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Abstract—Fuzzing has been proven to be an effective tool
to find implementation bugs in a range of wireless Inter-
net of Things (IoT) devices such as smartphones, trackers,
smart wearables, routers, etc. However, reliable and auto-
mated reproduction of vulnerabilities reported by over-the-
air (OTA) fuzzing pipelines remains an open problem. While
bug reproduction is crucial for troubleshooting and fixing
of security flaws, it remains a challenge due to the non-
deterministic nature of wireless devices. In this context, we
present AIRBUGCATCHER, a hardware and protocol agnostic
tool to automatically identify reliable OTA attack vectors
and reproduce bugs in commercial-off-the-shelf (COTS) IoT
devices. AIRBUGCATCHER aims to address two fundamental
challenges during reproduction of vulnerabilities: Reproduc-
tion of bugs under the non-deterministic communication of
wireless devices and resolution of ambiguities during the attack
vector analysis of bugs within fuzzing logs. AIRBUGCATCHER
accomplishes this by firstly analyzing packet traces and logs
from an existing fuzzing pipeline and extracting a minimal
set of fuzzing packets that might be responsible for triggering
bugs in the target IoT device. Subsequently, AIRBUGCATCHER
reliably reproduces bugs by generating several proof of concept
(PoC) codes (test cases) and executing them against the target
to validate the root cause of bugs. AIRBUGCATCHER has been
evaluated against four COTS IoT devices employing wireless
protocols such as 5G NR, Bluetooth and Wi-Fi. The results
show that AIRBUGCATCHER can reproduce 90.4% (40/44)
of bugs (crashes or hangs) extracted from fuzzing logs and
generate PoC code that contains minimal attack vectors. For
instance, AIRBUGCATCHER only generates up to three fuzzed
packets (i.e., three attack vectors) from fuzzing logs that
contain ≈47K fuzzed packets. Finally, we demonstrate that a
standard replay-based approach (i.e., attempting to replay all
packets from fuzzing logs) fail to reproduce most bugs (15 out
of 16) due to the non-deterministic nature of wireless protocol
implementations. Overall, we highlight that AIRBUGCATCHER
offers a valuable addition to IoT fuzz testing pipelines by
automating the process of OTA bug reproduction and empow-
ering researchers and developers to identify and fix security
flaws in IoT devices more efficiently.

1. Introduction

The security of wireless communication protocols is
crucial for the success of internet-of-things (IoT) systems.
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Figure 1: Illustration of bug reproduction workflow with and
without AIRBUGCATCHER.

In the past few years, there has been a significant progress
in designing offensive tools to automatically discover wire-
less protocol implementation vulnerabilities [21], [15], [10],
[8], [5], [16]. Among others, over-the-air (OTA) wireless
fuzzing has successfully uncovered numerous security vul-
nerabilities in Wi-Fi [5], Bluetooth Low Energy [15], [10],
Bluetooth Classic or BT [8], LTE [16] and 5G NR [22],
among others. While OTA fuzzing primarily focuses on the
discovery of security vulnerabilities (e.g., crashes), in gen-
eral, significant manual effort is involved to create minimal
Proof of Concept (PoC) code that could reliably reproduce
the wireless vulnerabilities discovered by fuzzing. This is
critical to assist in the triaging and subsequent root-cause
identification and patching of the vulnerability.

In this paper, we propose AIRBUGCATCHER, a system-
atic and automated process to reproduce wireless vulner-
abilities on commercial-off-the-shelf (COTS) IoT devices.
Figure 1 illustrates the position of AIRBUGCATCHER in bug
reproduction workflow. In particular, based on the current
fuzzing logs (i.e., packet traces and crash logs from the
device), significant manual effort is involved to produce the
PoC, which can be sent to the vendor for debugging. In
AIRBUGCATCHER, we propose a systematic process that
analyzes the fuzzing logs and automatically generates the
PoC, thus substantially reducing the effort needed before
patching.

In AIRBUGCATCHER, we address two key challenges
in reliably reproducing a wireless vulnerability. Firstly, a



straightforward strategy would be to replay the exact se-
quence of benign and fuzzed packets that resulted in a
vulnerability (e.g., a crash) during fuzzing campaign. While
such a strategy may work for mostly deterministic protocols
(e.g., TCP/IP, HTTP, FTP), this will often fail to reproduce
vulnerabilities in wireless protocols that are inherently non-
deterministic. Indeed, it is not possible to fully control the
state of a wireless device during test, resulting a straight-
forward replay strategy impractical. AIRBUGCATCHER ad-
dresses this challenge by a fundamentally different method
for bug reproduction. In particular, AIRBUGCATCHER first
analyzes fuzzing logs using only a few rules and accu-
rately computes conditions on targeted packet layers and
field values that resulted the fuzzed packets leading to a
bug. Subsequently, instead of replaying a test that contains
previously recorded sequence of benign and fuzzed packets,
AIRBUGCATCHER creates a test that acts as a man-in-the-
middle. Concretely, such a test intercepts a packet only
when the analyzed condition for fuzzed packet is met, then
modifies targeted packet field values and send the modified
packet towards the target IoT device on-the-fly. In such a
fashion, AIRBUGCATCHER lets the wireless communication
to proceed normally, except only for the targeted packets that
need to be modified to reproduce a bug.

