
VITROBENCH: Manipulating In-vehicle Networks
and COTS ECUs on Your Bench

A Comprehensive Test Platform for Automotive Cybersecurity Research

Anthony Yeo Kee Teck, Matheus E. Garbelini, Sudipta Chattopadhyay, Jianying Zhou
Singapore University of Technology and Design

Abstract—With the increasing connectivity employed in au-
tomotive systems, remote cyber attacks have now become a
possibility and concrete threat. Prior works on automotive cyber
security solutions have primarily focused evaluation either on
real cars or via emulations of electronic control units (ECUs).
Evaluation on real cars offer limited flexibility in manoeuvring
the packets communicated through in-vehicle network (IVN).
Meanwhile, emulations of ECUs rely on assumptions that may
not correspond to the exact features in an IVN.

In this paper, we present VITROBENCH, a comprehensive test
platform involving commercial off-the-shelf (COTS) ECUs that
allows arbitrary packet control over IVN. In contrast to existing
automotive testbed, an appealing feature of VITROBENCH is that
it allows replication of driving use cases and scenarios directly
on the testbed involving COTS ECUs. This, in turn, allows us to
design and evaluate concrete attacks that are directly related to
a driving scenario. We present the design of VITROBENCH that
allows us to sniff, inject packets to and isolate targeted ECU via
bridging. The isolation of ECUs also offers fuzzing the respective
ECUs. We evaluate the capability of VITROBENCH via launching
concrete attacks and demonstrating the impact of such attacks.
We discuss the careful design choices involved in VITROBENCH
that inspire automotive cybersecurity research in future.

1. INTRODUCTION

Due to the massive progress in increasing the connectivity
of automotive systems, manufacturers of cars can no longer
consider the deployed systems to be isolated. Indeed, during
the last few decades, the cybersecurity concerns for automotive
systems have increased dramatically. Physical and remote
attacks on cars are now concrete threats, as exemplified by
existing studies [30] and cyber attacks [8]. Recent survey
articles [1] have also highlighted the importance of ensur-
ing the security for in-vehicle networks (IVN), among other
security concerns for automotive systems. For example, by
compromising one or more ECUs in a car, an attacker may
freely manipulate the messages communicated through IVNs.
This may lead to malicious message being sent to critical car
components such as engine and brake. Such a phenomenon
may severely impact the normal functions in a car, resulting
in serious consequences. Testing of IVNs, to validate possible
security concerns, is therefore critically important.

In this paper, we present the design and evaluation of
VITROBENCH, a comprehensive test platform involving COTS
ECUs to facilitate cybersecurity research for automotive sys-
tems, specifically, for in-vehicle networks. Figure 1 contextual-
izes the contribution of our test platform. Broadly, the existing

IVN 1 IVN 2,etcGateway

OBDII Adapter

Car Signal Simulators

Testing
Software

Testing
Software

External
Connection

Internal
Connection

FPGA

Testing
Software

Isolated
Connection

CAN
Adapter

Car Signal Simulators

Isolated ECUs

Testing
Software

Emulated or Real ECU

a) Car-based Testbed b) VitroBench

c) ECU Testing in
Isolation

d) Software/Hardware in
the loop

Sensors Simulation
(Simulink, Matlab, etc)

Isolated
Connection

CAN
Adapter

Feedback
Loop

IVNs

Fig. 1: VITROBENCH vis-á-vis existing test platforms

test platforms can be categorized into three. Car-based testing
(see Figure 1(a)) leverages a real car for evaluation [31]. As
shown in Figure 1(a), the tests are launched via external OBD-
II connector and all communication pass through the gateway
ECU. Due to the reliance on external connections, such
evaluations provide limited control over the communication
traffic in the IVN. Additionally, it is not always cost-effective
to use real cars for evaluation and certain cyber attacks might
be dangerous to perform on actual cars. Meanwhile, testing
ECUs in isolation (see Figure 1(c)) only hooks a few ECUs via
bare wires [18] but ignores message exchanges in an IVN that
can be attributed to realistic driving/stationary environment.
This platform is appropriate only to test the specific ECUs
and such platforms are incapable to evaluate targeted attacks
on IVN that span across multiple ECUs and networks. Finally,
Figure 1(d) captures a test platform with software or hardware
in the loop i.e., a real or simulated ECU. Additionally, a
software simulation is used for the rest of the car IVNs

via Matlab [2], Simulink [3] and CANoE [7]. While several
prior works have considered such test platforms [23, 22] due
to its simplicity, these platforms cannot accurately capture
realistic IVN messages exchanged between COTS ECUs. This
is because such remaining bus simulation (RBS) via software
relies on assumptions that may not correspond to the exact
features of the targeted IVN.

The primary objective of VITROBENCH is to facilitate the
discovery and investigation of attacks that may impair the
physical functions (e.g., display of speed, engine functionality)
in a car. To this end, capabilities such as sniffing and injection
of modified packets are embodied in our test platform. The
advantages for such a test platform are multi-fold. Firstly,
VITROBENCH allows not only sniffing and replay, but arbi-
trary injection of original as well as manipulated messages.
Indeed, our empirical evaluation shows that message injection
is a key capability required for finding concrete attacks on the
IVN. Secondly, our test platform allows to create test scenarios
based on driving use cases appearing in practice. Thus, original
equipment manufacturer (OEM) can test the security of a car
based on such practical test scenarios. This, in turn, allows
to understand the malicious message flow within an IVN that
impacts the critical car functions (e.g., engine functions or
display). To the best of our knowledge, VITROBENCH is the
first test platform that provides such flexibility using COTS
ECUs, yet without access to a real car. Finally, the attacks and
security tests discovered by our test platform can be further
used for developing effective online mitigation, for example, to
detect potential manipulation of messages and raise alarms. In
a nutshell, VITROBENCH allows to draw connection between
the malicious flow of IVN messages and impairment of car
functions. As a result, the designer can pinpoint to an exact
sequence of messages to replay, investigate and mitigate attack
scenarios relevant to car functions.

The abstraction of VITROBENCH design is outlined in Fig-
ure 1(b). Specifically, VITROBENCH provides a test platform
where we can freely control the communication in IVNs via
an FPGA communication board and by hooking COTS ECUs
via bare wires. The full control of the IVN communication
is facilitated by bridging an ECU, intercepting any message
involving the ECU and sending it to a workstation; and then
send a possibly modified message back to the IVN. Con-
sequently, leveraging VITROBENCH, designers can perform
targeted attacks and advanced fuzz testing on arbitrary COTS
ECUs. This is in stark contrast to using real cars where limited
control is available via the external connection only. In contrast
to the test platforms captured in Figure 1(c)-(d), VITROBENCH
fully exposes realistic message frames across multiple CAN
networks without requiring an actual car. Such a feature is
crucial to design and test arbitrary cross network attacks that
would be otherwise damaging on real cars. To the best of
our knowledge, VITROBENCH is the first comprehensive test
platform that exposes realistic IVN messages and provides full
control of these messages at designer’s hand without requiring
an actual car, yet involving COTS ECUs.

VITROBENCH is designed carefully with three components

i.e., an automotive testbed, a communication board and a
software component. The communication board is used to
communicate between the testbed and the software component.
It supports multiple IVN protocols e.g., CAN, CAN-FD and
LIN. The design of these three components is decoupled
in a fashion that the ECUs can be replaced freely in the
automotive testbed, keeping the rest of VITROBENCH un-
touched. Likewise, the communication board and the software
component can be modified independently to support, for
example, more communication protocols and sophisticated
fuzzing algorithms, respectively. An appealing feature of VIT-
ROBENCH is that we provide external signals to control and
keep the car environment stable during our tests – a feature that
is critical for test reproduction, but challenging to ensure using
a real car. This makes all our tests reproducible, yet realistic.
We hope that VITROBENCH opens the door of automotive
cybersecurity research along several directions in future.

After providing an overview and requirement of VIT-
ROBENCH (Section 2), we make the following contributions:

1) We detail the implementation and carefully discuss
the design choices for VITROBENCH to fully control
communication in Control Area Network i.e., CAN
(Section 3).

2) We comprehensively evaluate the capability of VIT-
ROBENCH. We show the capability of VITROBENCH
in terms of sniffing, injecting and intercepting arbitrary
messages from IVN (Section 4).

3) We perform multiple case studies leveraging the capabil-
ities of VITROBENCH namely fingerprinting, fuzz test-
ing and targeted attack generation. From fingerprinting,
we show that VITROBENCH reliably (with negligible
variance) measures inter-frame latency for all messages.
Leveraging the information obtained from our fuzz
testing, we design five targeted attacks that are directly
attributed to real-life scenarios. We show the impact of
these attacks on VITROBENCH platform (Section 4).

4) To show the generalizability and extensibility of VIT-
ROBENCH, we extend it with CAN-FD ECUs. We show
that the capability of our test platform can easily be
transferred to a different IVN protocol (Section 4).

We position our VITROBENCH with respect to existing
works (Section 5) and discuss our future outlook (Section 6)
in terms of inspiring research in automotive cybersecurity. We
conclude in Section 7.

2. TEST PLATFORM OVERVIEW

We design VITROBENCH with the real car ECUs, car sim-
ulator, communication interface, host machine or workstation
(for traffic control and analysis) and accompanying software
application. We select the ECUs for the major operations
involved in a car. This includes ECUs for engine, ignition,
motion control and instrument cluster. We leverage the car
simulator to inject the required signal to the selected ECUs.
A multi-channel and multi-protocol communication board
interface with the ECUs via a software application running
on the workstation.

Interception

Communication BoardIn-Vehicle Networks and real ECUs
CAN, CAN-FD, LIN

Bus Channel 1
Bus Channel 2

Bus Channel N

Ethernet

Host PC (Workstation)

Con�g. File

1 Automotive Tesbed Hardware Software

Engine Speed Sensors

Transceivers

FPGA

...

Car Signal Simulators

...

Multiple
Channels

Bus 1

Bus 2

Bus N

...

Digital or Analog. Car Signals

Sniffing &
Logging

Injection
Frame

2 3

Ethernet

Other
Boards a)

b)

c)

d)

Interface
Driver

Fuzzing &
Attacks

Steering

Fig. 2: VITROBENCH Test Platform Architecture

Broadly put forward, our objective from the VITROBENCH
test platform is to investigate the messages of each in-vehicle
network and corresponding car response. Specifically, we aim
to facilitate the investigation of the following functions via the
VITROBENCH test platform:

1) Study the behaviour of the car via observing the mes-
sages,

2) Obtain the fingerprint of all the ECUs messages such as
source ECUs, frame interval of each message and boot
up sequence,

3) Reverse engineering of unknown messages,
4) Search for vulnerabilities via message fuzzing, flooding

or spoofing,
5) Conduct cyber-attack and study the impact to the car,
6) Study and research on algorithm for Intrusion Detection

and Prevention System.
In the subsequent sections, we detail the design of various

components and interfaces within the VITROBENCH.

