way, U-FUZZ

is also likely to find vulnerabilities that demand covering

many transitions before reaching a vulnerable state. U-

FUZZ achieved 69.6% of model coverage by performing the

stateful evolutionary fuzzing, while the fuzzing without any

state machine guidance (see Figure 3) obtained 60.9% cov-

erage. More importantly, the higher coverage obtained by

the U-FUZZ approach resulted in finding multiple unique

5G vulnerabilities including V1, V2, V4, V5 (see Table V),

none of which were discovered without the state machine

guidance. An example of such a vulnerability is illustrated

in Figure 3. Without the state machine guidance (as shown

via “Random" in Figure 3), the zero-Day vulnerability V1

could not be found.

Figure 3 also illustrates the post-fuzzing process. Specif-
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ically, a vulnerable communication trace containing sev-

eral mutated packets (highlighted in purple) are shown

in Figure 3: (i) Malformed RRC Conn. Setup, (ii)

Malformed MAC-NR RA-RNTI and (iii) Malformed

MAC-NR RA-RNTI. After analyzing the attack vector, U-

FUZZ determines that the same vulnerability can be re-

produced even if the MAC-NR RA-RNTI packets are not

malformed. Indeed, during our evaluation, the attack vector

of V1 was computed to be just one malformed message,

as highlighted by Malformed RRC Conn. Setup plus

one legitimate connection process before sending the Mal-

formed RRC Conn. Setup. Consequently, U-FUZZ facilitates

development of an exploit script that intercepts the RRC

Conn. Setup message and modifies the packet fields

CellGroupId and SpCellConfig Present values to

2 and 0, respectively after a successful connection with

the base station (see the malformed RRC Conn. Setup

Figure 3). These modified packets are then released to the

target UE to reliably reproduce the vulnerability V1.

III. DESIGN OF U-FUZZ

A. Multi-Protocol State Mapper Design

Creating State Labels: As shown in Figure 2, the Multi-

Protocol State Mapper only requires one Wireshark capture

file from the user. Each packet in the capture file is parsed

and summarized into a nested dictionary PD . As shown in

Figure 4, the first key of PD is the packet number (e.g.,

Packet 1, Packet 2 etc.) and each entry contains the nested

dictionary of all the packet layers (e.g., udp and mac-

nr). The last node of the nested dictionary contains the

value of the protocol fields specified by its key (shown as

udp.dstport=9999 in Figure 4).

The Capture Processor also computes all the potential

states which ought to be included in the state machine.

To this end, it first considers the Wireshark description of

each packet and groups the packets by the same Wireshark

description. Concretely, this is done via a State Predication

Dictionary SP . For each 〈S,Pl i st 〉 ∈SP , S denotes the state

label created from the set of packets Pl i st grouped by

the same Wireshark descriptor. SP can also be optionally

refined by the user for fine-grained customization of the

state machine based on domain-specific knowledge.

Formalizing State Filters: We note that merely creating

the state labels is not sufficient for fuzzing arbitrary IoT
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protocols in a stateful fashion. Since U-FUZZ employs

stateful and man-in-the-middle fuzzing (see Section III-B),

we need to map an arbitrary packet to a state, for guiding

the fuzzing session. This, in turn, requires to create a

condition that could effectively map any communicated

packets to a state label, as captured in the State Predication

Dictionary SP . To this end, the Packet Summary Dictionary

and the State Predication Dictionary are leveraged by the

Filter Hunter component to search for such a condition (i.e.,

filter). Concretely, consider an arbitrary item 〈S,Pl i st 〉 ∈SP .

Our objective is to find condition ΦS as follows:

ΦS

(

n
⋃

i=1

Pi

)

= Pl i st (1)

where
⋃n

i=1
Pi is the set of all packets in the input capture

file and ΦS (P ) returns the set of packets from P that satisfies

the condition ΦS .

Generating State Filters: As shown in Equation 1, we aim to

generate the set of filters ΦS for each 〈S,Pl i st 〉 appearing in

the State Predication Dictionary. For a large enough network

capture file, this is a challenging task due to the massive

search space involving potential filters. We employ simple,

yet effective heuristics to address such challenges.

The search for a common filter, to classify the packets in

an arbitrary state 〈S,Pl i st 〉, starts by searching the common

layers in all packets P ∈ Pl i st . Once such a set of common

layers, say layers(Pl i st ) are found, we attempt to find the

filtering condition starting from the bottom-most layer in

layers(Pl i st ). This is because such bottom layer is often the

most relevant to informing the state of the packet during

communication. For example, the set of layers for three

5G packets in a communication is illustrated in Figure 5.

