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Abstract—Collaborative Robots (cobots) are regarded as highly
safety-critical cyber-physical systems (CPSs) owing to their close
physical interactions with humans. In settings such as smart
factories, they are frequently augmented with AI. For example,
in order to move materials, cobots utilize object detectors based
on deep learning models. Deep learning, however, has been
demonstrated as vulnerable to adversarial attacks: a minor
change (noise) to benign input can fool the underlying neural
networks and lead to a different result. While existing works
have explored such attacks in the context of picture/object
classification, less attention has been given to attacking neural
networks used for identifying object locations, and demonstrating
that this can actually lead to a physical attack in a real CPS. In
this paper, we propose a method to generate adversarial patches
for the object detectors of CPSs, in order to mis-calibrate them
and cause potentially dangerous physical effects. In particular,
we evaluate our method on an industrial robotic arm for card
gripping, demonstrating that it can be misled into clipping the
operator’s hand instead of the card. To our knowledge, this is
the first work to attack object locations and lead to an incident
on human users by an actual system.

Index Terms—Cyber-physical systems; YOLO; object detec-
tion; adversarial attack patch; physical attacks

I. INTRODUCTION

CYBER-PHYSICAL Systems (CPSs), in which software
components are deeply intertwined with physical pro-

cesses, are commonly used to automate industrial processes.
Collaborative Robots (Cobots) belong to a subclass of CPSs
that work closely with humans for direct human-robot interac-
tion within a shared space. Cobots have been widely deployed
in the manufacturing industry, spurred by the adoption of smart
factories [1], [2]. As cobots are designed to be used in close
collaborations with humans, they require higher safety stan-
dards and lower fault tolerance than other kinds of systems [3].

In order to make cobots smarter and more effective at
performing complex and delicate tasks, there is a trend in
industry to augment them with deep learning algorithms. In
particular, Convolutional Neural Networks (CNNs) can be
used to add vision capabilities to the cobots in order to
implement tasks that require collaboration with humans [4].
The underlying layers of CNNs, however, are challenging for
humans to understand, making it difficult to ascertain that
the cobot will behave correctly and safely in all scenarios,
especially those for which humans are also involved.

Deep learning systems for computer vision are susceptible
to manipulations by attackers [5], [6]. A popular type of
attack is generating adversarial examples, in which pixel-
level noise is added to images in order to cause the CNN to
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Fig. 1. A high-level overview of our attack scenario: an adversarial patch
misleads the object detector, and the robotic arm clips the human’s hand

misclassify the input [7], [8]. Recently, researchers have begun
to investigate whether such attacks are also physically viable in
the real-world [9], especially when CNNs become embedded
within highly safety critical systems such as autonomous
vehicles. A typical real-world attack is to generate a physical
(e.g. printed) adversarial patch that can cause the CNN to
miss or incorrectly classify an object [10]–[13]. However,
most existing works focus on classification, and due to the
difficulty of optimizing non-differential process (e.g. process
with judgement), few works analyse location detection attacks.
Moreover, the possibility of causing the system to make a
wrong final decision based on that location information has
been less explored. Not only can a robotic arm cause damage
to its surroundings, but it could endanger human users too.

Applying attacks on a real world system has several chal-
lenges. First, digital adversarial samples often do not work
reliably in the physical world. This is because these adversarial
samples are subject to other perturbations such as lighting
and angles. Furthermore, camera images in cobots are of-
ten validated in different ways, e.g. by contrasting images
taken at consecutive time points. Second, real-world CPSs
are complicated systems which have many different compo-
nents: compromising only one of them may not be sufficient
to compromise the whole system. Though some real world
adversarial attacks have been demonstrated on camera-based
object detection systems (e.g. [10], [11], [14]), these typically
do not go beyond misclassification, and do not explore whether
the attacks can really lead to a potentially dangerous physical
effect.

In this paper, we investigate the susceptibility of CPSs
equipped with CNN-based object detectors to physical adver-
sarial attacks on object location. In particular, we propose a
method to generate adversarial patches to cause a failure of
location mispredictions for a real world system. Our novel
contributions include:



• We establish an automatic card detection and pick up
system by implementing object detection mechanism on
a robotic arm;

• We propose a method to generate physical adversarial
patches to achieve untargeted location attacks on top of
obscuring the object location;

• We improve the method to achieve targeted location
attacks to make the model detect targeted locations while
ensuring an identical classification;

• By optimizing the training process, we ensure that the
patches are workable in the real-word in order to deceive
the final decisions of a complete system.