2.1 VITROBENCH Architecture

Figure 2 outlines the overall architecture of the VIT-
ROBENCH test platform. It comprises of the automotive
testbed along with relevant hardware and software compo-
nents. Specifically, the testbed is designed by leveraging the
major ECUs of a car that are interconnected to their in-vehicle
networks. Meanwhile, the hardware component consists of
the equipment required to simulate car functions and the
multi-channels/multi-protocols communication board. Finally,
the software component is run on a workstation for message
sniffing, logging and intercepting the ECU messages.

As illustrated in the leftmost part of Figure 2, real ECUs
in our 1 Automotive Testbed are wired together to create a
realistic CAN, CAN-FD and LIN In-Vehicle Network (IVN).
Then, protocol messages exchanged on each network are
exposed through separate bus channels that are wired to the
communication board. It is worthwhile to mention that even
though our automotive testbed is composed of a set of specific
ECUs for a given car model, it can be reconfigured to work

with another set of ECUs for different car models. The testbed
may have a new set of ECUs from another car that are
interconnected via their IVNs. Additionally, such ECUs will be
using the same hardware in VITROBENCH to input simulated
signals and communicate with the workstation.

The 2 Hardware component (see Figure 2) consists of
equipment that are needed for the car simulation and the
communication board. For example, the car signal simulators
send digital or analog car signals to the testbed. The simulated
signals are steering angle, speed, signals related to engine such
as engine crankshaft/camshaft, and signals from sensors (see
Figure 3). The multi channels communication board caters for
CAN, CAN-FD and LIN protocols. The sniffed messages for
the respective protocol are sent to the workstation embodied
in the VITROBENCH test platform for monitoring, logging or
modification (e.g., during automated fuzzing of ECUs).

Speed Simulator

Steering Angle Simulator

Engine Simulator

Sensors Simulator

Bus 1

Bus 2

Bus N

...

Automotive Tesbed

Fig. 3: Simulated Engine, Sensors, Speed and Steering Angle

Messages from the targeted ECU can be captured and
modified upon 3a Interception (see Figure 2). An ECU can
be disconnected from the main network for isolation and
modification of messages. Such a feature is crucial for having
full control of the IVN traffic. The control of IVN traffic,
in turn, allows us to arbitrarily fuzz different ECUs in the
IVN as well as to generate targeted attack scenarios. We built
a bridge from the ECU to the workstation and back to the
main network (see Figure 4). The intercepted messages from
the isolated ECU can be modified by the workstation before
sending back to the network and vice versa.

Fig. 4: Message Interception

In summary, the 3 software component in VITROBENCH
contains the testing programs (e.g., the fuzzing), testbed com-
munication driver and configuration files that reside in the
workstation. These components perform sniffing and logging,
frame injection, interception, fuzzing and targeted attacks.

2.2 VITROBENCH Design Requirements

Our objective is to make the VITROBENCH test platform
an open system that caters to different car architectures and
communication protocols. For example, VITROBENCH should
be capable to monitor the car messages and simulated signals.
Additionally, test cases need to be repeated and test results
should be recorded for reproducibility and analysis. Finally,
we intend to target arbitrary ECU in the test platform and
intercept messages for such ECU. Such capability is required
to fingerprint the ECU behavior or to fuzz the respective
unit. Based on the aforementioned objective, we outline the
following operational requirements for our test platform.

Requirements for Automotive Testbed: The ECUs should
have modules for engine control, car access, gateway, motion
control, controller for doors, windows and light, steering, fuel
control and instrument display. We choose these set of ECUs
as these units allow us to create meaningful test scenarios
for automotive systems and subsequently, to investigate the
impact of the respective test cases. Any targeted ECU can be
disconnected from the main network for bypassing the mes-
sages via the workstation and sent the messages back (possibly
after modifications) to the main network. The diagnostic tool
used in our test platform should handle different car models
in retrieving the ECU status. This is required for making our
testbed general and replaceable by other (compatible) ECUs
for a wide variety of car models. Finally, we require the
testbed extensible by adding other (compatible) ECUs that can
communicate via the considered IVNs in the testbed.

Requirements for Communication Board: Our simulated
car has multiple CAN IVNs, one of which is used for ECUs
diagnostic. Since we need to perform bridging and injection
in multiple IVNs, we require a communication board that
can provide access to such IVNs through as many pairs of
communication channels as the automotive testbed requires.

Since the communication board can only have a limited
number of channels (i.e., eight) before losing its practical size
to be easily moved around the testbed, support to cascading
multiple boards for future channels expansion is required.
Furthermore, the communication board needs to be flexible

enough to allow communication with IVNs that employ dif-
ferent automotive protocols other than CAN. To this end, each
channel must independently be able to support protocols such
as CAN, CAN-FD and LIN with common bitrate1 require-
ments as shown in Table I.

Protocol Bitrate
CAN 100kbps to 1Mbps

CAN-FD 2Mbps to 8Mbpbs
LIN up to 20kbps

TABLE I: Bitrate requirement for the communication board

Requirements for Car Signal Simulators: To account for a
variety of engines in our test platform, we require the engine
simulator to provide simulated signals from different engine
types. Specifically, the RPM of crankshaft can be varied with
the simulator’s camshaft RPM changes accordingly. Addition-
ally, the speed simulator can provide different speed from
stationary car to speed of at least 50km/h. Such a speed
variation allows us to create diverse test scenarios that involve
the car in stationary as well as in moving states. Concurrently,
the steering angle simulator can give a simulated angle of
at least ± 30 degree for cars in general. Such a range of
steering angles helps us to create test scenarios with different
driving directions. Finally, we require sensor simulators that
can provide resistance, current or periodic signal to simulate
different sensors’ outputs. We simulate sensors such as fuel
level, water fluid level, coolant level, outside temperature,
brakes, brake fluid and handbrake.

Requirements for Software Component: We aim to design
the software component within our VITROBENCH test plat-
form with the following features and requirement:

• Sniffing & logging: It should not affect the normal op-
eration of the car function. Additionally, available CAN
Bus Database (DBC2) files can be loaded for decoding
the sniffed messages. All the messages will be stored in
a standard format, i.e. Binary Logging File (BLF) format
and further packet inspection can be performed.

• Frame injection: A channel can be used to transmit
messages to the targeted network with configurable frame
interval.

• Interception: The intercepted messages will pass through
the workstation in both directions. The processing time
in the workstation should be kept minimal.

• Fuzzing & Attacks: The software should allow a fuzzing
program to be attached to the messages. The program can
be changed at the workstation for research and develop-
ment. Different programs for attacks can be explored by
modifying the intercepted or injected messages.

In short, the software component should allow the inter-
ception and modification of arbitrary ECU messages. Further-

1https://www.keysight.com/us/en/assets/7018-06531/flyers/5992-3744.pdf
2https://www.kvaser.com/developer-blog/an-introduction-j1939-and-dbc-files/

https://www.keysight.com/us/en/assets/7018-06531/flyers/5992-3744.pdf
https://www.kvaser.com/developer-blog/an-introduction-j1939-and-dbc-files/

P-CAN

K-CAN

F-CAN

CAN_H

CAN_L

CAN_H

CAN_L

CAN_H

CAN_L

CAN_H

CAN_L

CAN_H

CAN_L

CAN_H

CAN_L

Diagnostic
PC

VCX
Diagnostic

Tool

Junction
Box

CAN Interconnecting
Board

CAN Interconnecting
Board

CAN Interconnecting
Board

Blue
54 pin

Blue
54 pin

Blue
54 pin

Blue
54 pin

OBD2
Cable

BAT

GND

BAT GND
23 pin
X4010

Diagnosis CAN_H

Diagnosis CAN_L

USB
Black
47 pin

BAT

GND

ET
H

CAN Messages
(CM) Workstation

wake-up

wake-up

BAT

GND

CAS3

DDE71

Key

Start / Stop

wake-up

wake-up

ELV
GND

FRM3GND

BAT

BAT GND

DSC

BAT

GND

wake-up

YAW

BAT wake-upGND

EKP

BAT GNDwake-up

KOMBI

BAT GND

SZL

D-CAN

Communication
Board

OBD2

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

CHASIS GROUND
SAE J1850 BUS +

SAE J1850 BUS -

ISO9141 K-LINE

ISO9141 L-LINE

ISO 15765-4 (CAN BUS HIGH)

ISO 15765-4 (CAN BUS LOW)

SIGNAL GROUND

Diagnostic CAN network

F-CAN network

P-CAN network

K-CAN network

Diagnostic Tool

Fig. 5: Automotive Testbed Design

more, such actions should be performed efficiently so as not
to affect the normal car functions on the test platform.

3. IMPLEMENTATION OF VITROBENCH TEST PLATFORM

In the following, we detail the implementations of different
components in our test platform.

3.1 Automotive Testbed Implementation

For our implementation, the automotive testbed simulates
the car model, BMW Series 3 Fifth generation (E90-E93).
The testbed consists of major ECUs (see Table II) that are
interconnected by their CAN networks as shown in Figure 5.
Specifically, the testbed is spread across two test boards, TB1
(Figure 6) and TB2 (Figure 7). TB2 is joined to TB1 on the
left by their interconnecting wires. In our testbed, there are
three networks, PCAN, FCAN and KCAN, and an external
Diagnostic network.

Table II outlines the list of ECUs and their connected
network. Appendix A describes the ECUs. The ECUs are
purchased from ebay for a total cost of about USD 1500. To
know the model of the car and the part number of the ECU,
we have leveraged the BMW Parts Catalog3

We implement bridging capability in the testbed to intercept
messages of a targeted ECU. An example of bridging is shown
in Figure 8. In Figure 8, the messages of the engine ECU are
isolated from the PCAN network using in-house developed
interconnecting boards. The intercepted messages are sent
to the workstation and back to the PCAN and vice versa.
The intercepted messages can either be pass-through (e.g.,

3https://www.realoem.com/

Diagnostic
Tool

Junction
Box

Yaw Rate
Sensor

Dynamic
Stability
Control

Footwell
Module

K-CANBridging Engine
ECU

Car Key

Join to TB2

Electric Steering
Lock emulator

Car Access
System

Electronic Fuel
Pump Control

P-CANF-CAN D-CAN

Fig. 6: Testbed Layout - TB1

Join to TB1

Instrument
Cluster
(KOMBI)

Steering
Control
Cluster

WorkstationCommunication Board

Ethernet
F-CANP-CAN

K-CAN

Fig. 7: Testbed Layout - TB2

for inspection only) or modified by the workstation (e.g., for
fuzzing and attacks).

https://www.ebay.com/
https://www.realoem.com/

TABLE II: Testbed ECUs and corresponding XCAN networks.