These three packets have the same Wireshark descriptor

and hence, are grouped into the same state. While the frame

layer is an implementation-specific tweak in Wireshark

and is irrelevant, we note that layers(Pl i st ) in Figure 5

corresponds to {UDP,MAC,RLC}. Since RLC is the bottom-

most layer in layers(Pl i st ), the search process is attempted

on the fields of RLC layer first.

Let us assume L ∈ layers(Pl i st ) and we aim to find the

characteristics of fields in the layer L that accurately classify

the set of packets Pl i st . To this end, U-FUZZ first creates a

set of atomic filters Filterl i st as follows:

cf l i st =
⋂

P∈Pl i st

{

f | f ∈ fields(P,L)
}

(2)



cvl i st =
⋂

P∈Pl i st

{

f : v | f ∈ cf l i st ∧ v = value(P, f )
}

(3)

Filterl i st = cf l i st

⋃

cvl i st (4)

where fields(P,L) is the set of fields in layer L of packet

P and value(P, f ) is the value of field f in packet P .

Intuitively, cf l i st creates the list of common fields across

all packets in Pl i st . Similarly, cvl i st creates the list of

common field, value pairs across packets in Pl i st . Finally,

the set of atomic filters is created as a union of cf l i st and

cvl i st i.e., the set of common field names and common

field, value pairs, respectively. As illustrated in Figure 4

for Packet 1 and Packet 2, cf l i st is {nr − r r c.c1,nr −

r r c.est abl i shmentC ause}. However, cvl i st is {nr −r r c.c1 :

1}, as only the field nr − r r c.c1 contains the same value

(one) across both Packet 1 and Packet 2.

Once Filterl i st is generated, the final step is to scan

through this list to find the accurate filter ΦS such that

ΦS

(

⋃n
i=1

Pi

)

= Pl i st (Equation 1) holds. To this end, U-

FUZZ first takes ΦS = filter ∈ Filterl i st and checks whether

Equation 1 holds. If no such filter is found, then U-FUZZ

tightens the condition ΦS by combining multiple elements

from Filterl i st shown as 3 in Figure 2. For example, consider

the illustration shown in Figure 4. If none of the atomic

filters can accurately classify Packet 1 and Packet 2,

then we combine multiple filters {nr − r r c.c1, nr −

r r c.est abl i shmentC ause} (i.e., the presence of both fields

nr − r r c.c1 and nr − r r c.est abl i shmentC ause) and {nr −

r r c.c1 = 1, nr − r r c.est abl i shmentC ause} (i.e., the pres-

ence of field value nr − r r c.c1 = 1 and the presence of

field nr − r r c.est abl i shmentC ause). Intuitively, we seek

a stricter condition to accurately filter Packet 1 and

Packet 2 from the list of all packets. While the afore-

mentioned process leads to combinatorial explosion, in our

evaluation, we almost always found the accurate filters by

combining at most two atomic filters.

Finally, we note that the above process is repeated for

each common layer if a filter ΦS is not found to hold

ΦS

(

⋃n
i=1

Pi

)

= Pl i st . In the case the state mapper fails

to find any common filter, such packets are mapped to

an “Unknown" state and the fuzzer will not mutate such

packets during the fuzzing session (shown as 2 in Figure 2).

The outcome of this state mapping process is a list of

〈Si ,ΦSi
〉 where Si is the protocol state label and ΦSi

is the

respective filter (condition) to label a packet with state Si .

Thus, during the fuzzing process, if an arbitrary packet P

satisfies the condition ΦSi
, then P is mapped to state Si

(shown as 1 in Figure 2). This is then used to guide the

fuzzing process to improve state/transitions coverage.

B. Stateful Man-in-the-Middle Fuzzing

The fuzzing engine of U-FUZZ employs three charac-

teristics that are crucial to enable generalized fuzz test-

ing of wired or wireless protocols. The first characteristic,

namely (i) statefulness, ensures that U-FUZZ can discern

and prioritize mutation of messages that hold the protocol
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Fig. 6. U-FUZZ Fuzzing Engine Characteristics and Workflow.

state (context) of the SUT. For instance, this allows to

find vulnerabilities in the SUT that are only triggered after

many valid messages have been exchanged. In contrast, a

random fuzzer lacks discernment between messages type

and therefore is unpractical to find attack vectors that might

appear deep into the SUT communication. To this end, U-

FUZZ track states during live communication based on the

generated state-machine model, previously provided by the

Model Generator component (see Figure 6).