• We demonstrate the effectiveness of the attack by imple-
menting it on an industrial robotic arm for card gripping,
and showing that it can be misled into clipping the human
operator’s hand.

A high-level overview of our attack scenario is given in
Figure 1.

The paper is organized into the following sections. In
section II (Background and Related Work), we provide an
overview of CPSs, cobots, object detection systems, and
adversarial attacks. In Section III (The Card Picker System),
we introduce how we retrofit a traditional robotic arm to a
automatic object detection and pick up system. In Section IV
(Generating Adversarial Patches), we describe our threat
model and our method of generating adversarial patches for
CPS object detectors, we explain how we overcome the dif-
ficulty of location attacks as well. In Section V (Evaluation),
we experimentally assess the effectiveness of our adversarial
attacks both digitally and on a real-world robotic arm. We
wrap up in Section VI (Conclusion).

II. BACKGROUND AND RELATED WORK

In this section, we state our assumptions about the structure
of CPSs, and introduce the real-world cobot used to evaluate
our work. Following this, we introduce object detection algo-
rithm that the cobot implements, and discuss some background
on adversarial attacks.

A. CPS and Cobots

CPSs consist of two interconnected parts. A ‘physical’
part includes sensors and actuators. A ‘cyber’ part, consisting
of software components such as Programmable Logic Con-
trollers (PLCs) [15] that implement certain control logic.
We assume that the sensors and PLCs are connected over a
network, with the PLCs taking the sensor readings as input
and sending commands to the actuators. Furthermore, we
assume the presence of a Supervisory Control and Data Ac-
quisition (SCADA) system which are connected to the PLCs
that can supervise the control process and issue commands
independently.

Collaborate robots (cobots) have the characteristics of CPSs.
We evaluate our method on a robotic arm cobot, the Universal
Robot UR10e (UR10e). The UR10e is a versatile collabora-
tive industrial robot and can be implemented with different
handlers and programs for different tasks such as assembly,
quality inspection, material handling, and dispensing. Such
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Fig. 2. Networks of the cobot system

robot arms are used in many industries and some of which are
safety critical. In order to support object gripping, a ‘handling
gripper’ has been mounted to the robotic arm and a tool camera
(Intel RealSense D435) was attached to the top of the gripper
to detect objects.

In our scenario, the system is used as a card picker. A
working cycle is realized as follows: 1) The robot is initially
set at a default position, and the system initiates once it detects
a human waving a hand. 2) Whenever a card is detected by the
tool camera, images are retrieved by the client for processing
and analysis. 3) Afterwards, the results are sent to the server
to generate commands for the SCADA of the robotic arm for
further processing. 4) According to some pre-defined logic,
the SCADA will process the commands with sensor values
from the robotic arm and send the final commands to execute.
Figure 2 shows the networks and the working cycles of the
system.

B. Object Detection

The pictures are analyzed by an object detection algorithm.
In this case, the server implements YOLO v3 [16], one of the
fastest object detection algorithms, and one that is widely used
for real time detection. In particular, the latest version—YOLO
v3—conducts detection detection at three different scales, and
thus is more robust.

The network directly predicts bounding boxes with object
location, object score, and class score in a single pass. YOLO
v3 includes a fully connected CNN which is our attack target.
Input to the network is a batch of images, for example, with
shape (m, 416, 416, 3), where m is the number of images. The
images are divided into multiple cells with strides of 32, 16
and 8 to detect small, medium and large objects. The output is
a list of bounding boxes along with the recognized classes for
each cell, and each bounding box is composed of 6 numbers
(bx, by, bh, bw, obj, cls), where cls is class score, representing
a multidimensional vector that is related to classification. In
our case, as we are only interested in the class of “card”, cls
is a number rather than a vector. A higher cls indicates a
higher possibility that the object is a card. bx, by, bh, bw are
the x, y coordinates and height (bh), weight (bw) respectively
for each cell. Finally, obj is an object score indicating the



possibility that an object exists. A higher score indicates a
higher possibility that an object exists. Since there are many
bounding boxes predicted for an image with size 416*416,
the bounding boxes are then filtered by thresholds of object
score and class score and those with maximum intersection
over union (IoU) are chosen as the final object box.