Function ECU KCAN PCAN FCAN
Gateway JBE ✓ ✓ ✓
Engine DDE ✓
Car Access CAS ✓
Doors/Windows/Lights FRM ✓ ✓
Suspension Stability DSC ✓ ✓
Motion Sensor YAW ✓
Fuel Control EKP ✓
Steering SZL ✓
Instrument Display KOMBI ✓

We select VXDIAG VCX Professional Car Diagnostic4 as
the diagnostic tool. This is because the diagnostic tool supports
several car models, including BMW. The tool is connected
to the OBD2 interface of the car, i.e., the diagnostic CAN
network. It detects the connected ECUs of the testbed and
inquires on their status.

Engine ECU
(DDE71)

Bridge
(Network)

CM Workstation
(CAN Messages)

Bridge
(ECU)P-CAN

P-CAN

CN4

C
N
6 E
TH

Interconnecting
Boards

Fig. 8: Bridging the engine ECU (DDE71) from PCAN

3.2 Communication Board and Driver Software

We design the communication board to have eight channels
that can be independently configured either as CAN/CAN-
FD or LIN node. Moreover, such channels are accessed from
a host machine (workstation) via the Gigabit Ethernet port.
Therefore, the user can control more than eight channels by
connecting other communication boards to a standard Ethernet
Switch in the same network.

Nonetheless, in order to simplify the configuration and
usage of the channels within each communication board, we
develop a Driver Software. Such a driver abstracts the board’s
channel access over the Ethernet link. This is accomplished
by enabling transmission or reception of message frames via
multiple SocketCAN interfaces, which are accessed through a
common socket in Linux operating system.

The overview of the driver software architecture and work-
flow of frames transmission and reception is illustrated in
Figure 9.

As observed in Figure 9, message frames are physically
transmitted (TX) or received (RX) to and from the testbed.
First, when a frame is received from the testbed (see green path
in Figure 9), the Communication Board forwards the frame to
the Host PC via Ethernet. Then, the Driver Software receives

4http://www.allscanner.com/vcx-doip.html

the message frame and broadcasts it to any software (e.g.,
“Fuzzer software” shown in Figure 9) attached to the correct
SocketCAN interface.

Similarly, when any software running on the host machine
intends to transmit a message frame to the testbed (see blue
path in Figure 9), the Driver Software receives it and forwards
it to the Communication Board via Ethernet. In addition, the
Driver Software exposes UDP sockets to allow Non-Linux
software such as TSMaster to receive/send the network frames.

FPGA Firmware
8 Channels

FPGA Communication
Software

RX

TX

TX - Outgoing CAN Frames (PC to Outside)
RX - Incoming CAN Frames (Outside to PC)

RX

TX

Host PC

Fuzzer Software
"Python Scripts"

TSMaster Software
"Analysis

Logging, etc"

Other socketcan
capable softwares

socketcan

socketcan
RXRXTX TX

eth

eth

socketcan

U
D

P

TX
RX

127.0.0.1:23456
127.0.0.1:34567

PH
Y

Testbed OS - Ubuntu 22.04 Wine 7.2 or Windows VM

ETH - Ethernet Interface
PHY - Physical Interface

Abbreviations

CAN/LIN Bus Bridge Board (FPGA)

Channels
Config. File

Fig. 9: Communication Board & Driver Software Overview

3.3 Car Signal Simulators

We connect the signal simulators to the automotive testbed,
to simulate certain conditions of the car operation. This is
illustrated in Figure 10. The testbed is powered from a power
supply that provides 13.8V to simulate the car battery. In
the following, we discuss the other crucial signals required
to operate the testbed.
Engine Simulator: In our test platform, periodic signals and
voltages are simulated by the engine simulator, ECU Pro-
fessional Automobile Signal Simulation, Model MST-9000+.
It can simulate several engine types. Additionally, we can
program the waveform of engine’s rotating crankshaft and
camshaft, i.e., RPM. The RPM is varied to simulate different
speed of engines in the testbed. The clutch signal is also tapped
from one of the 12V outputs from the chosen engine simulator.
Speed and Steering Angle Simulator: We simulate the
movement of the car by a rotating gear that are sensed by
the wheel speed sensors. The rotating speed of the gear is
controlled by a motor controller. In our testbed, the car can be
simulated to move from 0km/h to 53km/h. Concurrently, the
steering cluster ECU (SZL) provides the steering information.
We simulate the steering angle by moving the attached wheel
of the steering cluster.
Sensor Simulators: Signals from different car sensors are
simulated in our testbed by various resistance and current.
They are outlined as follows:

1) Fuel pump sensing: We draw 100mA current by attach-
ing resistor to the EKP ECU to simulate the presence of
the fuel pump.

2) Fuel, water fluid, coolant and brake fluid level: These
are simulated by varied resistance for different level.

3) Outside temperature: We use varied resistance to simu-
late measured temperature.

4) Brake and handbrake: We use open or closed circuit as
activation for the brake and handbrake.

http://www.allscanner.com/vcx-doip.html

Fig. 10: Car Signal Simulators

We configure the signal simulators to mimic the car be-
haviour. For our testing in the laboratory, we fix the input
values of the signal simulators. Specifically for each test, we
focus on the response of certain car’s function (e.g., speed dis-
play) when we varied our messages for finding vulnerabilities
or launching attacks. Even though the car was not driven on the
actual road, which will make small changes to signal inputs
(for example the RPM due to increased speed), it does not
affect our testing. This is because the vulnerabilities appearing
due to CAN messages still exist despite changes in the input
signals. Nonetheless, if the study is on the performance of
the car engine or engine stability, then further input modeling
might be required to replicate the dynamic environment that
accurately captures the changes in input signals.

The input signals can be easily configured for each testing.
When setting up, we use the diagnostic tool to check the
readings of the signals that are received by the different ECUs.
This is then leveraged to approximately create a realistic input
signal simulation. Appendix B shows the list of signal inputs
that are read by the ECUs. As shown in Appendix B, the
signals’ RPM, voltage, resistance and open-close circuit are
varied to simulate a near-realistic car operating environment.

3.4 Monitoring Signals and Messages

Monitoring all signals and messages are critical to design
repeatable tests on our platform. Furthermore, appropriate
monitoring allows us to observe the impact on the testbed
when an attack is performed. Analog and digital signals are
monitored by oscilloscope and logic analyser. The main signals
of interest are crankshaft/camshaft RPM, starter motor signal,
fuel pump control signal, wakeup signal and CAN messages

waveform. The reason for monitoring these signals are as
follows. The simulated RPM has to conform to the specific
RPM waveform pattern and timing required by the engine
ECU in our test platform. Hence, we need to monitor the
crankshaft/camshaft RPM. For the starter motor signal, its
activation confirms that the function of starting the car works
on our testbed. Subsequently, the activation of fuel pump
control and wakeup signal also takes place upon starting the
car. Finally, the CAN messages waveform is used only for
troubleshooting, specifically, to detect any error at any stage
of the startup.

Sniffing, injection or interception, and fuzzing or attacks
are executed on the CAN Messages (CM) workstation. Three
displays monitor the respective messages: 1) Sniffing and
Logging: When the testbed is operated, all messages from
different networks are sniffed and recorded to a logging file.
2) Injection or Interception Monitoring: For such monitoring,
the display can also be customized for dedicated monitoring
channels and parameters. 3) Fuzzing or attacks: This display
is for monitoring the progress of fuzzing or targeted attacks.
The fuzzing or attacks can be launched as python programs
or any other software.

3.5 Implementation of Software Component

For sniffing and logging of messages, we leverage TSMas-
ter5 – an open environment for automotive bus monitoring,
testing and logging. The TSMaster display can be customized
with graphical meters for speed and RPM, real time parameter
values, message traces, decoding using DBC file, and saving
to log files of BLF format.

5https://github.com/TOSUN-Shanghai/TSMaster

https://github.com/TOSUN-Shanghai/TSMaster

We perform frame injection via a virtual SocketCAN in-
terface, which is available in Linux. This interface is then
accessed like any TCP/UDP socket from Python or other
software such as Wireshark, SavvyCan, etc. When write opera-
tions are performed on this interface, the communication board
receives a request from the host and injects frames to the car
IVN. Likewise, interception and bridging is facilitated through
software by performing a SocketCAN read and write operation
in different CAN channels as discussed in Section 3-B.

We implement fuzzing via python programs. Nonetheless,
any programming language can be chosen for this purpose. At
present, our testbed includes random fuzzing of frame bytes
or decoded fields. In particular, after intercepting a frame, we
attempt to decode the fields. For the decoded fields, a randomly
chosen value is used in the respective before sending the frame
back to the IVN. For the bytes that cannot be decoded, for
example, due to incomplete DBC file, we randomly select a
byte and replace its value randomly, before sending the fuzzed
bytes to the IVN.

Although our current implementation only supports random
fuzzing, our test platform allows the community to research
and implement sophisticated fuzzing algorithms on the test
platform. One such approach could be systematic or directed
fuzzing to maximize the probability of revealing security bugs
(e.g., ECU crashes). For reproducibility and further research,
we make the source code of our software component, including
the fuzzer source, available in the Appendix C.

4. EVALUATION

In this section, we discuss possible usage scenarios of
our VITROBENCH test platform. We first briefly discuss the
experimental setup and then discuss the key capabilities of the
test platform. Finally, we show three case studies using the
test platform in line with security evaluation for automotive
systems.

4.1 Testing Setup

There are three possible testing scenarios as illustrated in
Figure 11). For normal operation, the four channels of PCAN,
FCAN, KCAN and Diagnostic are set up for 1 Sniffing. For 2
Frame Injection, an additional injection channel is connected
to the network. For bridging, a targeted ECU is separated and
re-connected to the ECU channel and back via the network
channel as shown in 3 Interception.

After connecting the communication channels according to
the test scenario, the workstation establishes the 4 Testing
Configuration as follows:

1) Configures the parameters of each channel by modifying
the Channels Configuration File, which is read by the
Communication Board.

2) Executes TSMaster to monitor and log messages from
all channels.

3) Executes the programs for the different test scenario -
Python programs are written for bridging and fuzzing.
The programs are using scapy CANSocket for receiving

Automotive Tesbed

Engine Speed Sensors

Car Signal Simulators

Steering
Diagnostic

Isolated ECU

PCAN Channel
FCAN Channel
KCAN Channel

Diagnostic Channel

1 Sniffing

Injection Channel

2 Frame
Injection

Network Channel

3 Interception

5 Car Starts

ECU Channel

Communication Board

Ethernet

Transceivers

FPGA

...

Workstation

Ethernet4 Testing
Configuration

Gateway

Fig. 11: Testing Scenarios

and transmitting CAN messages. Snippets of such a
python program is in Appendix C.

4) When the testbed is powered up, messages flow in
different CAN networks. These messages are sniffed and
displayed on the CM workstation. Data collection is also
activated by saving the incoming messages in a log file.