Next, (ii) interception-based fuzzing enables the use

of an existing binary program (black-box) containing the

protocol stack to generate messages during the fuzzing

session. As shown in Figure 6, this characteristic is de-

picted by the positioning of the fuzzing engine between the

SUT and IoT APP (man-in-the-middle). This facilitates the

fuzzing setup by not requiring bespoke message generation

for the target IoT protocol as often required by previous

work [15]. Instead, the user can simply provide an existent

binary for U-FUZZ to intercept (see “IoT APP" of Figure 6).

Furthermore, this approach inherently preserves the context

of the SUT communication (i.e., dynamic field values) due

to the fuzzing only mutating existent messages originating

from the IoT APP. Consequently, this avoids early rejection

of mutated messages by the SUT due to trivial context

mismatches, as commonly reported by other works [13].

Lastly, (iii) feedback-guided feature guides the fuzzing

exploration by steering mutation of packets towards states

that might yield problematic SUT behavior. To this end, the

fuzzing engine tries to optimize the value of a cost function

obtained at the end of a fuzzing session (i.e., maximize

state transitions, minimize the time between request and

SUT response) to trigger vulnerabilities more efficiently. We

use the particle swarm optimization (PSO) for optimizing

the chosen cost function, as PSO is effective in situations

that involve non-linear and stochastic behavior e.g., in

wireless communication [13]. The choice of the cost func-

tion depends on the characteristics of the target protocol.

For instance, protocols that exhibit many states during

communication (i.e., Zigbee, 5G) are better explored by

maximizing state transitions. In contrast, targets employing

simplistic protocols (or a subset of it) exhibit less state

transitions by design. Therefore, maximizing the value of

a cost function that returns the time between requests and

responses (i.e., “Rsp. Time" of Figure 6) helps U-FUZZ to

quickly find malformed packets that can trigger a DoS in

the SUT.



C. U-FUZZ Target Monitor Design

Since U-FUZZ tests multiple protocols, we develop a

target monitor that is generic enough to capture SUT

crashes or malfunctions for the evaluated protocols (5G

NR, CoAP, Zigbee). In general terms, U-FUZZ monitors the

health of the target during the fuzzing process by checking

for SUT response timeouts. In particular, if the target does

not send a response back to the IoT APP (see Figure 3), U-

FUZZ indicates an SUT malfunction, which is then logged to

a capture file for post-fuzzing analysis. This is particularly

useful to detect misbehavior in COTS SUT, which may not

provide an external means of detecting its health status. For

example, Zigbee devices do not have any means of collect-

ing traces other than its over-the-air responses. However,

timeouts add caveats to the monitoring process as the time

interval to exchange responses or status messages typically

varies with protocols. As such, a timeout threshold Th is

employed to indicate the maximum time to wait for an

SUT response before U-FUZZ indicates a timeout in the

fuzzing logs. This is particularly useful for Zigbee devices,

which advertise the status message Link_status in precisely

15 seconds. Hence, U-FUZZ can detect SUT malfunction by

adjusting Th higher than such 15-second interval.

Alternatively, if the SUT provides external interfaces, U-

FUZZ can directly collect log traces from Android phones

(used as our 5G SUT) via ADB interface. Similarly, CoAP tar-

gets often run in a user-controlled environment which can

easily indicate to U-FUZZ whether the SUT has improperly

exited its CoAP process (i.e., crashed).

D. Post-fuzzing Analysis

Given a vulnerable communication trace, as obtained via

stateful fuzzing, the objective of post-fuzzing analysis is

to systematically identify the minimal set of modifications

(e.g., a minimal set of mutated or duplicated packets) by

the fuzzer that results in the crash. After analyzing the

attack vector in the vulnerable communication trace (see

Figure 3), the U-FUZZ creates a simple C++ script to exploit

the vulnerability on an arbitrary device (SUT) employing

the respective protocol.

Firstly, our intuition is that the closer a mutated packet

µ is with respect to the crash location (highlighted in

red in Figure 3), the higher is the chance of µ to be

the root cause of a crash. To this end, U-FUZZ starts a

normal communication with the SUT and replicates the

last mutated packet µn (i.e., last purple packet in sequence

as shown in Figure 3). If the crash is not triggered by the

selected µn , then U-FUZZ repeats the process for the next

previously mutated packet in sequence i.e., µn−1. Finally,

the replication process succeeds when the crash is triggered

for an arbitrary µ. This heuristic allows us to reliably repli-

cate the vulnerabilities found during our fuzzing session.

This is of particular importance, as exploitation of targets

in a wireless environment remains a time-consuming and

non-trivial problem.