Given the features of YOLO v3 (i.e. 3 scale predictions),
an attack on a single image is hard to apply, although not
impossible [11]. Even more challenging, in our case, the
algorithm is implemented using a video: the output updates
fast and continuously, which requires a stable and robust attack
to hack the system. (We discuss the detailed requirements in
Section IV-B.)

C. Adversarial Attacks

Neural networks have been demonstrated to be vulnerable
to adversarial samples. In computer vision, adversarial sam-
ples are small perturbations designed to deceive the neural
networks while remaining undetectable by humans [17]. Ad-
versarial attacks can be categorized as untargeted or targeted,
i.e. attempting to cause some misclassification or a particular
misclassification respectively.

Adversarial attacks were first mentioned by Biggio et
al. [18] in 2013. Given the broadening applications of deep
learning, much more successful real-world attacks [6], [19],
[20] continue to arise and has been widely discussed. However,
to achieve practicality in physical attacks, adversarial patches
must be more practical than adversarial noises. Adversarial
noises require the attackers to access the intranet and modify
the original images. In contrast, adversarial patches can be
easily printed out and pasted into the practical environment
without accessing the intranet and the target system.

In our work, we consider adversarial patches, which are
continuous blocks of image pixels. An adversarial patch could
replace a part of an image in order to given harass to the model.
For such attacks, the perturbation is additionally constrained
by the size of the patch itself.

Adversarial patch attacks can target both classification and
object detection. Brown et al. [21] proposed to use adversarial
patches to deceive classification models. The loss of the target
class is calculated first before using the reverse values as loss
to update the adversarial patch by back propagation. The work
of Karmon et al. [22] is similar: they added more parameters to
the loss function in order to attack the model to give results not
only near the target class but also far from the original class.
Liu et al. [12] proposed a DPatch that can perform targeted
and untargeted attacks on object detectors (Fast R-CNN and
YOLO). They demonstrated transferability among different
detectors as well as datasets. Zhou et al. [23] proposed an
attack on automobile vehicles to make the object detector
predict wrong angles of direction by adding an adversarial
billboard, but only in a simulated environment.

In the above examples, the loss function is designed to
consider only the maximum value of object/class scores, or
alternatively, create a target output to generate loss, which is
complicated and inaccurate for some images. In our work, we
take all related values of objects to calculate the loss function,

making the attack more robust and effective. Additionally, we
print the patches out and test them physically on an actual
system to prove the feasibility of attacks in the real world.

To achieve the same results in real-world scenarios, an
attack must be stable and robust. Tepan, Komkov, and
Petiushko [14] proposed the idea of attacking a face detector
to decrease the confidence of the detection algorithm by
minimizing the similarity of the original image and attacked
image. They improved the training process by considering
the real-world environment, such as angles and contract.
Lee and Kolter [11] did some similar work with DPatch.
They increased the confidence of patches and demonstrate the
attacks in the real-world, deceiving the model that detects the
patch. Thys et al. [13] proposed a method to generate patches
to hide a person from a person detector. They optimized the
patches by using rotation, scaling, and adjusting brightness,
proving that the method works well in a real-world scenario.

Although these works were tested with physical attacks
for object detectors, none of the them have been tested on
a complete system, which comes with additional challenges.
In contrast, our work is able to overcome the difficulties of
dealing with a complete cyber-physical system, demonstrating
effective attacks both in the digital and physical domains. In
particular, we are able to overcome the difficulties posed by
multi-stage processing pipelines for object detectors, which
are usually successful at filtering out or detecting other kinds
of attacks.

We remark that adversarial attacks against object detectors
are more complicated than those against classifiers. For image
classifiers, the output is a vector of class probability, and thus
loss can be easily calculated as the difference between the
output vector and desired class vector. For object detection,
however, the output has a higher dimension and includes more
information, such as raw data of object location and object
confidence for each cell, which means that we cannot calculate
the loss directly.