After test configuration, the 5 Car Starts by inserting
the car key, activating the clutch signal, pressing the “Start
button” and activating the crankshaft RPM. The instrument
cluster, “KOMBI” (see Figure 7) then displays the engine
speed (RPM), fuel level and the car speed from the running
testbed. Next, we describe capabilities of this running testbed.

4.2 Testbed Capabilities

We evaluate the three capabilities of the test platform,
i.e., sniffing, frame injection and interception. All the IVNs
messages are monitored and captured via TSMaster.

4.2.1 Sniffing: There is a plethora of automotive tools for
sniffing and analysing CAN/CAN-FD/LIN messages across
both Linux and Windows platforms. However, the standardized
SocketCAN interface is not supported in many feature-rich
free tools such as TSMaster due to the lack of cross-platform
compatibility. To have a work-around of this compatibility
issue and enable sniffing through other non-standard automo-
tive software, we implement a custom UDP interface to the
FPGA communication software. This allows us to successfully
sniff and analyse real-time CAN/CAN-FD/LIN messages from
TSMaster. For example, Figure 12 illustrates decoded CAN
messages in real-time. In this context, the testbed is configured
as testing scenario 1 (see Figure 11) and a separate filtered
trace window is added for the diagnostic messages.

Concretely, when we vary the RPM, wheels’ speed and
steering angle; the messages, meters and numerical values
change accordingly, as illustrated in Figure 12. The changes
can also be observed on the instrument display (see Figure 10).
Concurrently, we capture all the messages into a logged .blf
file. Such a log file can be played back later in TSMaster to
reproduce the test results.

Meters showing
wheels' speed

Meter showing
crankshaft RPM

Graphical real-time display of engine
speed, wheel speed and pump duty cycle

Trace window of all
channels' messages

Numerical values of
essential parameters

Trace window of
diagnostic messages

Fig. 12: An Illustration of Sniffing

4.2.2 Frame Injection: For testing the capability of frame
injection (see test scenario 2 in Figure 11), we inject a
fix message ID 0x080 of eight data bytes into PCAN. The
message is injected using channel 4 of the communication
board at interval of 100ms, 30ms, 10ms and 1ms. We sniff
the messages flowing in PCAN by channel 6. The results in
Figure 13 and Table III show that the injected frames follow
the intended time interval with some missed messages that
are transmitted at the next interval. The percentage of these
missed messages is less than 1%.

TABLE III: Frame injection interval

Frame Interval 100ms 30ms 10ms 1ms 0.1ms
Missed Msgs (%) 0.66 0.56 0.72 0.54
Average (µs) 100659.5 30167.49 10071.53 1005.269 300.4734
Median (µs) 99999 30000 10000 999 268
Min (µs) 99757 29732 8560 723 168
Max (µs) 200039 60026 20106 3037 549

Fig. 13: An illustration of frame injection at different intervals

We also perform injection for an interval of 0.1ms that
is less than the time for one message frame. These injected
frames do not get transmitted at the intended interval of 0.1ms,
but are transmitted at interval of one to two frames time of
0.268ms.

4.2.3 Interception: To test the interception scenario (see
test scenario 3 in Figure 11), we isolate the engine ECU by
bridging as shown in Figure 8. The intercepted messages of
the engine ECU pass through the workstation, but the ECU

is connected to channel four of the communication board,
whereas the PCAN network is still connected to channel 6.
Therefore, we wrote a python program to receive messages
from channel four and send to channel six, and vice versa.
To measure the effectiveness of interception, we compute the
latency of 91,000 messages passing through the workstation.
The results are shown in Figure 14. The result shows that
all messages are able to pass through the workstation with a
reasonable latency i.e., with a median latency of 0.077ms.

20 40 60 80 100 120 140

Fr
eq

ue
nc
y

Max: 8245 us
Min: 25 us
Median: 77 us

Fig. 14: CAN Frames Pass-through Latency (us)

4.3 Case Studies
In this section, we discuss three different case studies using

the sniffing, injection and interception capabilities described
in the preceding section.

4.3.1 Case Study I (Fingerprinting): We use the VIT-
ROBENCH test platform to obtain the behaviour of each ECU
and the testbed networks. We call this process fingerprinting.
Broadly, we perform the following actions to fingerprint
arbitrary ECUs:

• Isolate each individual ECU via bridging,
• Collect the CAN messages from the isolated ECU,
• Analyze the collected CAN messages.
From the collected CAN messages, the testbed identifies

the ECU’s source messages or relay messages if the ECU
is connected to multiple networks. In addition, the testbed
obtains the statistics of IVN messages from sniffing, such
as message ID, its normal inter-frame interval and time de-
viations. The collected messages and the statistics of IVN
messages constitute the fingerprint of the ECUs and the
considered car model.

TABLE IV: Number of CAN Messages from ECU

S/N ECU Bus No of Src Msg No of Relay Msg
1 DSC P-CAN 13 3
2 DSC F-CAN 3 1
3 EKP P-CAN 4 0
4 SZL F-CAN 4 0
5 CAS K-CAN 14 0
6 DDE P-CAN 16 0
7 FRM P-CAN 0 0
8 FRM K-CAN 17 0
9 JBE P-CAN 12 18

10 JBE K-CAN 24 23
11 KOMBI K-CAN 23 0
12 YAW F-CAN 4 0

Table IV captures the statistics of messages collected from
each ECU whereas Figure 15 illustrates the frame interval

of different messages flowing through PCAN, KCAN and
FCAN networks, respectively. To show the reliability of our
fingerprints, we collect the ECU and network messages over
three independent experiments spanning two days. We verified
that the statistics of messages illustrated in Table IV is exactly
the same (hence, deterministic) across the three experiments.
Furthermore, we show the inter-frame interval of different
messages in Figure 15 over three experiments (three experi-
ments are captured via “4-Jul-1”, “5-Jul-2” and “5-Jul-3”). As
observed in Figure 15, the inter-frame interval for all messages
exhibit negligible variation over different experiments. Hence,
our design allows us to reliably fingerprint the network mes-
sages and ECUs. Such a fingerprint can be leveraged to detect
variation in network behaviour e.g., during a cyber attack.

Fig. 15: Inter-frame Interval over three experiments labelled
as “4-Jul-1”, “5-Jul-2” and “5-Jul-3”

4.3.2 Case Study II (Random Fuzzing): Capabilities of
our VITROBENCH test platform allow to perform fuzzing ar-
bitrary messages in our testbed. Specifically, once the targeted
message is intercepted, there are several ways to fuzz the
message to be transmitted back to the main network. For
example, we implemented the following fuzzing actions:

1) Fuzz (modify) selected random or targeted message ID,
2) Fuzz selected random or targeted data byte, or
3) Fuzz selected random or targeted message field (for

known Whitebox ECU message structure).

Additionally, we implement the following mechanisms to
arbitrarily modify the message flow through the network:

1) Block the targeted message,
2) Send the targeted message modified via fuzzing back to

network, or
3) Replay multiple copies of the targeted message.

TABLE V: Fuzzing of message 0xAA from DDE ECU. Fuzzed
byte is shown in red.

Time Stamp ID Chn LEN D1 D2 D3 D4 D5 D6 D7 D8
1349746428 000000AA 4 8 D0 E5 3D 89 26 0A 94 B4
1349746603 000000AA 6 8 D0 E5 3D 89 26 0A 94 62
1349748164 000000AA 4 8 D0 E6 3D 88 26 0A 94 B4
1349748217 000000AA 6 8 D0 E6 3D 88 26 0A 94 6C
1349749189 000000AA 4 8 C2 D7 3D 89 26 0A 94 B4
1349749242 000000AA 6 8 C2 D7 52 89 26 0A 94 B4
1349755443 000000AA 4 8 C3 D8 3D 89 26 0A 94 B4
1349755504 000000AA 6 8 C3 D8 3D 89 26 0A CF B4
1349764566 000000AA 4 8 D4 E9 3D 89 26 0A 94 B4
1349764612 000000AA 6 8 D4 E9 4E 89 26 0A 94 B4
1349784969 000000AA 4 8 D5 EA 3D 89 26 0A 94 B4
1349785140 000000AA 6 8 D5 EA 3D 89 26 0A 95 B4
1349786255 000000AA 4 8 D6 EB 3D 89 26 0A 94 B4
1349786273 000000AA 6 8 D6 EB 3D 89 26 0A 58 B4
1349797027 000000AA 4 8 D7 EC 3D 89 26 0A 94 B4
1349797082 000000AA 6 8 D7 EC 3D 89 26 0A 67 B4
1349805462 000000AA 4 8 D7 ED 3D 88 26 0A 94 B4
1349805537 000000AA 6 8 D7 ED 3D 88 26 0A 94 5A

Table V demonstrates the fuzzing on message 0xAA from
DDE (engine ECU) in PCAN network. From the testbed
bridging setup (see Figure 8), fuzzing is initially performed on
messages related to the fuel pump, i.e., 0xA8, 0xA9, 0xAA
and 0x337. Subsequently, fuzzing random bytes of 0xAA is
found to have a response on the fuel pump. We note that the
message is received from channel four and fuzzed message is
transmitted via channel six to PCAN, as shown in Table V.
We conduct further targeted testing to focus on 0xAA byte
7 (D8). Specifically, we fuzz D8 to examine the impact on
the fuel pump. We discovered that fuzzing 0xAA-D8 causes
the pumping signal from EKP, i.e., fuel pump ECU to output
an erratic analog signal to the fuel pump motor. We leverage
these analysis results obtained from our fuzzing to design and
launch a concrete attack i.e., “Fuel pump attack” on the test
platform. We discuss our attack scenarios in the next section.

4.3.3 Case Study III (Attacks): In this section, we design
concrete attacks that are launched in the test platform. For
each attack, we also discuss the potential physical impact on
the considered car.
Threat Model: For our designed attacks, we assume an
attacker who can physically or remotely compromise one or
more ECUs and the IVN. Prior work [30] has shown that
such a threat is concrete. We consider that the attacker aims
to impair or arbitrarily manipulate certain functions of the
targeted car. She can accomplish this by modifying certain
messages, delaying or dropping messages as well as flooding
targeted messages to cause denial of service attacks. We note
that our attack model is in line with the adversary models
considered in recent works on automotive security [24]. More-
over, considering a strong attacker model that can manipulate
messages allows a comprehensive security evaluation.