D
ow

nl
in

k
M

N
C

: 0
1

M
C

C
: 0

01

U
pl

in
k

ADB

USRP B210

5G Edge
Devices

USB 3.0

UE Monitoring
and Control

Malicious gNB Setup

5G Smartphone

Mini PC

OpenAirInterface 5G

Open5GS
gNB

Core Network

U-Fuzz

Software Setup (Mini PC)

USB Per-Port Power Control

SIM Card

Fig. 7. Implementation Setup for U-FUZZ 5G testing and evaluation

IV. IMPLEMENTATION AND EVALUATION SETUP

Evaluation Setup for 5G: Figure 7 outlines the software

and hardware setup for 5G fuzzing, which is leveraged by a

AMD Ryzen 7 5800H processor and Ubuntu 22.04 operating

system. The software components include Open5GS to cre-

ate the 5G Core network [25], OpenAirInterface for creating

the base station (gNB) [24] and the U-FUZZ fuzzing engine

and state mapper (see Figure 2). The Software Defined Radio

(SDR) named USRP B210 is used to enable communication

with a 5G COTS smartphone (OnePlus Nord CE 2).

Evaluation Setup for Zigbee and CoAP: Figure 8 illustrates

the U-FUZZ setup for fuzzing both Zigbee and CoAP imple-

mentations. Similarly to the 5G setup, U-FUZZ is deployed

to a host PC running the Ubuntu 18.04 operating system.

However, we attach a Zigbee Coordinator to the host PC, i.e.,

the CC2531 USB Dongle from Texas Instruments, to establish

the communication between the IoT APP (Zigbee2Mqtt),

and the Zigbee devices under evaluation (e.g., Philips Hue

light). The dongle was programmed with the z-stack version

Z-Stack-home-1.2 to enable U-FUZZ communication with

Zigbee SUTs via the serial-based ZNP protocol. Further-

more, a simple MQTT client is used alongside the IoT

APP to continuously generate message requests to the SUT

during the fuzzing sessions. Additionally, a CC2531 Zigbee

Sniffer Dongle is used to assist detection of anomalies in

the response of Zigbee devices as highlighted by the Crash

Monitor component in Figure 8. In contrast to Zigbee, the

CoAP fuzzing setup uses a virtual Ethernet interface and is

entirely software-based, thus rendering unnecessary use of

dedicated hardware during evaluation. This accelerates the

CoAP fuzzing process and simplifies crash log retrieval.

Fuzzer Implementation and Subjects: All the SUTs used in

our evaluation (i.e., subjects/targets) and their features are

outlined in Table I. U-FUZZ is implemented in C++ (4722

LoC) and Python (585 LoC). This includes a custom dissec-

tor implementation for ZNP protocol, the multi-protocol

state mapper and its integration with the stateful fuzzing

engines. To generate reference traces of valid communica-

tion for the Multi-protocol State Mapper (Section III-A),

we run the target SUT under a benign communication
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TABLE I
LIST OF TARGETS AND THEIR RESPECTIVE SOFTWARE OR FIRMWARE VERSION

Protocol Implementation / Devices Firmware / Commit Version
OnePlus Nord CE 2 5G M_V3_P10
Zigbee2Mqtt V1.30.1
Texas Instrument CC2531 USB Dongle Z-Stack_Home_1.2
Sonoff Zigbee 3.0 USB Dongle Z-Stack_3.0.x
Tuya Smart Plug 20B+TZSKT11BS107
Philips Hue Smart Light Bulb V1.76.11
libcoap V4.3.1
Jcoap Commit 1c06936
Canopus Commit e374f5b
CoAPthon V4.0.2

scenario for approximately 12 hours for each target. Then,

the communication logs from the benign communication

is leveraged to create the reference state machine. We note

that the collection of such reference traces is a one-time

effort and is not required during fuzzing campaign.

V. EVALUATION RESULTS

To evaluate U-FUZZ and showcase its capability, we

answer the following research questions:

A. RQ1: How effective is U-FUZZ fuzzer in terms of

generating error-prone inputs?

Table II outlines the effectiveness of U-FUZZ in finding

vulnerabilities on multiple COTS IoT protocol implementa-

tions i.e., 5G NR, Zigbee and CoAP. For this set of experi-

ments, we run the U-FUZZ fuzzing for 12 hours for each

subject (i.e., an IoT device/software). In Table II, we classify

a crash as a vulnerability when we were able to reliably

replicate it with the same group of malicious packets. Each

vulnerability name is identified with prefix V. Moreover, due

to the lack of internal logs in Zigbee devices, the time to

replicate certain crashes may vary and therefore, the repro-

duction of these crashes is not stable. We recognize such

cases as anomalies and anomalies are identified with prefix

A. As illustrated in Table II, our experiments are conducted

on COTS devices e.g., 5G smartphone OnePlus Nord CE2,

Zigbee smart devices like Tuya Smart Plug, Philips Hue

Smart Light Bulb and Zigbee Coordinator USB Dongles such

as CC2531 and SONOFF Zigbee 3.0. In summary, U-FUZZ

found sixteen vulnerabilities and two anomalies across

all subjects including 11 new (i.e., previously) unknown

vulnerabilities (see Table II). The results outlined in Table II

show that U-FUZZ is effective in finding vulnerabilities not

only in COTS devices for 5G NR and Zigbee but also in rigid

software implementations like libcoap.