III. OUR SCENARIO: THE CARD PICKER SYSTEM

This section introduces our industrial case study: a card
picker system implemented using a Universal Robot UR10e
robotic arm. We motivate this choice of case study, before
discussing the hardware, networking, and algorithmic aspects
of the system.

A. Motivation

Universal Robots is currently the market leader in cobots.
The UR10e is a versatile robotic arm with a 3-Position teach
pendant and which can be programmed for different tasks
such as assembly, quality inspection, material handling, and
dispensing. Cobots with object detection can greatly expand
these working scenarios in manufacturing. However, existing
model-based object detection methods are not intelligent, and
the cobot cannot adjust quickly according to the environment.

In contrast, AI-based object detection methods can make
the system more adaptive by playing the role of ‘eyes’. For
example, the robotic arm can follow a detected object as that
object is moving. Such AI-based object detection is typically



implemented using deep neural networks (DNN), which can
make the system quickly and accurately react to complicated
tasks. There are several existing industrial cobots with such
visual functions [24]–[26], and there is a trend in academic
and industrial research to explore how to integrate intelligent
DNN-based object detection algorithms in cobots [27]–[29].
This is not a straightforward task in general: DNNs are
powerful but vulnerable, and may be easier to attack than the
traditional rule-based algorithms.

In this work, we will develop and evaluate an attack on
a UR10e robotic arm equipped with an AI-based object
detector that was developed as a case study by an industrial
company [30]. The algorithm was presented at the Industrial
Transformation Asia Pacific (ITAP) 2019 conference to show
the future direction of AI in industry. We demonstrate that our
attack is effective for such systems and thus could potentially
be performed in the wild.

B. System Design
The robotic arm is retrofitted into an automatic object

detection and pick-up system. The system is designed to
replace humans to pick up and classify objects intelligently.
The system can detect an object, follow its movement, and
place the object in a designated place according to the object
classification. In this work, the scenario involves the detection
of a card, followed by the robotic arm picking it up.

Two cameras (Intel Realsense) are physically mounted on
the robotic arm. The robotic arm has six rotating joints degree
of freedom with a gripper at the end to hold objects. To
realize the scenario, one base camera to detect human hand
movement, and the camera is placed near the system. A tool
camera is mounted on the top of the gripper. The tool camera
has a fixed distance and angle with respect to the gripper, and
follows the grippers as it moves.

The network of the system is shown in Figure 2: the
robotic arm and its SCADA (i.e. the robotic arm system) is
considered a complete cyber-physical system. The base camera
and the tool camera are connected with the client. The robotic
arm system, the client, and the server are connected with an
Ethernet switch. The base camera is monitoring human hand
movement, and sending an initiation message to the server
once the movement is captured. The server keeps listening
to the client and runs the tool camera and object detection
algorithm after receiving the initiation message. The client
then analyses the image and sends the card center coordinates
to the server. The server monitors the coordinates and sends
either the command to: 1) follow the card with the robotic arm
system if the coordinates are changing; or 2) close the gripper
if the coordinates are stable for 2 seconds.

The object detector (i.e. object detection algorithm with
YOLO v3) is implemented in the client to analyse images.
The algorithm is trained for card detection. Whenever the
algorithm is activated, the video of card images is analysed
by the object detector and the results of card coordinates are
repeatedly sent out to the server. The details of the object
detector is in Section II-B.

When the system starts, the server first checks if the base
camera, tool camera, and the robot are connected. Then, the

server waits for the initiation message from the base camera.
As we are only interested in the card detection part, in the rest
of the work, we only analyse the tool camera and card images
without needing to focus too much on the base camera.

Our system is retrofitted on a widely used industrial robotic
arm model. Thus there are already some protection mecha-
nisms implemented. For example, there are 14 safety func-
tions, including emergency stop, safeguard stop, joint position,
joint speed limit, power and force limit. Such mechanisms
can protect humans from severe harm and allow us to test the
attack experiments with more practical scenarios (e.g., with
humans involved). However, while such safety functions help
avoid collisions or accidents, they are insufficient for deliberate
attacks.

IV. GENERATING ADVERSARIAL PATCHES

In this section, we introduce the threat model and our
methodology to generate adversarial patches. In addition, we
provide an optimization method to ensure an effective physical
attack.