TABLE VI: Attacks

Message Attack Testbed Response
KCAN messages Message Flooding Affects instrument cluster display
Message 0xAA Fuel Pump Attack Affects the fuel pump function
Message 0x130 Forced Car Stop Status of car key
Message 0x1A6 Wrong Speed Display Speed value for instrument cluster
Message 0x600 to 0x6FF Penetration Test Range of diagnostic messages

We design our attacks based on the observation made during
our fuzzing and fingerprinting, as discussed in the preceding
two case studies. Specifically, we observed the response of the

1 Message Flooding

2 Fuel Pump Attack

3 Forced Car Stop

4 Wrong Speed Display

Automotive Test Bed

KCAN
Speed (Km/h)RPM

Instrument Cluster (KOMBI)Engine ECU (DDE)

RPM

Speed

Stability Control ECU
(DSC)

PCAN

Automotive Test Bed

PCAN
Bridge

Fuel Pump Controller
(EKP)Engine Controller (DDE)

Engine Status, 0xAA Fuzz 0xAA
Fuel Pump

Pump Control

Automotive Test Bed

KCAN
Bridge

KOMBI

DDEFuel Pump Controller
(EKP)Car Access System (CAS)

Key Presence = 1
Ignition = 1
Engine = 1

Key Presence = 0
Ignition = 0
Engine = 0

Automotive Test Bed

KCAN
Speed (Km/h)RPM

Instrument Cluster (KOMBI)

Host PC

Stability Control (DSC)

PCAN
Bridge

Speed display,
0x1A6

Fake 0x1A6

Simulated Wheels

5 Penetration Test

Automotive Test Bed

KCANPCAN

External

DCAN

Host PC

Read back

Gateway

KCAN

Host PC

Host PC

Host PC

Fig. 16: Attack scenarios on VITROBENCH test platform

messages, e.g., messages shown in Table VI and devise the
attack scenarios. Our attack scenarios are illustrated in Fig-
ure 16. These attacks are constructed assuming the attackers
are able to maliciously communicate in the IVNs. In line with
our threat model, we emulate an attacker-compromised ECU
via bridging (see Figure 8). We note that bridging can be used
to arbitrarily change messages as well as to inject messages

from the workstation. Thus, the bridging capability in our test
platform allows us to simulate a connected malicious ECU.

In the following, we detail the concrete attack scenarios
illustrated in Figure 16.
1 Message Flooding: We learn from fingerprinting that dis-
play message 0x1A6 flows from DSC ECU PCAN, via JBE
gateway to KCAN and finally to Instrument Cluster Display.
The objective of this attack is to stop the message 0x1A6 to
reach the Instrument Cluster, so as the display in the cluster
reflects an incorrect value. To design the attack, we leverage
the fact that for CAN protocol, lower message IDs have higher
priority than messages with higher IDs. Therefore, we design a
flooding attack scenario by flooding messages with IDs lower
than 0x1A6 (hence higher priority for transmission). To this
end, we design the following exploits for flooding:

• Exploit 1: KCAN is connected with an additional injec-
tion channel (Figure 11 2). Then, KCAN is flooded by
directly injecting the message ID 0x080 into KCAN by
the workstation.

• Exploit 2: While exploit 1 floods messages with a single
ID, it is also easy to detect via a potential defense e.g.,
by checking the relative frequency of different message
IDs. To make the attack more stealthy, we flood messages
with random IDs between 0x080 and 0x1A5.

We successfully launched the attack and its impact was
visible in the Instrument Cluster (see Figure 17). Specifically,
the attack stopped the display message to reach the Instrument
Cluster. Consequently, the cluster reflected an incorrect value
of speed. Such an attack could severely impair the car function.
For example, it is possible that the car speed is over the safe
driving speed and the Instrument Cluster does not display the
same due to an ongoing attack. This, in turn, may result in
serious consequences.

Before Attack (40km/h) After Attack (0km/h)

Fig. 17: Message Flooding

2 Fuel Pump Attack: As discussed in our fuzzing case
study, engine status message 0xAA from DDE is found to
affect the pump control signal of EKP. From fingerprinting
case study, we observed that EKP message 0x335 reflects
the function of the control signal to the fuel pump. Based on
this knowledge, we design the fuel pump attack to impair the
fuel pump function of the car as follows:

• Exploit 1: DDE is isolated and bridged from PCAN (Fig-
ure 11 3). The intercepted message 0xAA is modified
by fuzzing before it is sent to EKP via PCAN.

• Exploit 2: PCAN is connected with an additional injection
channel (Figure 11 2). In addition to the normal 0xAA,

we directly inject fuzzed message 0xAA into PCAN (and
received by EKP).

In both exploits, the physical impact is that the fuel is
pumped in an irregular fashion to the engine. Concretely,
before the attack, the normal response of the analog control
signal to the fuel pump motor is observed on an oscilloscope
to have 72% duty cycle at steady state (see Figure 18). We
note that the message, 0x335-D8 (data byte eight) is found
to reflect the duty cycle of the fuel pump control signal.

Fig. 18: Before Fuzzing 0xAA

After fuzzing 0xAA D8, the oscilloscope shows the erratic
fuel pump signal (see Figure 19). Specifically, the EKP ECU
outputs a series of random duty cycle messages as shown on
the graph of 0x335-D8 in Figure 20.

Since this attack impairs the fuel pump functionality of
the car, this may potentially impact the engine to behave in
an erratic fashion during driving. Due to this, drivers may
experience sporadic engine behaviors including the engine
being stopped while the attack takes place.

Fig. 19: Erratic Fuel Pump Analog Signal

3 Forced car stop: From our fingerprinting case study, we
observed that power status message 0x130 flows from CAS
ECU over KCAN network. Furthermore, from the DBC de-
coding file and leveraging bridging, we observed that message
0x130 has three fields: CarKey, Ignition and Engine that
affect the engine function.

Based on the information mentioned in the preceding para-
graph, we design an attack to force the car to stop. We

Fig. 20: After Fuzzing 0xAA D8

intercept CAS message 0x130 and farbicate message fields
i.e., CarKey, Ignition and Engine. We carry out the attack via
the following two exploits.

• Exploit 1: CAS is isolated and bridged from KCAN
((Figure 11 3)). We send the modified message ID
0x130 with CarKey, Ignition and Engine set to zero to
KCAN when driver starts the car for the third time.

• Exploit 2: Similar to exploit 1, we send the modified
message ID 0x130 with CarKey, Ignition and Engine set
to zero to KCAN when the car is running and a specified
time duration is reached.

In both the exploits, when the attack condition is ongoing,
the fuel pump stops. This means the car eventually stops due to
the attack. We validate the impact of this attack by observing
the 0-RPM speed displayed in the Instrument Cluster of our
test platform (see Figure 21). This happens as the engine
stops rotation and such is correctly reflected in the Instrument
Cluster display. We note that such an attack may have serious
consequences in real life. For example, drivers may experience
the car being suddenly stopped when the attack takes place.

Before Attack (650RPM) After Attack (0RPM)

Fig. 21: Forced Car Stop

4 Instrument Cluster Wrong Speed Display: From our
fingerprinting case study, we observed that the wheel speed
message 0xCE and the display message 0x1A6 flow from
the DSC ECU over PCAN network. We employed reverse en-
gineering with the intention to find any correlation between the
content in message 0xCE and message 0x1A6. We discovered
that the wheel speed is encoded in message 0x1A6 transmitted
to the Instrument Cluster. Furthermore, we investigated the
DBC decoding file to extract the wheel speed from message

0xCE. Finally, we inspect the relation between this extracted
wheel speed and the encoded speed in message 0x1A6. This,
in turn, allows us to decode message 0x1A6 for extracting
the original speed intended to be displayed in the Instrument
Cluster.

Based on the study in the preceding paragraph, we design
an attack to send fake speed information in message 0x1A6.
Specifically, we design the following exploits to realize the
attack scenario:

• Exploit 1: DSC is isolated and bridged from PCAN
(Figure 11 3). The car runs normally till the targeted
speed for the attack, e.g., 90km/h. We intercept and
modify 0x1A6 messages with 2/3 speed. Thereafter,
the speed message is incremented by 2/3 of the actual
increased speed and clipped at the maximum speed, e.g.,
140km/h. This fools the driver that he drives at normal
speed even though he accelerates further, and the actual
speed may be increased from 90km/h to dangerously
165+ km/h. Due to maximum speed of the simulated
wheel motor being less than 53km/h, the attack speed
on the testbed is set at 10km/h and clipped at maximum
speed of 35km/h.

• Exploit 2: Similar to exploit 1, the car runs normally till
the attack speed, e.g., 90km/h. Thereafter, the speed in
message 0x1A6 is randomly modified. The exploit is
launched by intercepting and modifying 0x1A6 messages
with random speed value. Due to the maximum speed
limit of simulated wheel motor, the attack speed on the
testbed is set at 40km/h.

For both the exploits, the attack is successfully realized,
as the Instrument Cluster reflects the incorrect speed (see
Figure 22). Like the “Flooding Attack” described earlier in
this section, this attack may also lead to serious consequences.
Specifically, during the attack, the Instrument Cluster provides
incorrect information to the driver about the current speed of
the car. As a result, the driver may accelerate the car beyond
the imposed speed limit. This may not only result in accidents
but may also have legal implications.

Fake Speed:
60km/h

Fake Speed:
75km/h

Fake Speed:
50km/h

Fig. 22: Added Random Speed

5 Penetration Test: The diagnostic CAN network (DCAN)
in our test platform is accessible via external OBD2 con-
nection. In this scenario, we conduct penetration test to find
message IDs that can pass through the JBE gateway via OBD2
connection. To this end, we generate random messages with
IDs from 0x0 to 0x6FF and the message content is filled
with random byte values via fuzzing. These messages are then
transmitted from the workstation to the DCAN network. To
observe the impact of the attack and discover messages that

pass through the gateway, we monitor the PCAN, KCAN and
FCAN network.

We observed that no message with IDs between 0x0 and
0x5FF infiltrates into internal CAN networks (from DCAN).
Nonetheless, some messages with IDs between 0x600 and
0x6FF were found to infiltrate into the internal CAN net-
works. An example of the message ID (0x608) that passes
though the JBE gateway is shown in Figure 23. Specifically,
we can verify in our test platform that message 0x608
infiltrates from DCAN (Bus=4) to PCAN (Bus=0) network.

Fig. 23: Impact of Penetration Testing on PCAN

We conducted further investigation to discover any pattern
on the messages that pass through the JBE gateway. Our
investigation reveals that messages that do not follow the
ISO-TP structure [25] are dropped by the gateway. Such an
ISO-TP structure uses the D2 byte to include the number of
data bytes that follow. We use this knowledge to make our
penetration more targeted. Concretely, we only inject messages
to the DCAN that follows ISO-TP structure. This allows us to
perform more effective penetration testing. Future works on
fuzzing may focus on finding these patterns automatically to
perform more directed fuzzing actions.

After making the penetration testing targeted and ensuring
all fuzzed messages indeed in-filtrate into internal CAN net-
work, we check the impact on the inter-frame interval timing
of normal messages communicated within the network. We
observed that such penetration testing has little to no impact on
the inter-frame interval (see the inter-frame timing distribution
in Figure 23). This happens due to the very low priority of
messages that actually pass through the JBE gateway and in-
filtrate into internal CAN network.