Secondly, even though fuzzing logs contain packet
traces, such traces involve often hundreds or thousands of
fuzzed packets, many of which are unrelated to the vul-
nerability (bug) under investigation. In practice, developer
needs a minimal PoC that could help in the debugging of
root cause. AIRBUGCATCHER addresses this via a two-stage
process. Firstly, it analyzes fuzzing logs to group potentially
identical bugs. Then, for each bug group, AIRBUGCATCHER
conducts a systematic backward traversal on the packet
traces, starting from the bug location. This heuristically
computes many test scenarios, each of which contains a
minimal set of fuzzed packets potentially related to the
vulnerability. In the second stage, each such test scenario
is leveraged for test code generation and reproduction in
light of the process discussed in the preceding paragraph.

Prior works on automated PoC generation rely on in-
trusive approaches such as making use of external hard-
ware [23] or through access to source code and firmware
emulation [25]. In contrast, AIRBUGCATCHER provides
the software security community with a tool that can be
easily integrated to fuzzing pipelines quickly and non-
intrusively. Moreover, the core process embodied within
AIRBUGCATCHER is agnostic to the target hardware and
protocol. In other words, if the wireless fuzzer supports the
target fuzzing, then AIRBUGCATCHER can be coupled with
such fuzzer to assist in triaging.

After providing a brief background and overview (Sec-
tion 2), we present the following contributions:

1) We present the core methodology behind AIRBUG-
CATCHER, an automated process aimed at reliably
reproducing wireless protocol vulnerabilities (Sec-
tion 3).

2) We provide an open-source tool implementing the

methodology behind AIRBUGCATCHER, which can
be easily integrated with wireless fuzzing tools
(Section 4).

3) We evaluate AIRBUGCATCHER with four IoT de-
vices employing three different wireless protocols:
5G NR, Bluetooth Classic and Wi-Fi. Our evalua-
tion reveals that such devices exhibit more than 240
bugs (crashes or hangs) in the fuzzing log. AIR-
BUGCATCHER first discovers that only 44 of these
bugs are potentially unique. Subsequently, AIR-
BUGCATCHER automatically and reliably repro-
duces 40 bugs and confirms 33 of them are related
to the bugs appearing in the fuzzing log. This shows
the efficacy of AIRBUGCATCHER when paired to
existing state-of-the-art wireless fuzzers [8], [22]
(Section 5).

4) Our evaluation reveals that AIRBUGCATCHER gen-
erates minimal PoCs. The maximum number of
mutation or replay actions in the PoC are limited
to only three, whereas the respective fuzzing logs
contain up to 46,992 mutations and up to 12,645
replay actions (Section 5).

5) We show that AIRBUGCATCHER is reasonably ef-
ficient. For example, in OnePlus phone, AIRBUG-
CATCHER reproduces and generates PoC for 13
unique crashes in ≈ two hours (Section 5).

6) We compare AIRBUGCATCHER with a replay-
based approach and show that such a replay-based
approach reproduces only one out of 16 bugs in an
IoT device, whereas AIRBUGCATCHER reproduces
16 bugs.

After discussing some threats (Section 6) for our approach
and related work (Section 7), we conclude in Section 8.

2. Background and Overview

In this section, we present an overview and example
use-case of AIRBUGCATCHER in a glance.
Wireless Fuzzing: AIRBUGCATCHER is suitable for use
with protocol software testing and particularly with over-
the-air (OTA) fuzzing. Such category of fuzzing tools are
centered around testing protocol implementation in a grey-
box or blackbox fashion. In particular, the implementation
of these fuzzing tools involves exchanging mutated or re-
played inputs (packets) and responses over-the-air via an RF
antenna, as opposed to a wired or internal loop-back inter-
face. Example of state-of-the-art (SOTA) wireless fuzzers
includes Sweyntooth [10], Braktooth [8], BLEDiff [15],
Owfuzz [5], U-Fuzz [22] etc. These tools support testing the
implementation of several Internet of Things (IoT) devices
employing wireless protocol such as Bluetooth Low Energy,
Bluetooth Classic, 5G NR etc. During the testing with such
devices (i.e., fuzzing campaign), such tools expose logs
containing communication traces of protocol packets ex-
changed during the fuzzing campaign and core dumps once a
bug is triggered within the target. However, reproduction of
bugs obtained during the fuzzing campaign is often manual
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Figure 2: Example of fuzzed (i.e., mutated or replayed) packets that lead to (a) ambiguous bug reason (root cause) during
fuzzing campaign; (b) failure in reproducing bugs due to simple replay not handling dynamic fields such as Auth (i.e., not
using AIRBUGCATCHER); (c) minimal reproduction of bug via use of AIRBUGCATCHER.

and time consuming. In this context, AIRBUGCATCHER is
designed to leverage fuzzing logs of an existent fuzzing
pipeline such that bugs reported by an arbitrary wireless
fuzzer are automatically reproduced via creation of PoC C++
codes that are ready to be sent to the software vendor for
debugging and patching.

Motivation: Reproducing bugs in wireless protocols im-
plementation is a highly challenging task as opposed to
reproducing bugs in wired protocols. This is because a
complete control of the testing environment is not possible
when testing blackbox targets over-the-air. Firstly, repeating
the same sequence of packets of the fuzzing campaign is
not guaranteed to trigger bugs due to non-deterministic and
stateful behaviour of the target’s response [8], [22], [9].
Secondly, many mutated and replayed packets during the
fuzzing campaign are often not related to causing a certain
bug (e.g., crash). This results in ambiguity when analyzing
the root cause of such a bug [8], [10].