A. Threat Model

In a cobot system, the client and server parts (Figure 2) are
typically separated from the well-protected robot itself (e.g. the
robotic arm and the SCADA in our case) for compositionality,
thus these parts are easier to access from the cyber perspective.
According to the safety requirements for industrial robots (EN
ISO 10218), human operators are constrained in how much
they can modify the physical part and integrated control system
of robots (SCADA), thus our threat model assumes the attacker
can only access the client and server parts of the whole system
with the following constraints:

1) The attacker is able to access information about the
object detector structure and parameters from the client;

2) The attacker is able to access information about the data
processing and commands generation from the server;

3) The attacker has access to the detected object (i.e. cards)
to make modifications;

4) The attacker cannot change or modify any program of
the system. That is, we assume that code modification
attacks are dealt with through integrity checks [31], [32].

To evaluate the safety and security of cobots under the threat
model, we set up the previously described scenario in which
our industrial robotic arm helps humans by picking up cards
presented by visitors and placing them in a given location. Our
attack objective is to deceive the object detector and make the
robotic arm physically hit the human’s hand (Figure 1). Note
that this is set up as a demonstration of physical damages that
could potentially be caused by such cobots in manufacturing
facilities.

B. Methodology

We propose an attack method to generate a sustained
adversarial patch for attacking the system, i.e. causing the
object detector to detect our targeted object (a human hand) as
a card inside the video feed and sent targeted object location
as final commands to the robotic arm.



1) Adversarial Patch for Object Detector: First, we need
to address the challenge that the adversarial patch should be
possible to apply the attack in the real world (not just a
digital simulation). It is impractical to apply noises at the
pixel level on the full image in the real world, and thus we
design a method to generate adversarial patches which can be
physically attached to the card to attack the system.

Second, we must consider that the attack needs to deceive
the object detector into detecting the targeted object instead
of cards. The difficulty for this point is that determining the
location of an object is not a continuous function and thus not
differentiable. To address this challenge, we use a rectified
linear activation function (ReLU) function to filter scores to
calculate the gradients and optimize the attack.

YOLO v3 has a CNN structure with bounding boxes as
the output. The bounding boxes provide the information of
each cell (i.e., bx, by, bh, bw), as well as the object confidence
(if an object exists) and object class (the probability of the
object class). The goal of the targeted attacks is to change the
object classification to a targeted classification. Even though
we can achieve targeted classification attacks by manipulating
the classification score [12], the location of the targeted class
object is uncontrollable. Therefore, targeted location attacks
are much more difficult because we need the object detector to
detect the targeted location object with the same classification
regardless of the actual object.

To achieve the targeted location attacks, we design the
training process as follows. We choose the sum of object
scores and class scores with classification as “card” to be
our loss function Lcard, and the sum of object score with
classification as “non-card” to be Lhand. The untargeted and
targeted attacks with adversarial patch p can be defined as
follows:

Untargeted attack:

f(x + p) ̸= f(x) ∀ loc(p) (1)

Targeted attack:

f(x + p) = yt ∀ loc(p) (2)

where yt is the targeted output and loc(p) is the location of p.
As the classification is a binary problem, we can also either
focus on the object score or class score separately. If we focus
on object score, we attack the model to detect the “card” part
as no object exists and “non-card” part as an object exists. On
the contrary, if we focus on class score, we aim to attack the
model to classify “card” as “non-card”, and “non-card” object
as “card”.

2) Adversarial Patch for the Robot: To apply the attack
in the real-world, the attack should be able to change the
robotic arm’s behavior as desired. Thus, we need to consider
the behavior of the system. One problem is the system will
filter out one-shot attacks as bias; another is that the client will
send the results to the server only if the results (i.e. location
coordinates) remained the same for more than 2 seconds.
For the first problem, from the information of the server,
the system will ignore the results if the detection confidence
is lower than a threshold. We thus add the threshold to

the training process to address the former problem. For the
second problem, we designed the attacks by fixing the targeted
location in order to make sure the results are always the same.
The loss functions will thus be improved as follows.