B. RQ2: How efficient is U-FUZZ fuzzer?

Table III outlines both the model coverage and the aver-

age time to find the first crash/hangs for different protocol

implementations on different subjects.

For 5G, U-FUZZ finishes each fuzzing iteration by trig-

gering re-connections via ADB whenever the UE completes

the 5G procedures. However, fuzzing the data link can

normally lead to UE unresponsiveness for several seconds

(i.e., 2-4 seconds) without necessarily indicating a firmware

issue. This is because 5G modems implement their own

waiting states after receiving decoding errors (this happens

as U-FUZZ fuzzing engine sends malformed packets) or

handling expected failure states. Such inherent delays may

increase the fuzzing time for 5G devices e.g., smartphones.

Nonetheless, U-FUZZ finds the first 5G vulnerability only in

18 minutes.

As for Zigbee, the time for finding the first crash/hang

varies widely: from under 10 minutes to more than 12

hours. We recall that U-FUZZ fuzzed Zigbee through the

customized ZNP protocol by Texas Instrument (see Fig-

ure 8). Under our implementation setup, both the coor-

dinator dongle and the Zigbee2Mqtt were the direct fuzzing

target, resulting in lower time (7 minutes) to find the first

crash/hang. As for the Zigbee smart devices, the crash

detection relies on the Link Status packet, which must be

sent every 15 seconds. Notably, Philips Hue Smart Light

Bulb requires 12 hours to find the first crash, whereas Tuya

Smart Plug crashes in an hour. As for CoAP, the time to

find the first crash primarily relies on the robustness of the

implementation. For instance, compared to CoAPthon and

libcoap, which took three hours and one hour, respectively,

to exhibit the first crash, Jcoap and Canopus exhibited the

first crash in 5 minutes and 15 minutes, respectively.

Table III also reports the model coverage, computed as

the ratio between covered transitions and the total number

of transitions in the generated state machine. Like RQ1, we

also run all experiments for 12 hours for each subject to

compute the model coverage. Moreover, All CoAP targets

achieved relatively low model coverage compared to both

5G NR and Zigbee by U-FUZZ. This is because U-FUZZ per-

forms fuzzing during live communication (see Section III-B)

and therefore, the number of transitions covered relies on

the complexities of the CoAP client. As for our evaluation,

we only implement a simple CoAP client for each CoAP

server implementation. Nonetheless, U-FUZZ still finds un-

known vulnerabilities for all the implementations (V10-V16

in Table II), which demonstrate the effectiveness of U-FUZZ.



TABLE II
EFFECTIVENESS OF U-FUZZ FRAMEWORK IN TERMS OF FINDING VULNERABILITIES IN OUR SUBJECTS. PREFIX V IS USED FOR VULNERABILITY WHEREAS PREFIX A

IS USED FOR ANOMALY. THE VULNERABILITIES SHOWN IN RED ARE NEW AND WERE PREVIOUSLY UNKNOWN.

Protocol Under Test Implementation Vulnerability Affected Hardware/Software Implementation Impact CVE Status

5G V1 - Invalid CellGroupConfig OnePlus Nord CE 2 Crash CVE-2024-20004

V2 - Invalid CellGroupId OnePlus Nord CE 2 Crash CVE-2024-20003

V3 - Invalid RLC Sequence OnePlus Nord CE 2 Crash CVE-2023-20702

V4 - Invalid Uplink Config Element OnePlus Nord CE 2 Crash CVE-2023-32843

V5 - Null Uplink Config Element OnePlus Nord CE 2 Crash CVE-2023-32845

Zigbee V6 - Invalid Transaction and Cluster ID Texas Instrument CC2531 USB Dongle
Z-stack version: Z-Stack_Home_1.2
SONOFF Zigbee 3.0 USB Dongle-P
Z-stack version: Z-Stack_3.0.x

Crash CVE-2023-41388

V7 - Invalid Transaction and Cluster ID Zigbee2Mqtt Version:3.8 Control Service Failed CVE-2023-41003

V8 - Malformed AF_Data_Request Zigbee2Mqtt Version:3.8 Crash CVE-2023-42386

V9 - Out of Sync State Information Zigbee2Mqtt Version:3.8 Misleading State Information CVE-2023-41004