For example, consider the fuzzing campaign illustrated
in Figure 2(a) where several benign and fuzzed packets are
sent to the target. Subsequently, the target crashes (e.g.,
segmentation fault) after receiving packet r2 from the fuzzer.
In such a case, the user is aware of the sequence of benign
and fuzzed packets (i.e., mutated or replayed) before the
bug is triggered. A simple process will attempt to replay
this sequence as shown in Figure 2(b). However, the third
replayed packet is rejected by the target, before m2 could
trigger the bug. This is because replayed packets (regardless
if they are benign or not) do not preserve messages/fields
that contain dynamic information such as authentication
messages, features exchange in Bluetooth, and several 16-
bytes authentication parameters for 5G NR (i.e., Auth pa-
rameter in Figure 2(b)). Therefore, replayed packets contain
other fields of several bytes that are invalid in subsequent
communication sessions and can be simply dropped by the
target. This invalidates the attempted replay, as the target
may not process the fuzzed message down to the specific
mutated bytes.

More broadly, failure in reproducing wireless bugs dur-
ing replay is a common phenomenon due to the non-
deterministic nature of wireless protocols. Intuitively, this
happens due to the wireless target replying differently (e.g.,

unsolicited requests, different message order/response etc.)
such that long replay sequences get broken and not due to
any false positives during the fuzzing campaigns. While the
target internal state and protocol replies can be enforced in
source code or emulation-based fuzzing, this level of control
is infeasible for over-the-air fuzzing with closed source
wireless stacks. Figure 2(a) also shows multiple mutated
and replayed packets during fuzzing campaign. However,
it is the packet m2, which results in the bug, irrespective
of what packets are exchanged afterwards. Hence, simply
replaying packet r2 or r1, which are indeed the packets
closer to the bug location in the packet trace, results in
an unsuccessful reproduction of the bug. In reality, even
if there are not too many bugs, number of fuzzed messages,
during the fuzzing campaign, could be significant (often in
the order of several thousands). Thus, manually identifying
minimal set of fuzzed messages causing the bug (typically
1-3, as shown in our evaluation) is still infeasible.

To address the challenges mentioned in the preceding
paragraph, AIRBUGCATCHER (illustrated in Figure 2 (c))
aims to significantly reduce the time taken to manually
analyze and reproduce bugs. This is accomplished by au-
tomatically creating test cases with the minimal amount of
fuzzing actions (i.e., mutation or replay), while avoiding the
ambiguity to reason about crashes during bug reproduction.

AIRBUGCATCHER Workflow: AIRBUGCATCHER of-
floads the task of reproducing bugs discovered by the
fuzzer (i.e., manual reproduction) to the pipeline pre-
sented in Figure 3. Firstly, in a post-fuzzing scenario
(Step 1 ), packets traces (i.e., PCAP file) and target logs
(i.e., crash/segmentation-fault dump), as captured during the
fuzzing campaign, are fed to AIRBUGCATCHER for further
analysis. The target logs are usually captured via serial
port or by using standard tools such as Logcat for Android
smartphones targets. Concurrently, the communication be-
tween the fuzzer and the target is monitored during the
fuzzing campaign and recorded into the standard packets
trace format such as PCAP.

Subsequently, the component Packet Analysis (Step 2 )
receives both the packets trace and target crash log. The aim
of this component is to accurately identify the attack vector
(e.g., the minimal set of mutated and replayed packets) for
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each unique crash resulting in the packet trace. To this
end, AIRBUGCATCHER first conducts a simple analysis
to identify and group the fuzzed packets related to each
potentially unique crashes. Then, the Packet Analysis (Step
2 ) component systematically selects fuzzed packets within
such groups based on a tunable sliding window that moves
backwards from the crash location (Crash indication in Step
1 ). The outcome of this step results in many test scenarios,
each with minimal set of selected fuzzed packets. Such test
scenarios are sent to the component Test Case Generation
in Step 3 for test-code generation, execution and validation
of the respective crash.

For each test scenario computed in Step 2 , the com-
ponent Test Case Generation first generates the respective
test code. Such is accomplished by analyzing the fuzzed
packets respective to the test scenario and translating the
fuzzing action (e.g., mutation or replay) into C++ code.
Once the test code is generated, it is compiled into binary
code and run against the same target of step 1 . During the
execution of such test cases, packets trace and target logs
are saved and used to determine whether bugs analyzed from
step 2 are reproduced correctly. This step is repeated until
all bugs found by the fuzzer are evaluated or a time budget
is reached. The outcome of 3 is a report (step 4 ), which
aggregates all the relevant bug information (e.g., type of bug
such as crash, hang or flooding) and a minimal PoC code
(i.e., the test case from Step 3 ) for each potentially unique
bug identified in Step 2 and reproduced in Step 3 . Such a
report can then be sent to the vendor affected by the bugs
in order to accelerate the triaging and fixing process.
Collection of fuzzing logs: AIRBUGCATCHER can easily
work with existent OTA fuzzers by (i) reusing packet traces
collected during the fuzzing campaign and (ii) supporting
collection of target logs via serial port, ssh, Logcat or other
debugging tools capable of exporting logs to text files. Such
a non-intrusive approach makes AIRBUGCATCHER easily
adoptable by the software security community.