Loss function (card). We use Lcard to represent the loss
function attributed to the detection of a hand object. Lcard

consists of two parts. Firstly, we need to find where the card
is. For each image output, the card part should have both object
score and class score II-B higher than a certain threshold.
We keep the card part only. Existing approaches [13], [33]
select the maximum object/class score as the loss function.
Nevertheless, to address the challenge of that determining
object’s location is not differentiable, we consider all scores
above the threshold that make the loss function more effective.
We use a rectified linear activation function (ReLU) function
to filter the scores in order to calculate the gradients and
back propagation. Secondly, we sum up the object scores and
class score within the card part for all three scales to handle
various object size problems. Thus the equation is designed as
follows, where Lobj represents the object scores of the card
in the image, and Lcls represents the classification score of a
card. The goal of our training is to minimize the value of loss
function for card detection, thus:

Loccard = ReLU(

n∑
i=1

(obji)− α) ∗ReLU(

n∑
i=1

(clsi)− β)

Lcard = sum(Loccard ∗ (Lobj + Lcls))
(3)

where Loccard is the function to determine the location of the
card and n represents the number of cells. To calculate the
location of a card, both obj and cls need to be larger than
the thresholds. We use the ReLU function to help us filter
the area with obj and cls lower than the object threshold α
and class threshold β. The loss of card is the sum of Lobj =
sum(obj1, obj2, ...objn) and Lcls = sum(cls1, cls2, ...clsn).

Loss function (hand). We use Lhand to represent the loss
function attributed to the detection of hand object. Lhand

consists of two parts. Firstly the hand position and then the
sum of object and class scores. Lobj represents the sum of
object scores which needs to be larger than the object threshold
α, and Lcls represents the classification score which needs to
be smaller than the class threshold β. The goal of our training
is to maximize the scores of hand object, thus:

Lochand = ReLU(

n∑
i=1

obji − α) ∗ReLU(β −
n∑

i=1

clsi)

Lhand =
1

sum(Lochand ∗ (Lobj + Lcls)
)

(4)

The two parts compose the total loss function of our
optimization process of min

∑k
i=1(Lcardi

+ Lhandi
), where

k is the number of images for each training batch.
3) Physical Adversarial Patch: Finally, we need solve the

challenge that the physical attack should be able to achieve
the same results in terms of deceiving the object detector
as the digital attack (e.g. applying the digital patch to the



image through the intranet). There are several sub-problems
to consider. First, the attack should be effective in different
scenarios with various card colors, contents, and contexts.
Second, the patch should be effective regardless of the card
position since the card keeps moving in practice. Finally, the
patch need to be printable, and attacks should have the same
effects as the digital ones, that is, the adversarial attack must
be robust. This is challenging given that adversarial samples
are often close to the decision boundary.

To solve the above problems, we adopt the following
optimization process. To address the first problem, we prepared
50 images with different cards, angles, distances, contexts,
and held by different people as training data, and another
30 images with the same conditions as testing data. We add
the initial patch to all images and feed them into the object
detector at the same time to make sure the patch is trained with
features of all images. The output determines where the card
is (Loccard) and where is the hand is (Lochand). We measure
the scores and calculate the loss function. Afterwards, we
apply the back propagation algorithm to update the patch along
the calculated gradients. Subsequently, the updated patch is
adopted for the second round. The training stops when the loss
is smaller than a specific threshold or after running a certain
number of iterations. With regards to the second problem, the
patch is pasted onto images with random locations but with
a higher probability to be pasted in the 1/3 central area to
imitate the actual scenarios. To solve the last problem, we scan
the printed patches and compare them with digital patches to
calculate the bias δ. The bias is considered before the well-
trained patch is printed. In addition, to simulate the physical
environment, we scale the patch randomly up and down within
20% of the original size.

To avoid being regarded as noise, the attack must keep a
high success rate, we thus employs the context of the real-
world system. We prepare more training data with similar
backgrounds to the actual one to increase the success rate.
Thus we can focus on collect training images with different
color and contents of cards and varieties of hand positions.

The above allows us to significantly reduce the training data
size so as to increase the efficiency of training a patch. For
example, to the attacker, a 10 second video could provide
enough training data to generate an adversarial patch. After
testing, we found that 50 well-prepared images are enough to
train an effective adversarial patch. We tested the patch on 30
images, and the results have proved the patch is effective for
the scenario of a card pick-up robotic arm. The experiment
details and results are discussed in our evaluation (Section V).

V. EVALUATION

We evaluate our methodology by answering the following
two research questions (RQ):

1) RQ1: Are we able to design a digital adversarial patch
to attack an object detector?