A1 - Skip Link Status Tuya Smart Plug Anomaly Not applicable

A2 - Skip Link Status Philips Hue Smart Light Bulb Anomaly Not applicable

CoAP V10 - NullPointerException Jcoap Crash CVE-2023-34918

V11 - Illegal_Argument_Exception_Invalid_Token_Length Jcoap Crash CVE-2023-34920

V12 - Slice_Bounds_out_of_Range Canopus Crash CVE-2023-34919

V13 - Bad Get Request Canopus Crash CVE-2023-34921

V14 - Invalid Size1 Size2 Options libcoap Crash CVE-2023-33605

V15 - Bad POST Request CoAPthon Crash CVE-2018-12680

V16 - Invalid Unicode Decoding CoAPthon Crash CVE-2018-12680

TABLE III
EFFICIENCY AND COVERAGE OF U-FUZZ ACROSS VARIOUS SUBJECTS. THE

MODEL COVERAGE FOR CERTAIN TARGETS IS SHOWN AS N.A AS THEIR

RESPECTIVE VULNERABILITIES WERE FOUND DURING USE OF THE IOT APP
(Zigbee2Mqtt) OR THE GENERIC INTERFACE (CC2531).

Protocol Implementation / Devices 1st Crash/Hang Model Coverage

OnePlus Nord CE 2 5G 18 min. 69.6%

Zigbee2Mqtt 7 min. N.A

Texas Instrument CC2531 USB Dongle 7 min. N.A

Tuya Smart Plug 1h. 57.1%

Philips Hue Smart Light Bulb 12h. 61.2%

libcoap 1h. 18%

Jcoap 5 min. 27%

Canopus 15 min. 8.6%

CoAPthon 3h. 28.3%

C. RQ3: How effective is U-FUZZ fuzzer compare to exist-

ing blackbox or greybox IoT Fuzzer?

The design of U-FUZZ allows us to target arbitrary IoT

protocols. In this research question, we aim to investigate

the effectiveness of U-FUZZ with respect to tools that are

specifically engineered for specific protocols. To this end,

we choose three state-of-the-art fuzzing tools that most

closely match the objective of our fuzzing process. Since our

fuzzing objective is not to target the protocol simulation,

tools that only perform fuzzing in a simulated environment

are not selected. Concretely, we selected SOTA-5G [14] [13],

SOTA-CoAP [20], and SOTA-Zigbee [35] as all these fuzzers

are capable to fuzz COTS IoT devices and are specifically

engineered for the respective protocols.

For a fair comparison, we run all competitive tools for

each chosen representative device and subject for 12 hours.

Figure 9 demonstrates our results. For the representative

Zigbee devices, U-FUZZ discovers significantly more total

and unique crashes as compared to SOTA-Zigbee [35]. This

is not only for the targeted Philips Hue Light bulb (up to

5x) but also for the Zigbee2Mqtt and Coordinator Dongle

(up to 58x). For the subjects implementing CoAP protocol

i.e., libcoap and Canopus, U-FUZZ also outperforms SOTA-

CoAP [20] by a significant margin, resulting in a total of 152

crashes and nine unique across these subjects compared

to 102 total crashes and 2 unique which discovered by

SOTA-CoAP [20]. As for 5G stateful fuzzing on COTS devices,

there are no existing works available for comparison. Hence,

we enhanced the generic stateful fuzzing engine proposed

in earlier work [13] with 5G-specific state mapping rules

illustrated in a recent work [14]. Our results in Figure 9 show

that U-FUZZ is competitive to SOTA-5G [14] [13]. Indeed,

SOTA-5G [13] [14] slightly outperforms U-FUZZ, as the state

machine generated in SOTA-5G is more complete due to the

manually constructed mapping rules. Nonetheless, our U-

FUZZ approach discovered two vulnerabilities that were not

discovered by SOTA-5G [14] [13]. Overall, our experiments

show that U-FUZZ, despite having a generic approach for

stateful fuzzing, is either competitive to or outperforms

protocol-specific fuzzing tools.

D. RQ4 (Ablation) - How much does the state mapping

process contribute to vulnerability discovery?

One of the major contributions for our U-FUZZ approach

is the Multi protocol State Mapper (see Section III-A). In

this research question, we perform an ablation study to

concretely understand the contribution of our state mapper

in finding security vulnerabilities in IoT protocols. To this

end, we create a variant of U-FUZZ by switching off its state

mapping component. Such a variant, therefore, does not
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involve any feedback. We run both U-FUZZ and its variant

for 12 hours across different subjects.