3. Methodology

At a high level, the design of AIRBUGCATCHER is
separated into two distinct stages. The first stage performs
Offline Bug Analysis (Step 2 of Figure 3) of fuzzing logs
and extracts two relevant outputs: (i) groups of bugs with the
same bug identifier and (ii) a set of test scenarios that can po-
tentially trigger corresponding bug groups within the target.
The second stage of AIRBUGCATCHER, leverages the set of
test scenarios to perform Over-the-Air Bug Reproduction
against the target (Step 3 of Figure 3). This is performed

TABLE 1: AIRBUGCATCHER parameters used in Offline
Bug Analysis and Over-the-Air Bug Reproduction

Parameter Meaning Default Value
Ct Crash Timeout 1 minute
Ht Hang Timeout 2 minutes
Ft Flood Timeout 2 minutes
Maxfpg Maximum Fuzzed Packet Generation 3
Maxtt Maximum Trial Time 1 hour
Maxlfi Maximum Lookback Fuzzed Iteration 3
Fe Flooding Enabled true
Me Mutation Enabled true
Re Replay Enabled true
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Figure 4: Illustration of AIRBUGCATCHER Packet Analysis
and subsequent validation of test scenarios (ts). Labels
r1, r2 indicate replayed packets (highlighted in yellow) and
labels m1,m2 indicate mutated packets (highlighted in red).

repeatedly until all bug groups are evaluated and categorized
or a time budget is reached. In the following subsections,
we describe the design and implementation details of each
AIRBUGCATCHER stage.

3.1. Offline Bug Analysis

Fuzzed Packet & Bug Discovery: Initially, AIRBUG-
CATCHER takes fuzzing logs (i.e., Packet Trace and Target
Logs) and packet filtering rules as inputs from user. These
packet filtering rules are used to identify (fuzzed) packet
states and they borrow a syntax alike Wireshark display
filters. Intuitively, such rules specify the names of packet
fields which hold values of packet types (states) for different
protocol layers. In Section 3.2, we show an example of such
rules, whereas all rules used for the evaluated protocols
are provided in Appendix A. It is worthwhile to mention
that even though packet filtering rules need to be supplied
manually, this does not involve a significant manual effort.
This is because a security analyst is usually aware of the
parts of the protocol being fuzzed. AIRBUGCATCHER starts



the offline analysis by traversing the packets trace within the
provided fuzzing log to chronologically discover all fuzzed
packets (i.e., mutated or replayed packets) and bug locations.
Figure 4 illustrates a packet trace containing the aforemen-
tioned mutated and replayed packets as arrows, most of
which belong to the same fuzzing iteration (r1, r2,m1).

Each fuzzed packet (i.e., fuzzed packet) is processed and
stored as an object consisting of raw bytes and additional
attributes such as packet state, packet filter, and fuzzing type
(classified as either mutation or replay). Attributes such as
packet state and packet filter are specially introduced by
AIRBUGCATCHER to help identify specific packets during
communication via stateful protocols such as 5G NR, Blue-
tooth and Wi-Fi. These attributes are generated using packet
filtering rules, as mentioned in the preceding paragraph.
Notably, the packet filter captures a logical condition to
precisely categorize the packets belonging to the respective
packet state. Thus, such packet filters are used subsequently
during our test code generation to intercept and modify
packets. In summary, for each bug in the fuzzing log,
fuzzed packet contains a list of all fuzzed packets (and their
attributes) encountered between the moment the bug appears
in the packet traces and the moment when the previous
bug appears or the start of fuzzing campaign, whichever
is earlier. In addition, we classify the type of a bug: crash
or hang. While a crash is indicated in the packet traces or
target logs, hangs are identified via the use of a timeout.
This is due to large delays in target’s consecutive responses
during hang.

Bug Identifier and Bug Grouping: In the fuzzing log,
numerous bugs appear to be triggered by the same root
cause. Nonetheless, such bugs often manifest as separate
ones in the fuzzing logs. To help reduce the number of
bugs for AIRBUGCATCHER to reproduce, we group bugs
via the use of bug identifiers. This bug identifier is obtained
by analyzing both the packets trace and target logs. In par-
ticular, we identify bug patterns based on their types: (i) For
crashes, AIRBUGCATCHER identifies crash dump or reboot
messages in the target logs associated with the bug location.
(ii) Concurrently, hangs are identified by searching for the
unresponsiveness of the target within a certain amount of
time. When the target logs emit useful information (e.g.,
source-code line and/or memory addresses) upon crashes,
we identify and group crashes based on such information.
In the case that no target logs are available for analysis
or such logs do not provide additional information (e.g.,
source-code line or memory addresses), AIRBUGCATCHER
constructs bug identifiers from packet state and groups bugs
based on identical packet states. For crashes, we compute
the packet state when the crash is manifested. For hangs, we
posit that the last fuzzed packet in the fuzzing iteration may
lead the target device to hang. Therefore, the bug identifier
for such cases are captured using the packet state of the
closest fuzzed packet before the hang. For example, such an
identifier may be “hang TX / LMP / LMP features req”,
where hang indicates the bug type, “TX” captures packet di-
rection (transmission), “LMP” captures the packet protocol-

layer and “LMP features req” is the packet type. More
implementation-specific details of identifying and grouping
bugs for a variety of target logs, is provided in Section 3.3.

Algorithm 1 Test Scenario Generation
1: Input: Set of Bug Groups Bgs

2: Output: Set of Test Scenarios TS [G] for each G ∈ Bgs

3: ▷ Initialize the set of test scenarios for each bug group
4: TS [G] := ∅ for each G ∈ Bgs

5: for each Gid ∈ Bgs do
6: ▷ Iterate over each bug within bug groups
7: for each bug matching the identifier Gid do
8: ▷ Initialize fuzzed packets and their combinations
9: Fpkts ← ∅, Cpkts ← ∅

10: ▷ Iterate over all packets associated with a bug
11: for each pkt ∈ bug.fuzzed packet do
12: Let iter be the number of the fuzzing iteration of

the packet
13: if iter > Maxlfi then
14: break
15: ▷ Store fuzzed packets associated with each bug
16: if (Me ∧ pkt.fuzzed type =“mutation” )

∨ (Re ∧ pkt.fuzzed type =“replay”) then
17:

Fpkts ← Fpkts ∪ {pkt}
18: ▷ Generate combinations of test scenarios in TS
19: n := Maxfpg

20:
Cpkts ←

⋃n
i=1 combinations(Fpkts, i)

21: TS [Gid] ← TS [Gid] ∪ {Cpkts}
22: return TS

Test Scenario Generation: The objective of this step is
to extract sequences of fuzzed packets (i.e., test scenarios)
corresponding to each bug group. Such a test scenario, once
translated into a test case, will assist in the deterministic
reproduction of the fuzzed packet sequence during over-
the-air communication with the target. An example of test
scenarios generation is shown in Figure 4. After processing
and analyzing the packet trace, the resulting test scenarios
are represented by ts1 to tsn, each containing a sequence of
fuzzed packets that might be mutated (m1,m2) or replayed
(r1, r2) towards the target.

Algorithm 1 illustrates the process to generate test sce-
narios. It receives as input the bug groups Bgs from the pre-
vious Bug Grouping step. Recall from Section 3.1: Fuzzed
Packet & Bug Discovery that AIRBUGCATCHER stores
a sequence of fuzzed packets (fuzzed packet) potentially
related to each bug. In Algorithm 1, we perform a bounded
backward traversal on this sequence (i.e., bug.fuzzed packet
in line 11). The bounded traversal is controlled by the
parameter Maxlfi (line 13). This intuitively captures the
maximum amount of past fuzzing iterations to search for.
Our intuition behind the backward search is based on a
hypothesis that often packets closer (even though not the
closest) to the bug location are responsible for the bug. The
backward bounded search reveals a limited set of fuzzed
packets Fpkts (line 17), which are then used for test scenario
generation. In particular, the set of test scenarios from Fpkts

are generated using all possible combinations of fuzzed
packets up to a length Max fpg (line 20). Even though such
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a process may lead to a combinatorial explosion in theory,
we observed that often a small value of Max fpg (e.g., two-
three) suffices in practice. Hence, our approach efficiently
reproduces real world wireless bugs.

The outcome of Algorithm 1 is TS , the set of all test
scenarios for each bug. It is worthwhile to mention that
although the full set of test scenarios TS is sent to the Test
Case Generation component, not all scenarios matching a
group Gid needs to be evaluated. For example, test case
is generated only for a representative bug in each group.
Moreover, additional time budget is employed during Test
Case Generation to better manage the efficiency of AIR-
BUGCATCHER for generating and executing test cases.

3.2. Over-the-Air Bug Reproduction

In this stage, AIRBUGCATCHER leverages the infor-
mation computed by offline analysis, then generates and
executes test code on IoT devices. The execution of the
test code is also monitored to check whether the bugs are
expected. In the following, we discuss these steps in detail.
Test Case Generation: This component of AIRBUG-
CATCHER takes a test scenario and translates it into a test
case (code). We note that each test scenario is essentially
a small set of fuzzed packets, as extracted from fuzzing
logs. Moreover, the wireless fuzzing tools used by AIR-
BUGCATCHER approach [8], [22] record the corresponding
original packet for each fuzzed packet transmitted. Using
the set of fuzzed packets and their corresponding original
packets, we transform the test scenario into a test case.

Figure 5 illustrates examples of test code generation.
While Figure 5(a) illustrates the case for mutated packets,
Figure 5(b) shows it for replayed packets. The leftmost side
of Figure 5(a) shows an excerpt of the packet filtering rules
(5G NR) used for extracting packet states. Concretely, the
entry Filter shows the name of the protocol layer, whereas
the entry StateNameField captures the name of the packet
field holding the packet type. Thus, using the value of the
field nr-rrc.c1, we can identify types of stateful RRC-
layer packets. Figure 5 also illustrates the fuzzed packet (say
Pµ) for the test scenario, the corresponding original packet
(say PO) and their raw bytes aligned with the byte offset.

Intuitively, the test case translation involves two steps: (i)
computing the condition to selectively intercept packet for
fuzzing, and (ii) computing the code to generate the fuzzed
packet. In Figure 5(a), using the packet filtering rules, we
extract the value of the field nr-rrc.c1 from PO and con-
struct the filtering condition “nr-rrc.c1=1”. Intuitively,
this means that the test case will only fuzz packets when the
condition “nr-rrc.c1=1” holds. After the creation of the
condition, we generate the code for fuzzing the packet. For
malformed packets, such is accomplished by comparing the
raw bytes of Pµ and PO. In Figure 5(a), Pµ differs from
PO in offsets 112 and 153. The modification of raw byte
content in such offsets are accordingly generated (see the
“Test Case” in Figure 5).

For replayed packets (see Figure 5(b)), the test case
generation similarly involves the identification of condition
“btbrlmp.op = 39” to select packets for fuzzing. How-
ever, in contrast to modifying the packet content, the same
packet is sent twice whenever the filtering condition is met.
This is accomplished via m_send_packet, which takes
the raw packet bytes (packet), and replays the packet as
many times as specified via a counter (1). Moreover, recall
that our offline packet analysis associates a list of fuzzed
packets with each bug discovered. We generate flooding test
case only if the proportion of replayed packets in this list
is larger than a threshold (set to 0.8 in our evaluation). This
is similar to the test case for replay packets, except that the
replayed packet is continuously sent to the target device (via
m_send_packet interface) in a flooding test case.