4.4 Extension to CAN-FD Network

To show the extensibility and flexibility of our VIT-
ROBENCH test platform, we augmented our automotive testbed
with COTS ECUs supporting CAN-FD protocol. In the follow-
ing, we outline some salient aspects of this extension. We also
discuss adoption of our key testbed capabilities and use cases
(e.g., bridging and fingerprinting) for a different IVN protocol
(i.e., CAN-FD).

Bridging: We extended VITROBENCH with two CAN-FD
ECUs, Front Radar and Front View Camera, from Kia Sorento.

These ECUs are connected with two CAN-FD networks, E-
CAN and LOCAL-CAN. Like CAN networks (Figure 8),
we also implement the bridging capability in such CAN-FD
network to facilitate interception and fuzzing. The implemen-
tation of this bridging is illustrated in Figure 24.

ETH

E_CAN_L E_CAN
CN7

Communication Board

Front Radar

E_CAN_H

LOCAL_CANLOCAL_CAN_L
LOCAL_CAN_H

CN6

Front View Camera

Bridge (ECU)
and Fuzzing

E_CAN_H

E_CAN_L
CN8

Bridge_H

Bridge_L

CN5

CM Workstation
(CAN Messages)

Fig. 24: Bridging of Front Radar CAN-FD ECU for Fuzzing

Since our communication board supports multiple channels
and protocols, including CAN-FD, such an extension of the
bridging capability was feasible. Moreover, we leverage the
same fuzzing program (see Appendix C) to fuzz arbitrary bytes
of arbitrary CAN-FD frames. This shows that bridging is a
generic capability that can be used for intercepting and fuzzing
multiple IVNs.

Fingerprinting: We employ fingerprinting in terms of relia-
bility collecting the ECU messages and computing the inter-
frame interval for each CAN-FD message ID. To validate the
reliability of our fingerprinting, we perform three independent
experiments to collect the ECU messages and to compute
the inter-frame interval. Table VII captures the number of
messages from each ECU, as obtained deterministically across
three different experiments. Finally, Figure 25) illustrates the
inter-frame interval of CAN-FD frames in different CAN-
FD networks. Each bar for a given message ID captures an
independent experiment. As shown in Figure 25), the variance
in the computed inter-frame interval is negligible.

TABLE VII: Number of Messages from Source CAN-FD ECU

S/N ECU Bus No of Src Msg
1 Front Radar E-CAN 3
2 Front Radar LOCAL-CAN 1
3 Front View Camera E-CAN 5
4 Front View Camera LOCAL-CAN 18

Our extension with CAN-FD ECUs and networks shows
that our ideas on bridging and its usage to fingerprint are not
limited to CAN networks. These are generic concepts that have
the potential to be applied on a larger, versatile and emerging
IVNs. Therefore, we believe that our VITROBENCH test
platform provides a foundation and the required capabilities
for impactful research in automotive cybersecurity.

Fig. 25: CAN-FD Frame Interval

5. RELATED WORK

Different types of simulation and testbed [29] [26] [9] have
been used by researchers for studying different aspects of
IVNs and automotive cybersecurity, and most types do not
incorporate the vehicle’s ECUs. Koscher et al. [31] used vehi-
cles as testbed and with a CAN simulator accessed by OBD
scanners. They demonstrated that any compromised ECU can
cause adversarial effect to the automotive functions. They
purchased two vehicles for testing in the lab and in road tests.
Most of their experiments were conducted with the vehicle
being stationary. For moving vehicle, they obtain access to
the runway of a decommissioned airport to re-evaluate many
of the attacks. This work only considered attacks via the OBD-
II connector i.e., the external port. In contrast, we provide a
platform to investigate and launch attacks in IVNs. Moreover,
the focus of the work by Koscher et al. [31] is to show the
attack surfaces in modern automobiles, instead of providing
a flexible, realistic test platform for researching attacks and
defense on automotive systems.

Fowler et al. [23] proposed a hardware-in-the-loop testbed
for out of vehicle design, development and testing. A vehicle
was simulated on a testbed by using Vector simulator, CANoe
software and a Bluetooth-enabled dongle which was connected
to the testbed’s OBD port. CAN messages were then injected
in an undesirable manner to perform a cyber attack on the vehi-
cle and then the simulator. In contrast to our work, the testbed
offered by Fowler et al. [23] does not involve any COTS
ECUs and the capabilities of the testbed were not discussed or
evaluated. Oruganti et al. [16] also proposed a framework of
a security evaluation platform based on hardware-in-the-loop.
Nonetheless, they only offer ECU simulation and the support
to include physical ECUs is planned in future. In contrast,
our VITROBENCH test platform provides a foundation for
cybersecurity research involving COTS ECUs and IVNs.

Roberts et al. [10] showed that a cyber-physical testbed
using MIT CSAIL Duckietown can support a real-world,
operational AV shuttle. The testbed that consisted of a small-
factor driving range and an autonomous vehicle (DuckieBotIt),

had been used for evaluating autonomous driving software.
Using this testbed, they demonstrated that the results for
testing cyber vulnerabilities can be applied to the iseAuto,
an AV shuttle operating in Tallinn, Estonia. The objective of
our work is orthogonal to the objective of Roberts et al. [10].
Specifically, the work by Roberts et al. [10] focuses on finding
the vulnerabilities in autonomous driving software, instead of
investigating the security issues in IVNs. Specifically, the tests
considered by Roberts et al. are contexts and scenarios sensed
by an autonomous car e.g., road markings. In contrast, the
tests in our VITROBENCH platform consists of raw frames
communicated within IVNs.

A commercial product, ”Portable Automotive Security Tes-
bed with Adaptability” (PASTA) had also been developed
by Toyama et al. [22]. PASTA was an open and adaptable
platform in one attaché case that consisted of white-box
simulated ECUs. It was developed for evaluating vehicle
cybersecurity technology and was able to visualise various
car internal operations. Similar to PASTA, another testbed
Resistant Automotive Miniature Network (RAMN) was devel-
oped by Gay et al. [13]. RAMN is a credit-card sized PCB,
which contains four ECUs connected to a CAN bus and was
compatible with CAN-FD for automotive testing. In contrast
to VITROBENCH, both products did not offer a test platform
with COTS ECUs (i.e., the ECUs were also developed by
the designers). Moreover, both products were mostly proposed
without any comprehensive evaluation. As such, the capability
of this platform for cybersecurity research remains unclear.

There is a growing interest in Digital Twin [14] [21] [4] in
the automotive industry. A Digital Twin testbed can be defined
as a virtual representation of a physical product containing in-
formation about the car. This technology has contributed to the
car design by drawing useful information from its functions.
Shetty [6] had developed a digital twin vehicle model using
Toyota Prius as the test vehicle. It was equipped with various
sensory equipment such as the GNSS/INS module, cameras,
thermal cameras, LIDARs and RADARs to record various
scenarios while driving. They demonstrated a cruise control
model as an alternative to the power and brake subsystems.
Popa et al. [5] had developed laboratory CarTwin models for
the in-vehicle network to mimic a real vehicle network. The
CarTwin employed seven Infineon TC275 lite kits for the seven
nodes communicating on the CAN network. The models show
good correlation while comparing the models’ outputs with the
collected data that were extracted from the vehicle. Our work
is orthogonal as Digital Twin testbed focuses on the design and
modelling aspect, while our testbed focuses on cybersecurity
of the IVNs.

Fuzzing is commonly used in communication protocol test-
ing to detect vulnerabilities. Bayer and Ptok [27] developed
a fuzzer and showed that it is efficient to detect faults in
automotive ECUs. They believed that fuzzing will have a
role in a vehicle’s security evaluation process in future. Lee
et al. [28] studied the impact to a parked car by fuzzing
external CAN packets into the OBD port. They performed the
attacks without any in-depth knowledge of the car. During

the attacks, the abnormal behavior was monitored through
the car’s instrumentation panel. Zhang et al. [12] proposes
a fuzz testing method called CAN-FT to mine vulnerabilities
in CAN bus. Their method employed Generative Adversar-
ial Network (GAN) to generate fuzzed messages and uses
adaptive boosting (AdaBoost) to detect the abnormal states
of CAN bus. Fowler et al. [19] investigated whether a fuzz
test, mentioned in SAE J3061, can be widely applied in a
vehicle development process. Their results demonstrated that
security tests can use fuzzing before the vehicle were being
made for series production. Vinzenz and Oka [11] integrated
fuzz testing into the cybersecurity validation strategy. They
showed that fuzz testing was beneficial to improve product
security by providing inputs to enhance other testing activities.

VITROBENCH is complementary to the aforementioned
efforts involved in developing fuzzing methodologies for auto-
motive systems. Specifically, contrary to providing a specific
fuzzing methodology, VITROBENCH provides a comprehen-
sive test platform to facilitate realistic evaluation of fuzzing
solutions, among others. Nonetheless, during evaluation we
also show that our fuzzing guides us to design concrete attack
scenarios.

Park et al. [17] proposed a security evaluation methodology
and tool based on four types of attacks (denial of service, data
frame replay, fuzzing, impersonation) that can be performed
on In-vehicle CAN. Another CAN security evaluation tool
(CANsec) was proposed by Zhang et al. [15] to add a few other
tools such as CarShark (CAN network analysis tool) [31],
ATG [20] for attack models and a security evaluation tool [17].
Park et al. [17] also developed an evaluation tool for responses
beyond network communication using various sensors such as
video, sound and vibration sensors. Similarly, an experimental
sensor harness was developed by Werquin el al. [18]. In
contrast to VITROBENCH, none of these works propose a
test platform involving COTS ECUs, instead these works
aim to enhance the automation of automotive cyber security
evaluation via attack generation tools and via sensor harness.
Thus, our goal is orthogonal to these works.

In summary and to the best of our knowledge, VIT-
ROBENCH is the first comprehensive test platform involving
COTS ECUs and IVNs that allow researchers to have full con-
trol over the internal car network. This facilitates evaluation of
arbitrary attacks on IVNs in a realistic fashion despite having
access to a car.

6. DISCUSSION AND FUTURE OUTLOOK

In this section, we discuss our outlook to inspire future
cybersecurity research for automotive systems using VIT-
ROBENCH.

6.1 Towards a flexible test platform

Automotive cybersecurity concerns are increasing over the
years [1]. Much work have been performed to test vehicles
along different aspects of cybersecurity. However, each vehicle
design is different and it is difficult to use a single testbed for
all types of vehicles. To address such challenge, we envision a

test platform using COTS ECUs in the laboratory. This allows
our tests to be repeatable (i.e., consistent), yet the test results
to be close to the performance in a real car that embodies the
respective ECUs. More importantly, we carefully design VIT-
ROBENCH such that ECUs in the automotive testbed can be
replaced (or added/removed) keeping the rest of the platform
(e.g., the communication board and software components)
untouched. Such a design facilitates an extensible and flexible
test platform, while reusing VITROBENCH capabilities and use
cases such as bridging, sniffing and fuzzing, among others.
As a byproduct of our implementation, the bridging allows
to reveal the source and destination ECUs of an intercepted
message, which is otherwise impossible via only sniffing the
network (e.g., for CAN). This allows us to design targeted
attacks for evaluation within VITROBENCH.