2) RQ2: Are we able to make the adversarial patch physi-
cally attack a robotic arm?

Fig. 3. An overview of loss (above) vs location difference (below) i.e. xy
difference with different loss functions.

A. Results with Digital Images

We answer RQ1 by showing the results for digital images.
Unlike attacks on classifiers, we do not focus on whether the
object is detected correctly and accurately. Instead, we are
more interested in the object location. Thus, for a single image,
we use loss and the coordinates (x, y) of detected card center
as criteria to determine if the attack is successful. For a video
or batch of images, we define a success rate (percentage of
successful attacks over all attacks) to measure the the number
of attacks that achieve our goals, and we define a fooling rate
(percentage of attacks fooled the detector over all attacks) to
measure if the attacks fooled the detector to predict a wrong
location.

We train the patch with two kinds of loss. For the first
scenario, we use object score of card and class score of hand to
calculate loss, as we want the card part has a lower object score
and hand area has a higher class score. In this case, the loss is
Lcard = sum(Loccard∗Lobj) and Lhand = 1/sum(Lochand∗
Lcls). For the second scenario, the loss is the same as equation
3 and 4, where we optimize both object and class score for
card and hand.

Figure 3 shows an overview of loss and card center differ-
ence trends when train the patch on a single image. The graphs
on the top row are four kinds of loss, whereas the graphs
on the bottom row are the l2 distance between initial center
coordinates (x,y) and coordinates (x’,y’) with patch. The red
line indicates the value between hand and card: we manually
checked the images, and if the values of ”xy difference” is
near the red line, we regard the center as at the hand.

From the figure, we can see the loss is decreasing with the
increase of iterations. Moreover, the center distance may be
different even if the loss is low. Thus the patch position plays
an important role during the attack. While we want the patch
to achieve an attack effects regardless the patch position, the
results suggest that the position always influence the results.
This could due to the fact that YOLO v3 will check the IoU
(see details in Section II-B), which is related to cell positions,
and patch position may affect the check results as it is part of
the image. For example, the algorithm may detect the patch
as a small card.

Another discovery is that for untargeted attacks, the perfor-
mance is better if we include the card class. As for targeted
attacks, the patch can achieve our attacks most of the time
when we only consider card object score and hand class score.
However, if we consider both object and class score for hand



Fig. 4. An example of digital patch results. (Left: no attacks; Middle:
untargeted adversarial patch; Right: targeted adversarial patch

and card, the attack is the strongest (i.e. does not detect the
card any more) but will not always attack the target.

Figure 4 shows an example when we train the digital patch.
The red and blue square indicate the predicted center of card.
The left image shows the original output, the middle one shows
the untargeted attack, and the right image shows the targeted
attack output.

We evaluate the adversarial patch on 30 test images, and
calculate the coordinates’ l2 distance of before after the attack
to measure if the attack is a success. If the distance is positive,
which means the patch affect the model output, we take it as
a successful attack.

Input images are with size 2000*1500 pixels and the unit
is number of pixels.

• For untargeted attacks, the patch has a success rate of
100% and fooling rate 100%. The minimum change is 0.5
and average distance is 445.21 pixels. Values larger than
1000 pixels usually indicate the detector cannot determine
any object and thus returns a location at (0,0).

• For targeted attacks, the patch has a success rate of
23.33% and fooling rate of 100% to predict the targeted
object as a card. However, for unsuccessful attacks with
the patch, the detector still mis-predicts the center far
away from card with a minimum value of 0.5 and average
value of 415.02 pixels.

We found for some images, the hand cannot be detected as
an object, and the object score of hand cannot be increased
in that case. This could because the lighting or background
color is similar to hands. Thus targeted attacks are harder than
untargeted attack in the real-world.