As shown in Figure 10, U-FUZZ discovers significantly

more crashes across all studied protocols when the guid-

ance is obtained from the covered state machine transitions.

We also analyzed the number of unique crashes (with

unique root cause) found for 5G (OnePlus Nord CE 2)

and Zigbee protocol implementations (Tuya Smart Plug).

Our analysis revealed that U-FUZZ discovered more unique

crashes with the guidance obtained from state machine.

Overall, our ablation study indicates that the multi-protocol

state mapper and state-machine-based guidance are crucial

to discover hidden crashes and vulnerabilities in IoT pro-

tocol implementations.

E. Impact of U-FUZZ attacks

By leveraging the setup depicted in Figure 7, U-FUZZ was

able to fuzz a COTS SUT which employs a 5G modem from

MediaTek (OnePlus Nord CE 2). In our experiment, U-FUZZ

managed to find two new 5G modem vulnerabilities (out of

five), namely V1 and V2 ( Table II). Moreover, the impact of

V1-V5 results in the SUT rebooting its 5G modem (MediaTek

Dimensity 900) due to firmware reachable asserts (V2-V5)

or invalid memory access violation (V1). Such issues would

allow malicious base-stations within radio range to block

the SUT from connecting to even 2G, 3G or 4G networks

unless the user disables support for 5G connectivity.

Next, our experiments with CoAP (see Figure 8), revealed

five new vulnerabilities (out of seven) in reference CoAP im-

plementations such as libcoap, Jcoap, Canopus, CoAPthon

(see V10-V14 in Table V). In summary, U-FUZZ found CoAP

DoS vulnerabilities (process crash) which upon continuous

abuse, allow an attacker to keep the CoAP server down.

Similarly, U-FUZZ was able to target commercial Zigbee

COTS through the common fuzzing setup as shown in

Figure 8. However, U-FUZZ found multiple vulnerabilities

in both the IoT APP (V7-V9) and the interface hardware

used to interact to Zigbee SUTs during the fuzzing (V6).

Such issues could be exploited to either prevent further

interaction with the SUT due to timeouts (V7), DoS due

to process crash (V8) or misleading information of the SUT

(V9). On the other hand, while most vulnerabilities result in

crashes not applicable to the fuzzing targets (Zigbee2Mqtt

online bridge and Zigbee Coordinator Dongle), there are still

dozens of Skip of Link Status anomaly revealed, reflecting

the misbehavior of the Zigbee devices. However, due to

the resource limitation, further investigation could not be

performed for the root cause.

VI. RELATED WORK

IoT vulnerabilities: Many IoT vulnerabilities have been

found in the past few years. Such findings range from

protocol design vulnerabilities [2], [3], [40], protocol im-

plementation bugs [16], [38], [39] or product-specific vul-

nerabilities [5], [6], [23]. In this context, U-FUZZ alleviates

the manual effort required to find similar implementation

or product specific vulnerabilities by introducing a gener-

alized fuzzing architecture. This provides essential tooling

to systematically test the security of the SUT. Furthermore,

U-FUZZ automates the reproduction of bugs found during

fuzzing sessions (i.e., crashes/hangs). This is particularly

useful to reduce the time to confirm bugs in COTS devices.

IoT & Network Fuzzing: Several works target fuzzing spe-

cific protocols such as Zigbee [33], Bluetooth [13], [15],

CoAP [20], 5G [19], [22], [31] or network protocols that are

only encapsulated over IP [8]–[10], [21]. However, U-FUZZ

distinguishes itself by employing extensive multi-protocol

support for both wireless and wired protocols regardless

of its encapsulation. This gives U-FUZZ a higher degree

of freedom to fuzz protocols transmitted in uncommon

interfaces such as Zigbee via its ZNP serial-based interface

or 5G NR via shared memory. Additionally, reproduction

and confirmation of unique bugs is not systematically

addressed in prior works and often require use of intrusive

approaches [8] or address sanitizers running alongside the

SUT firmware [9], which might not be always accessible to

the user. Instead, U-FUZZ proposes an interface-agnostic

target monitor and generalized and automated replication

of crashes caused by complex attack vectors (see Sec-

tions III-D and III-C).