It is worthwhile to mention that our test case does not
replay previously recorded packet sequence. Instead, it se-
lectively filters packets based on the analysis of fuzzing logs
and modifies them accordingly during live communication.
This approach inherently overcomes the difficulty and uncer-
tainty of non-deterministic wireless protocols in the process
of reproducing bugs. This is because the dynamic context
of wireless communication is preserved. We also note that
the test code generation process illustrated in Figure 5 is
protocol agnostic and is applicable to bugs resulting due to
arbitrarily mutated, replayed or flooded packet sequence.

Test Case Execution: AIRBUGCATCHER generates and



executes test cases sequentially for each group within a
maximum time budget Max tt. For each test execution,
AIRBUGCATCHER monitors the logs and stops the test
execution once an expected bug is triggered or a timeout set
for bug detection (e.g., Ct, Ht and Ft in Table 1) is reached.
The default timeout values for detecting hangs (Ht) and
flooding (Ft) in our experiments are larger than the timeout
set for crashes (Ct). This is because hangs and flooding
typically require longer time to trigger the respective bugs.

Once a bug is triggered during test execution (either de-
tected in the log or via the timeout parameters), the identifier
of the triggered bug is compared against the identifier of
the bug group under test. This is accomplished via the same
methodology described in Section 3.1: Bug Identifier and
Bug Grouping. When identifiers of the triggered bug and
the bug group match, the test execution concludes that the
expected bug identifier has been found for the bug group
and AIRBUGCATCHER proceeds to execute the test cases
in the next bug group. Figure 4 illustrates the execution
process of test cases. Specifically, Figure 4 shows that
AIRBUGCATCHER continues to the next bug group after
the test case tc3 finds the expected bug. If no expected bug
is found for a bug group after maximum trial time Max tt,
we abort the reproduction process for the current bug group
and AIRBUGCATCHER moves on to generate and execute
test cases for the next bug group.

3.3. Implementation Details

AIRBUGCATCHER is designed with generalizability in
its focus. In particular, AIRBUGCATCHER is protocol ag-
nostic and it is designed to work with different types of
bugs (i.e., crashes and hangs). Moreover, AIRBUGCATCHER
works with a variety of target wireless devices with different
device log formats. Notably, among the evaluated devices
(see Table 2), the SIMCom device does not output any
logs, whereas Cypress device does not output any memory
address/source-code line upon a crash. On the contrary, both
the ESP32 device and the OnePlus phone emit source-code
line upon a crash. In certain cases, the ESP32 device also
outputs a memory trace. Finally, we note that hangs do not
exhibit any visible output in device log due to unresponsive
target. Therefore, hangs are identified via the state of the
the fuzzed packet closest to the bug (see Section 3.1).

Implementation of Bug Identifier: While the design of
AIRBUGCATCHER is general, we implement several strate-
gies to deal with the device-specific log formats, when
available. In particular, we developed bug identification
strategies (see Section 3: Bug Identifier and Grouping)
that work both with the presence and absence of target
logs, albeit with different effectiveness. For instance, target
devices such as ESP32-WROOM-32 and OnePlus phone
(see Table 2) easily output detailed logs in the event of
crashes, while other target devices such as Cypress Board
do not output logs. In target that expose logs, there are
two kinds of traces exposed during the moment a crash is
triggered: source code line trace showing reachable assert

e.g., “ASSERT PARAM(1 0), in ld acl.c at line 1772” and
memory trace like “0x40082dca:0x3ffbe2d0”. Furthermore,
in the case that target logs are not available, the identifier is
constructed from the packet state when the target crashes.
We note that more precise identifiers are possible to con-
struct, for example, by looking at a history of packet states.
However, we only take the crashed location to keep the
implementation of AIRBUGCATCHER simple and we show
in our evaluation that such a strategy works well in practice.

Implementation of Bug Grouping: Once the bug identifiers
are computed, they are used to group potentially identical
bugs. While hangs can be grouped simply based on the
associated identifier (which is typically the closest packet
state before hang), the grouping process for crashes is
slightly more involved. Specifically, when target logs show
reachable assert (or similar) in the source code, crashes are
grouped together if source-code line traces match exactly.
Otherwise, memory trace is used to decide if bugs can be
grouped. However, we noted that memory traces originated
from certain IoT device crashes (e.g., in ESP32-WROOM-
32 or ESP-WROVER-KIT) may manifest in a slightly dif-
ferent manner. Despite this, memory offset patterns exist in
such traces, hence helping to group multiple crashes. For
example, the following two bug identifiers extracted from
ESP32-WROOM-32 fuzzing log (backtraces), are triggered
by the same root cause (truncated for illustration):

BugID1=0x40101311:0x3ffcc170
0x4001a637:0x3ffcc190...

BugID2=0x40101311:0x3ffcc580
0x4001a637:0x3ffcc5a0...

There are two pairs of memory addresses in each BugID that
are separated by a colon. The first addresses in both pairs
of addresses in BugID1 matches with that of BugID2. This,
however, does not hold for the second addresses in both
pairs. Nonetheless, the second addresses in both the pairs of
addresses in the two bug identifiers are separated by identi-
cal offset. Due to such simple patterns, AIRBUGCATCHER
groups both BugID1 and BugID2 together. Finally, if target
logs are not available, the packet state of the bug location is
used as the bug identifier. Consequently, only bugs triggered
at the same packet state are grouped. All the bug groups
discovered in this process are passed to the next step of
AIRBUGCATCHER (Section 3: Test Scenario Generation).