Unlike using a real car [31], which is subject to the
elements on the road, our laboratory testing is accomplished
in a controlled environment and is safe. Test results can
also be analysed offline and further testing or changes can
be immediately performed for validation in the laboratory.
Similarly, unlike using simulated ECUs for testing [23, 10,
22] [10], VITROBENCH offers significantly less ambiguity on
the validity of test results on the actual car.

In the future, we aim to extend VITROBENCH for a combi-
nation of CAN-FD, Automotive Ethernet and LIN networks.
We have designed our communication board for CAN/CAN-
FD and LIN, and we will be adding Automotive Ethernet
communication capability to our test platform in the future.
Indeed, we show in Section 4-D an extension of VITROBENCH
for simple CAN-FD network. We demonstrated that the key
VITROBENCH capabilities and use cases e.g., bridging and fin-
gerprinting can be easily ported across networks. Having mul-
tiple types of IVNs in VITROBENCH will allow researchers to
launch and evaluate cross network attacks.

We envision VITROBENCH to be expanded to multiple
workstations where each workstation can be connected to a
communication board to access the IVNs for different stud-
ies. Such studies may include our research in cybersecurity,
supporting automotive software development and testing and
logging of ECUs and V2V/V2X wireless communication,
among others.

6.2 Towards directed fuzzing of automotive networks

In VITROBENCH, we designed a simple random fuzzing al-
gorithm to arbitraily manipulate the messages in IVNs. Despite
its simplicity, we show that fuzzing is effective in providing
useful information to the designer. For instance, it helped us to
design and successfully launch a concrete Fuel Pump Attack.
The need to use fuzzing for effectively testing automotive
systems has also been exemplified by prior works [28, 12].
Nonetheless, we believe that much work is needed in design-
ing effective and directed fuzzing algorithms for automotive
systems. While fuzzing technologies have many success stories
for testing application software; development and translation
of fuzzing technologies for automotive systems is far from
mature. Unlike application software, which are easily available

as test subjects, having a realistic test platform for automotive
systems remains challenging. This, in turn, is detrimental to
the progress of security testing technologies for automotive.

Thanks to VITROBENCH, we open the door for development
and realistic evaluation of fuzzing research on IVNs. We
decouple the design of the automotive testbed and the software
component (including fuzzing) within VITROBENCH. This
allows the researchers in fuzzing to fully focus on the soft-
ware component, while keeping the hardware component e.g.,
the communication board design and the automotive testbed
untouched. Future research may involve design of fuzzing
algorithms that are directed with the aim to reveal maximum
number of vulnerabilities or attacks in the considered IVNs.
Another line of research may focus on automatically detecting
the abnormal behaviours in the IVNs during fuzzing. While
some initial works have been accomplished [12, 17, 18], much
work is still needed to automatically detect vulnerable com-
munication traces. Thanks to VITROBENCH, we believe that
our fingerprinting can provide a useful artifact for detecting
abnormal ECU behaviour.

7. CONCLUSION

In this paper, we present VITROBENCH, a configurable
test platform using COTS ECUs. VITROBENCH decouples the
design of automotive testbed and the accompanying hardware
and software. This allows to replace the automotive testbed
with different ECUs, while keeping the rest of the VIT-
ROBENCH design untouched. Likewise, VITROBENCH may
support additional IVN protocols by augmenting the design
of the communication board and inspire future research on
cybersecurity such as fuzzing by enhancing the software
component.

We comprehensively evaluate VITROBENCH to demon-
strate its capability. To replicate the test environment in
VITROBENCH, we inject signals simulated by external hard-
ware to the automotive testbed. Then, VITROBENCH isolates
a targeted ECU via bridging. This allows us to arbitrarily
control the traffic within IVNs. This is shown to be effective
for intercepting, fuzzing and launching concrete attacks on
the platform. Due to the lab environment, all tests within
VITROBENCH are repeatable, yet the respective test results
are largely realistic due to the embodiment of COTS ECUs
within VITROBENCH. Finally, we discuss an extension of
VITROBENCH for CAN-FD network to show the generalis-
ability and flexibility. We hope that VITROBENCH provides
a foundation for automotive cybersecurity research in future.
For replication and research, we have also made our code
for the software component available in Appendix C. More
information can be obtained from the following website:

https://www.vitrobench.com

ACKNOWLEDGEMENTS

This research/project is supported by the National Research
Foundation, Singapore, and Land Transport Authority under
Urban Mobility Grand Challenge (UMGC-L011). Any opin-
ions, findings and conclusions or recommendations expressed

https://www.vitrobench.com

in this material are those of the author(s) and do not reflect the
views of National Research Foundation, Singapore and Land
Transport Authority.

REFERENCES

[1] Trupil Limbasiya et al. “A systematic survey of attack
detection and prevention in Connected and Autonomous
Vehicles”. In: Veh. Commun. 37 (2022), p. 100515.

[2] MathWorks. MATLAB. (Accessed 16th December
2022). 2022. URL: https : / / www . mathworks . com /
products/matlab.html/.

[3] MathWorks. Simulink. (Accessed 16th December 2022).
2022. URL: https : / / www. mathworks . com / products /
simulink.html.

[4] Dimitrios Piromalis and Antreas Kantaros. “Digital
twins in the automotive industry: The road toward
physical-digital convergence”. In: Applied System In-
novation 5.4 (2022), p. 65.

[5] Lucian Popa, Adriana Berdich, and Bogdan Groza.
“CarTwin—Development of a Digital Twin for a Real-
World In-Vehicle CAN Network”. In: Applied Sciences
13.1 (2022), p. 445.

[6] SS Shetty. “Development of a Digital Twin of a Toy-
ota Prius Mk4”. PhD thesis. Eindhoven University of
Technology Eindhoven, The Netherlands, 2022.

[7] Vector. CANoe. (Accessed 16th December 2022). 2022.
URL: https://www.vector.com/int/en/products/products-
a-z/software/canoe//.

[8] WIRED. Hackers Remotely Kill a Jeep on the High-
way—With Me in It. (Accessed 16th December 2022).
2022. URL: https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/.

[9] Youngho An et al. “Design and implementation of
a novel testbed for automotive security analysis”. In:
Innovative Mobile and Internet Services in Ubiquitous
Computing: Proceedings of the 14th International Con-
ference on Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS-2020). Springer. 2021,
pp. 234–243.

[10] Andrew Roberts, Olaf Maennel, and Nikita Snetkov.
“Cybersecurity Test Range for Autonomous Vehicle
Shuttles”. In: 2021 IEEE European Symposium on Secu-
rity and Privacy Workshops (EuroS&PW). IEEE. 2021,
pp. 239–248.

[11] Nico Vinzenz and Dennis Kengo Oka. Integrating fuzz
testing into the cybersecurity validation strategy. Tech.
rep. SAE Technical Paper, 2021.

[12] Haichun Zhang et al. “CAN-FT: A Fuzz Testing Method
for Automotive Controller Area Network Bus”. In:
2021 International Conference on Computer Informa-
tion Science and Artificial Intelligence (CISAI). 2021,
pp. 225–231. DOI: 10.1109/CISAI54367.2021.00050.

[13] Camille Gay, Tsuyoshi Toyama, and Hisashi Oguma.
“Resistant Automotive Miniature Network”. In: Pro-
ceedings of the Chaos Computer Congress, Leipzig,
Germany. 2020, pp. 27–30.

[14] David Jones et al. “Characterising the Digital Twin: A
systematic literature review”. In: CIRP Journal of Man-
ufacturing Science and Technology 29 (2020), pp. 36–
52. ISSN: 1755-5817. DOI: https://doi.org/10.1016/j.
cirpj.2020.02.002. URL: https://www.sciencedirect.com/
science/article/pii/S1755581720300110.

[15] Haichun Zhang et al. “CANsec: a practical in-vehicle
controller area network security evaluation tool”. In:
Sensors 20.17 (2020), p. 4900.

[16] Pradeep Sharma Oruganti, Matt Appel, and Qadeer
Ahmed. “Hardware-in-loop based automotive embed-
ded systems cybersecurity evaluation testbed”. In: Pro-
ceedings of the ACM Workshop on Automotive Cyber-
security. 2019, pp. 41–44.

[17] Hyun-Bae Park et al. “Practical Methodology for In-
Vehicle CAN Security Evaluation.” In: J. Internet Serv.
Inf. Secur. 9.2 (2019), pp. 42–56.

[18] Timothy Werquin et al. “Automated fuzzing of automo-
tive control units”. In: 2019 International Workshop on
Secure Internet of Things (SIOT). IEEE. 2019, pp. 1–8.

[19] Daniel S. Fowler et al. “Fuzz Testing for Automotive
Cyber-Security”. In: 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works Workshops (DSN-W). 2018, pp. 239–246. DOI:
10.1109/DSN-W.2018.00070.

[20] Tianxiang Huang, Jianying Zhou, and Andrei Bytes.
“ATG: An attack traffic generation tool for security test-
ing of in-vehicle CAN bus”. In: Proceedings of the 13th
International Conference on Availability, Reliability and
Security. 2018, pp. 1–6.

[21] Rajeeth Tharma, Roland Winter, Martin Eigner, et al.
“An approach for the implementation of the digital twin
in the automotive wiring harness field”. In: DS 92:
Proceedings of the DESIGN 2018 15th International
Design Conference. 2018, pp. 3023–3032.

[22] Tsuyoshi Toyama et al. “PASTA: portable automotive
security testbed with adaptability”. In: London, blackhat
Europe (2018).

[23] Daniel S Fowler et al. “Towards a testbed for automotive
cybersecurity”. In: 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST).
IEEE. 2017, pp. 540–541.

[24] Kyong-Tak Cho and Kang G. Shin. “Fingerprinting
Electronic Control Units for Vehicle Intrusion Detec-
tion”. In: USENIX Security Symposium. USENIX As-
sociation, 2016, pp. 911–927.

[25] ISO 15765-2:2016 - Diagnostic communication
over Controller Area Network (DoCAN) — Part
2: Transport protocol and network layer services.
https://www.iso.org/standard/66574.html. 2016.

[26] Shane Tuohy et al. “Hybrid testbed for simulating in-
vehicle automotive networks”. In: Simulation Modelling
Practice and Theory 66 (2016), pp. 193–211.