Stateful & Greybox Fuzzing: U-FUZZ is orthogonal to

greybox fuzzers that aim to test software programs via code

coverage such as AFL [41], which require some degree of

access to the target source code for instrumentation. In

comparison, U-FUZZ avoids reliance on code instrumen-

tation by (i) extracting its fuzzing feedback directly from



the response of the COTS target (see Stateful Feedback

in Figure 1), which is often black-box and (ii) leveraging

existing programs (IoT APPs) for input generation. These

methodologies employed by U-FUZZ are particularly crucial

for offering an out-of-the-box testing experience to the

user as opposed to generation-based fuzzers that inherently

require a manual implementation of the target protocol

via model-based approaches [15]–[17], [27]–[29] or semi-

automatic state machine construction [13], [14]. Further-

more, U-FUZZ differentiates itself from stateful protocol

fuzzers that only support a small selection of protocols out-

of-the box [4], [20], [30], [32] or does not support multiple

wireless protocols due to lack of generic interfaces [21]. In

contrast, U-FUZZ multi-protocol support is heavily extensi-

ble through both wired and wireless protocols via its generic

virtual ethernet, serial and shared memory interfaces as dis-

cussed in Section II. Hence, U-FUZZ boasts support for over

3000 Wireshark-supported protocols [12], thus granting U-

FUZZ a considerable advantage over other multi-protocol

fuzzers in terms of protocol coverage without requiring any

implementation effort from users.

Test-case Generation: Certain approaches require develop-

ing a custom test-suite [14], [26], [33], [37] tailored to a

limited set of protocols. Thus, these approaches demand

expertise and manual effort from the user. Alternatively,

U-FUZZ steers away from such manual effort by mutating

messages of the communication between the user-provided

IoT APP and the SUT, therefore not requiring the usage of

a bespoke test-suite to fuzz the SUT.

Emulation-based Fuzzing: Approaches based on reverse

engineering or emulation [18], [22], [33], [34] allow static

and dynamic analysis of IoT implementations. However,

such approaches involve a high degree of expertise to

support new or additional SUT hardware architectures and

protocols. Additionally, emulation demands reverse engi-

neering (if at all possible), ultimately requiring manually

replicating crashes on real hardware. In contrast, U-FUZZ

does not require any manual effort to support arbitrary

hardware architectures or protocols.

VII. THREATS TO VALIDITY

Completeness of Constructed State Machine: The com-

pleteness of the U-FUZZ state machine depends on the

diversity of messages contained in the capture file provided

by the user [13]. During our experiments, we select IoT APPs

that are feature-complete and hence can exchange most

message types with the SUT. By utilizing a relatively com-

prehensive state machine, U-FUZZ can delve into deeper

states, uncovering additional vulnerabilities or anomalies.

Processing of Large Packet Captures: Currently, U-FUZZ

does not handle packet capture files with more than 10K

packets due to memory constraints. However, implementing

more efficient packet processing algorithms in the Capture

Processor (see Figure 2) could remove this limitation [7].

Coverage Improvement on IoT Protocols: The proposed U-

FUZZ fuzzing engine and selected cost functions might not

always improve SUT model coverage for all possible IoT

protocols as compared to state-of-the-art fuzzers special-

ized in a specific protocol. However, our evaluation of U-

FUZZ against targets communicating in heavily adopted IoT

protocols (CoAP, Zigbee, 5G), reveals the flexible and yet

competitive edge of U-FUZZ over prior IoT fuzzing tools.

We also make our framework open source for researchers

to extend and optimize U-FUZZ.

Comprehensiveness of the Target Monitor: The target

monitor integrated in U-FUZZ is not guaranteed to detect

crashes in all possible IoT SUTs. However, this shortcoming

is easily addressed by providing several ways in which the

user can configure or extend U-FUZZ generic interfaces.

VIII. CONCLUSION

In this paper, we propose U-FUZZ, a framework to

automatically discover and replicate security vulnerabilities

in both wired and wireless IoT protocol implementations on

COTS IoT Devices. Compared to prior works, U-FUZZ brings

some concrete advantages: (i) U-FUZZ provides a state

mapping technique which only relies on network capture

files as input to generate both the state machine and the

conditions required for state mapping across diverse IoT

protocols. This technique could be easily adapted by other

stateful fuzzing tools. (ii) U-FUZZ stateful fuzzing targets

both IP-based (e.g., CoAP) and non-IP-based protocols (e.g.,

Zigbee and 5G NR), showing concrete evidence on find-

ing vulnerabilities in each such protocol implementations.

Moreover, U-FUZZ opens possibilities for stateful fuzzing

of over 3000 protocols (as supported by Wireshark) out-of-

the-box. With such a possibility, we hope to significantly

improve the state-of-the-art for automated security testing

in both existing and next generation IoT protocols. In the

furture, we plan to extend U-FUZZ to target not only Denial-

of-Service (crash or hang), but more complex attacks e.g.,

leading to information leakage.We hope the community

uses U-FUZZ to test its limits and extends its support be-

yond the scope targeted in the paper. For the reproduction

of research and to extend the capability of U-FUZZ, the

source code and all experimental data are available in the

following: https://github.com/asset-group/U-Fuzz
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