False Positives and Negatives in Bug Grouping: We note
that both false positives (i.e., the same bug with different
identifiers) and negatives (different bugs with the same
identifier) are possible in our bug grouping. This inaccuracy
stems from the fact that AIRBUGCATCHER deals with the
closed source firmware. Thus, AIRBUGCATCHER aims to
leverage as much information (e.g., protocol states and target
logs) as a human expert would have done in the absence of
source code, to analyze and group the bugs. We believe the
confirmation of truly unique bugs is only possible with the
availability of the source code and such is unavailable in the
case of over-the-air fuzzing. In general, AIRBUGCATCHER
aims to speed up the triaging process with the device vendor.



TABLE 2: Target devices used in evaluation. Application
name is not applicable (N.A.) on devices that do not require
a specific application.

Protocol Vendor Target Device Firmware App. Name

BT
Espressif ESP32-WROOM-32 ESP-IDF commit 3de8b79 bt spp acceptor
Cypress CYW920735Q60EVB-01 WICED SDK 2.9.0 rfcomm serial port

5G
OnePlus OnePlus Nord CE 2 IV2201 11 F.48 N.A.
SIMCom SIMCom SIM8202G-M.2 SIM8202G-M2 V1.2 N.A.

WIFI Espressif ESP-WROVER-KIT ESP-IDF commit b886dc6 wifi enterprise

TABLE 3: Statistics Obtained from Target Fuzzing Logs.
Target Device # Mutations # Replays # Packets # Crashes Duration
ESP32-WROOM-32 7860 12645 162,730 190 15 hr 46 min
CYW920735Q60EVB-01 2083 2691 45,769 12 17 hr 10 min
OnePlus Nord CE 2 46992 0 5,486,869 30 13 hr 17 min
SIMCom SIM8202G-M.2 9867 0 1,679,646 5 9 hr 58 min
ESP-WROVER-KIT 2549 1837 108,954 5 1 hr 25 min

Once the vendor triages the bug report, ambiguities in bug
grouping (e.g., the same bug with different identifiers and
PoCs) can be quickly verified due to the reproducible PoCs.
Then we can tweak our bug grouping and run AIRBUG-
CATCHER again to reproduce the bugs that might have been
incorrectly grouped and generate bug reports automatically.

4. Evaluation Setup

Hardware and Software Setup: We evaluated AIR-
BUGCATCHER on three different wireless protocols: BT
(i.e., Bluetooth Classic), 5G NR and Wi-Fi. For each proto-
col, our evaluation includes one or two test devices (targets)
to demonstrate that AIRBUGCATCHER works with different
protocols and test devices. Table 2 shows the details of
the evaluated devices, including vendor names, targeted
protocols, firmware versions and application names. The
firmware versions in Table 2 are chosen based on the fact
that such versions were demonstrated to exhibit crashes
in earlier works [22], [8]. To launch over-the-air (OTA)
fuzzing campaign on the diverse set of devices employing
multitudes of wireless protocols, we leveraged several off-
the-shelf hardware devices. Specifically, we used ESP32-
Ethernet-Kit and ESP-WROVER-KIT to establish a BT con-
nection with the target ESP-WROOM-32 [8]. Both these
devices are flashed with Braktooth firmware [8]. For 5G
NR connectivity with smartphones (OnePlus), we used a
Software Defined Radio (SDR) i.e., USRP B210 to create
the 5G base station. Finally, an ALFA AWUS036AC dongle
serves as the Wi-Fi access point (AP) in our evaluation. In
addition, we use a USB Per-Port Control Hub to perform
programmable power-cycles. This is to address scenarios
where targets become unresponsive during the fuzzing cam-
paign and require power cycles for the campaign to continue
without any manual effort. Finally, we run both the fuzzing
campaign and AIRBUGCATCHER workflow (see Figure 3)
on a Beelink SER5 Mini PC with an AMD Ryzen 7 5800H
processor and 12 GB memory, running Armbian 23.02.2
operating system with kernel 5.15.0 version.

AIRBUGCATCHER software is written in Python using
2710 lines of code (LoC). This includes fuzzing log analyzer
and crash finder to locate crashes in the fuzzing logs (Step
2 in Figure 3) as well as PoC (i.e., test case) generator and
PoC runner (Step 3 in Figure 3).

Fuzzing Log Generation: To generate fuzzing logs that
constitute the inputs of AIRBUGCATCHER, we use earlier
works on BT fuzzing [8] and follow its default setup to
launch OTA fuzzing on ESP-WROOM-32, Cypress board
and ESP-WROVER-KIT. To run fuzzing on OnePlus phone
and SIM8202G, we take advantage of open-source OTA
fuzzing framework U-Fuzz [22] and follow its default setup
to conduct 5G NR fuzzing. Table 3 presents statistics of the
fuzzing logs from different test devices. The #Mutation and
#Replay columns present the total number of mutated and
replayed packets throughout the entire fuzzing campaign,
respectively. In Table 3, we also report the total number of
crashes in the fuzzing log. We note that fuzzing log gener-
ation is not the focus of AIRBUGCATCHER, instead AIR-
BUGCATCHER complements the security testing pipeline by
leveraging the fuzzing logs to automatically create the PoC
(Figure 3).

5. Evaluation Results

We address the following research questions to evaluate
and demonstrate the capabilities of AIRBUGCATCHER:
RQ1: How effective is AIRBUGCATCHER to repro-
duce crashes? In order to evaluate the effectiveness of
our experiments, we keep most of the AIRBUGCATCHER
parameters unaltered from the default values of Table 1 and
modify them only for certain devices. Table 4 outlines the
effectiveness of AIRBUGCATCHER in reproducing crashes
on different test devices. Firstly, for test with 5G devices
such as OnePlus phone and SIM8202G, the fuzzing logs do
not exhibit replayed packets. Consequently, parameters Fe

and Re are set to false. Secondly, our Wi-Fi test device
ESP-WROVER-KIT disconnects from the Braktooth Wi-
Fi Fuzzer in every fuzzing iteration. This means that it is
sufficient to generate PoCs based on the fuzzed packets that
are one iteration before a bug is triggered. Hence, Maxlfi

is set to one (1).
The results of our evaluation are showcased in Table 4.