[27] Stephanie Bayer and Alexander Ptok. “Don’t fuss about
fuzzing: Fuzzing controllers in vehicular networks”. In:
13th escar Europe (2015), p. 88.

https://www.mathworks.com/products/matlab.html/
https://www.mathworks.com/products/matlab.html/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.vector.com/int/en/products/products-a-z/software/canoe//
https://www.vector.com/int/en/products/products-a-z/software/canoe//
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://doi.org/10.1109/CISAI54367.2021.00050
https://doi.org/https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/https://doi.org/10.1016/j.cirpj.2020.02.002
https://www.sciencedirect.com/science/article/pii/S1755581720300110
https://www.sciencedirect.com/science/article/pii/S1755581720300110
https://doi.org/10.1109/DSN-W.2018.00070

[28] Hyeryun Lee et al. “Fuzzing CAN Packets into Auto-
mobiles”. In: 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications.
2015, pp. 817–821. DOI: 10.1109/AINA.2015.274.

[29] Christopher E Everett and Damon McCoy.
“{OCTANE}(open car testbed and network
experiments): bringing cyber-physical security research
to researchers and students”. In: 6th Workshop on
Cyber Security Experimentation and Test ({CSET} 13).
2013.

[30] Stephen Checkoway et al. “Comprehensive Experi-
mental Analyses of Automotive Attack Surfaces”. In:
USENIX Security Symposium. USENIX Association,
2011.

[31] Karl Koscher et al. “Experimental security analysis of
a modern automobile”. In: 2010 IEEE symposium on
security and privacy. IEEE. 2010, pp. 447–462.

https://doi.org/10.1109/AINA.2015.274

APPENDIX A
ECUS DESCRIPTION

Function ECU KCAN PCAN FCAN Description
Gateway JBE ✓ ✓ ✓ The junction box (JBE) assumes a central role in the vehicle. The junction box

electronics is the central gateway in the vehicle.
Engine DDE ✓ The engine control unit (DDE) controls a series of actuators on an internal

combustion engine to ensure optimal engine performance. It does this by reading
values from a multitude of sensors within the engine bay, interpreting the data and
adjusting the engine actuators.

Car Access CAS ✓ The car access system (CAS) is an antitheft alarm system and enables the start of
BMW vehicles.

Doors/Windows/Lights FRM ✓ ✓ The footwell module (FRM) functions as an electrical hub on the drivers side. The
FRM receives signals from the doors, it controls the lighting, it commands the
adaptive headlights and it also interfaces with the dashboard.

Suspension Stability DSC ✓ ✓ The dynamic stability control (DSC) is a suspension control system. It works by
monitoring each wheel speed individually along with yaw rate and acceleration.

Motion Sensor YAW ✓ The yaw rate sensor measures the vehicle’s angular velocity about its vertical axis
in order to determine the orientation of the vehicle.

Fuel Control EKP ✓ The electronic fuel pump control module (EKP) controls the fuel pump.
Steering SZL ✓ The steering control unit (SZL) is mounted with various switches, including a wiper,

turn signal and cruise control. Its steering angle sensor determines where the driver
wants to steer, matching the steering wheel with the vehicle’s wheels.

Instrument Display KOMBI ✓ The KOMBI control unit is the module that controls the instrument cluster. The
instrument cluster is located on the dashboard, directly in front of the driver behind
the steering wheel. It relays information about the vehicle to the driver through the
signals from the gauges and warning lights.

APPENDIX B
SIMULATION READING FROM DIAGNOSTIC TOOL

S/N ECU Car Status Simulation Reading from Diagnostic Tool

1

DDE

Coolant temperature 2.0 V 45.0 °C

2
Crankshaft RPM

650 Hz 649 RPM

3 Crankshaft waveform Engine turns

4 Fuel temperature 1.0 V 68.7 °C

5 Fuel pressure 2.0 V 2247 mbar

6 Rail pressure 1.0 V 543.3 bar

7
Clutch signal

12 V / Open Circuit Operated / Not Operated

8 12 V / Open Circuit 90 % / 10 %

9 Neutral gear Square Wave 49.46%

10 Battery 13.8 V 13400 mV

11 Brake light signal Open Circuit / GND Operated / Not Operated

12 Brake light test signal Open Circuit / GND Operated / Not Operated

13

JBE

Fuel tank (Left) 330 Ohm 332.8 Ohm

14 Fuel tank (Right) 1000 Ohm 1042.2 Ohm

15 Washer fluid level GND Over Minumum

16 Coolant level GND Over Minumum

17

FRM

Left rear indicator Activate On / Off On / Off

18 Left front indicator Activate On / Off On / Off

19 Right front indicator Activate On / Off On / Off

20 Right direction indicator Activate On / Off On / Off

21 High beam flasher Activate On / Off On / Off

22 High beam Activate On / Off On / Off

23

KOMBI

Crankshaft RPM 650 Hz 649 RPM

24 Fuel tank (Left) 330 Ohm 14.88 l

25 Fuel tank (Right) 1000 Ohm 35.00 l

26 Button on KOMBI Pressed / Not Pressed Pressed / Not Pressed

27 BC/CC button Pressed / Not Pressed Pressed / Not Pressed

28
Outside temperature

Variable resistor -4.5 to 50.0 °C

29 Variable resistor -4.5 to 50.0 °C

30
Rocker switch

Rocker Down / Neutral Pressed / Not Pressed

31 Rocker Up / Neutral Pressed / Not Pressed

32

CAS

Key Key In / Out 1 / Ignition key not in the ignition lock

33 VIN number Power On WBAPN12010A468877

34 Clutch 12 V / Open Circuit Depressed / Not Depressed

35

DSC

Brake fluid level GND O.K.

36 Brake light Open Circuit / GND Operated / Not Operated

37 Parking brake warning GND / Open Circuit Operated / Not Operated

38 Wheel speed (Rear Left) Varies motor speed 0 to 53 km/h

39 Wheel speed (Rear Right) Varies motor speed 0 to 53 km/h

40
EKP

Current fuel pump 100 Ohm (5W) 0.1 A

41 Voltage fuel pump 100 Ohm (5W) 9.6 V

APPENDIX C
SNIPPETS OF A TYPICAL PYTHON PROGRAM

Libraries:

import sys
import signal
from threading import Thread
from scapy.contrib.cansocket import CANSocket
from time import sleep
from random import randint
from can import rc as can_rc

Defining the CAN sockets - ecu socket is for output to the bridged ECU, net socket is for output to the desired network:

Initialise Linux CAN Socket
e_soc, e_rate = ’can_7’, 500000 # E-CAN & bitrate
l_soc, l_rate = ’can_6’, 500000 # L-CAN & bitrate

Bridge parameters
net_can, net_br = e_soc, e_rate
ecu_can, ecu_br = l_soc, net_br
net_socket = CANSocket(channel=net_can, bitrate=net_br, receive_own_messages=False)
ecu_socket = CANSocket(channel=ecu_can, bitrate=ecu_br, receive_own_messages=False)

Function for receiving from bridged ECU and fuzzed messages to connected network:

def bridge_net():

while True:

======== in_can =========
Receive can frame from ecu
pkt = ecu_socket.recv()

======== packet info =========
d = bytearray(pkt.data)
d_len = len(d)
sel_d = randint(0, d_len-1)
d[sel_d] = randint(0, 255)
pkt.data = d

======== out_can =========
Transmit frame to net
net_socket.send(pkt)

Function for receiving from connected network and fuzzed messages to bridged ECU:

def bridge_ecu():

while True:

======== in_can =========
Receive can frame from ecu
pkt = net_socket.recv()

======== packet info =========
d = bytearray(pkt.data)
d_len = len(d)
sel_d = randint(0, d_len-1)
d[sel_d] = randint(0, 255)
pkt.data = d

======== out_can =========
Transmit frame to net
ecu_socket.send(pkt)

Main program:
*** Define signal handler to stop this program
def signal_handler(sig, frame):

print(’\nYou pressed Ctrl+C!’)
sys.exit(0)

Install signal for program exit
signal.signal(signal.SIGINT, signal_handler)

try:
Start bridge
Thread(target=bridge_net, daemon=True).start()
Thread(target=bridge_ecu, daemon=True).start()

while True:
sleep(50000)

except KeyboardInterrupt:
print("\nBridge stopped")

Instead of fuzzing random byte, if the message is decoded, the decoded field can be fuzzed. Snippets of fuzzing decoded
field are as follows.
def field_fuzz(pckt):

decoded_pkt = SignalHeader(bytes(pckt))
pkt_fields = decoded_pkt.payload.fields
fields_len = len(pkt_fields)
pkt_fields_desc = decoded_pkt.payload.fields_desc
if fields_len == 0: # No field, raw data

pkt_fields = decoded_pkt.payload.payload.fields
pkt_fields_desc = decoded_pkt.payload.payload.fields_desc
fields_len = len(pkt_fields)

sel_field = randint(0, fields_len-1)
sel_field = 7 # targeted field
fieldname, fmt = pkt_fields_desc[sel_field].name, pkt_fields_desc[sel_field].fmt
if fieldname == ’load’: # Selected field = raw data

d = bytearray(pckt.data)
d_len = len(d)
sel_d = randint(0, (d_len-1))
d[sel_d] = randint(0, 255)
pckt.data = d

else:
if fmt[1] == ’B’: # unsigned integer

nbr_dig, nbr_scale = pkt_fields_desc[sel_field].size, pkt_fields_desc[sel_field].scaling
nbr_min = 0
nbr_max = (2**nbr_dig) - 1
rdn_val = int(randint(nbr_min, nbr_max) * nbr_scale)

elif fmt[1] == ’b’: # signed integer
nbr_dig, nbr_scale = pkt_fields_desc[sel_field].size, pkt_fields_desc[sel_field].scaling
nbr = 2**(nbr_dig-1)
nbr_min = - nbr
nbr_max = nbr-1
rdn_val = int(randint(nbr_min, nbr_max) * nbr_scale)

elif fmt[1] == ’H’:
nbr_min = 0
nbr_max = 65535
rdn_val = randint(nbr_min, nbr_max)

else:
nbr_min = 0
nbr_max = 0
rdn_val = 0

pkt_fields[fieldname] = rdn_val
pckt.data = decoded_pkt.payload

def bridge_net():

while True:
Receive can frame
pkt = ecu_socket.recv()
if (pkt.identifier == 0x337):

field_fuzz(pkt)

	Introduction
	Test Platform Overview
	VitroBench Architecture
	VitroBench Design Requirements

	Implementation of VitroBench Test Platform
	Automotive Testbed Implementation
	Communication Board and Driver Software
	Car Signal Simulators
	Monitoring Signals and Messages
	Implementation of Software Component

	Evaluation
	Testing Setup
	Testbed Capabilities
	Sniffing
	Frame Injection
	Interception

	Case Studies
	Case Study I (Fingerprinting)
	Case Study II (Random Fuzzing)
	Case Study III (Attacks)

	Extension to CAN-FD Network

	Related Work
	Discussion and Future Outlook
	Towards a flexible test platform
	Towards directed fuzzing of automotive networks

	Conclusion
	Appendix A: ECUs Description
	Appendix B: Simulation Reading from Diagnostic Tool
	Appendix C: Snippets of a typical python program