B. Results with Real-World Robotic Arm

We present the results of attacking the robotic arm to
answer RQ2. For simplicity, we only consider the part of the
system that we are interested in, so we don’t discuss much on
the base camera and how the system is initiated. Therefore,
after the tool camera is initiated, it keeps capturing images
and sends them back to the server. Inside the server there
are two main programs to analyze the images. The images
go through the first program—the YOLO v3 object detector.
Afterwards, the object detector will send the detected card
center 2D1 coordinates to the second program which includes

1The camera is 3D camera, but we only interested in card 2D position here,
thus we ignore the depth information

No attacks Untargeted attacks Targeted attacks

Fig. 5. Screen shot of no attacks, untargeted attack and targeted attack.

a state machine to analyze and make decisions. The second
program will audit the state of the system and compare current
coordinates and the previous ones to deduce if the card is
moving. If the card is still moving, the robotic arm will receive
the commands to follow the card, and if the card is detected
to be stationary for a period of 2 seconds, the arm will stop
moving and the gripper is asked to clip. Moreover, once the
robot finds the card is ready to be clipped, the object detector
will stop working.

There are other processes after clipping the card such as
placing the card in a designated location to scan. As we do
not attempt to attack these processes, they are ignored in our
study. We assume that once the robot hits a human’s hand
during the card clipping stage, it is considered a successful
attack.

We evaluate our patches on the UR10e cobot. For each
patch, we recorded videos and monitored the final results to
deduce if the gripper had hit a human’s hand. At the same
time, we also considered the object detector performance by
checking each frame. The attacking videos can be found in
the supplementary material2

Figure 5 shows a screenshot of robot arm camera records:
we can see that if there is no patch, the card is detected with
a confidence of 99.23%, whereas when we put an untargeted
patch on the card, the camera will give many inaccurate
predictions. For targeted attacks, the screenshot shows the
camera detection when the hand is clipped. More images of
untargeted attacks can be found from the link 3. The setup and
the moment when the gripper clip the card can be found at
the link 4.

In our experiments, we performed a total of 40 attacks: 20
times untargeted, and 20 times targeted. For untargeted attacks,
the success rate is 90%, while targeted attacks have a success
rate of 25%. For the targeted attacks, though it cannot make the
gripper hit the human’s hand every time, it still can make the
gripper clip other location rather than the card with a fooling
rate of 100%. In total, we have designed the patch with a
success rate of 57.5% and a fooling rate of 95% to attack the
real world robotic arm. Though the success rate might seem
‘low’, from a safety-critical perspective it’s actually very high.
Especially if it translates to other cobots in factory settings.

One discovery is that when there is a patch, even if the the
detector can draw the correct box for an object, the gripper
still cannot clip the card. This could be because the attack

2Click to get the videos
3Untargeted attacks: https://s2.loli.net/2022/05/18/t8QnjWyhqDa7Jbm.png
4Robotic arm: https://s2.loli.net/2022/05/18/y2INEWge4TqJhXY.jpg

https://youtube.com/playlist?list=PL63JcfSD1WENrcWYf1p88XG9vF0F7OHRZ
https://s2.loli.net/2022/05/18/t8QnjWyhqDa7Jbm.png
https://s2.loli.net/2022/05/18/y2INEWge4TqJhXY.jpg


patch makes the model prediction very unstable, and there
is a delay in the communication between the camera and the
gripper. Thus the predicted center of the card is keep changing,
and the information sent to the gripper is not stable enough
to generate commands.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a method to generate adversar-
ial patches that can be printed and used in the real-world
to modify a cobot behavior as the attack designed. Unlike
previous adversarial patches that attack on object detectors,
our approach is able to deceive a complete system to make the
system do some desired physical action. We trained the patch
by considering the logic of a real-world system and increased
the detection confidence of a human hand. We then optimized
the images to make them printable and workable in the
real-world. Finally, we achieved both untargeted attacks and
targeted location attacks on an industrial robotic arm which
to our knowledge is the first adversarial patch to successfully
attack a real-world industrial system.

There are some challenges to overcome in future work.
One challenge is that the attack may not perform as well in
the presence of other defense mechanisms, such as a hand
detection filter. However, such a defense is only helpful in
scenarios specifically working with human hands. In general,
deliberate adversarial attacks can be mitigated with a more
robust model. However, unlike accuracy, model robustness
is seldom considered when AI techniques are adopted for
industrial systems. Finally, we train the adversarial patch as
an attack without any camouflage, which means the patch
looks unusual to human eyes and is easy to notice. In such
situations, hiding the adversarial patch from the human is
also a challenge. In the future, our adversarial patch training
process can be optimized with specific shapes and colors as
constraints.
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