When AIRBUGCATCHER tries to reproduce one bug group,
it is possible that no bug is triggered at all. We categorize
such results as Not reproduced. In contrast, a bug group is
only categorized as Reproduced if AIRBUGCATCHER Min-
imal Bug Reproduction (see Figure 3) successfully triggers
any bug within the target. However, there is a chance that the
identifier of a triggered bug does not match the expected bug
identifier (as analyzed by the Packet Analysis component)
during test execution. Therefore, such cases are categorized
as Unexpected. In this context, the column Expected indi-
cates bugs that are successfully triggered with the expected
bug identifier. For all cases, the results are partitioned in
types of bugs (i.e., crash and hang) and quantified within
the parenthesis. Last but not least, the Max #Mutation and
Max #Replay columns represent the maximum number of
mutated and replayed packets within each generated PoC
across all trials of the Test Case Generation. Finally, the total
number of generated PoCs and total time taken for running
AIRBUGCATCHER are shown in columns #Test Case and
Time respectively.



TABLE 4: Summary of results obtained by AIRBUGCATCHER. #Test Case denotes the total number of test cases generated
with the aim to reproduce bugs from the respective fuzzing log.

Device # Unique Bugs
(# Crashes + # Hangs)

# Bugs (# Crashes + # Hangs) Test Case Generation
# Test Case Time

Reproduced Not reproduced Expected Unexpected
Max # Max #
Mutation Replay

ESP32-WROOM-32 16 (14 + 2) 16 (14 + 2) 0 11 (9 + 2) 5 (5 + 0) 3 2 332 6 hr 44 min
Cypress Board 6 (4 + 2) 5 (3 + 2) 1 (1 + 0) 4 (3 + 1) 1 (0 + 1) 2 2 46 1 hr 26 min
OnePlus Phone 14 (13 + 1) 13 (13 + 0) 1 (0 + 1) 13 (13 + 0) 0 3 0 82 2 hr 09 min
SIM8202G 4 (4 + 0) 4 (4 + 0) 0 3 (3 + 0) 1 (1 + 0) 3 0 54 1 hr 26 min
ESP-WROVER-KIT 4 (4 + 0) 2 (2 + 0) 2 (2 + 0) 2 (2 + 0) 0 3 3 126 2 hr 53 min
Total (All Devices) 44 (39 + 5) 40 (36 + 4) 4 (3 + 1) 33 (30 + 3) 7 (6 + 1) — — 640 14 hr 38 min

Our findings reveal that AIRBUGCATCHER triggers all
the 16 bugs within BT target ESP32-WROOM-32, while 11
out of 16 bug groups have expected reproductions. On the
contrary, there are only two reproductions out of 4 unique
bugs for Wi-Fi target ESP-WROVER-KIT, while the two
reproductions are also expected. This is possibly because
the Bluetooth stack used in ESP-WROVER-KIT involves
many states and complex protocol procedures. In regards to
the time to complete all trials, ESP32-WROOM-32 takes 6
hours 44 minutes for 11 expected reproductions as compared
to its fuzzing duration of ≈15h. In contrast, OnePlus phone
takes 2 hours 9 minutes for 13 reproductions as opposed
to its fuzzing duration of ≈13h. Such difference in time
comes from where bugs are located. Since most of the
bugs for OnePlus are caused due to a single mutated packet
(rrcSetup), few test cases generated by AIRBUGCATCHER
can already reproduce majority of bugs for such target
without additional test cases employing packet replay and
flooding. In summary, AIRBUGCATCHER reproduces most
crashes from the fuzzing log and takes significantly less time
than that of the respective fuzzing campaign.

RQ2: How efficient is AIRBUGCATCHER to reproduce
crashes? Figure 6 highlights the distribution of time taken
to reproduce a bug by AIRBUGCATCHER. Specifically, Fig-
ure 6 captures the time period taken for AIRBUGCATCHER
to automatically reproduce an expected bug, versus the
number of bugs obtained within such time periods. We
note that only the expected bugs are counted in Figure 6.
Our findings reveal that most bugs can be successfully repro-
duced within four minutes for most devices, while only one
or two crashes take more than 30 minutes for reproduction.
More specifically, the time to automatically obtain the first
expected bug for the five target devices (ESP32-WROOM-
32, Cypress Board, OnePlus Phone, SIM8202G and ESP-
WROVER-KIT) is 9.7, 0.8, 1.3, 12.9 and 56.4 minutes,
respectively. Moreover, the average reproduction time for the
five targets (i.e., total evaluation time divided by the number
of expected reproductions) is 36.8, 21.6, 10, 28.8 and 86.8
minutes, respectively. These results highlight the efficiency
and hence practicality of employing AIRBUGCATCHER into
an existing fuzzing pipeline, which previously would require
significant manual effort to reproduce bugs otherwise.

RQ3: How do the different design options impact the
effectiveness of AIRBUGCATCHER?
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Figure 6: Distribution of # expected bugs w.r.t. time

To evaluate the effectiveness of AIRBUGCATCHER design,
we conduct experiments related to different bug grouping
and reproduction parameters. Firstly, to evaluate the design
effectiveness of bug grouping as discussed in Section 3,
we create fundamental modifications to AIRBUGCATCHER
that allow us to enable or disable use of target logs in
the Packet Analysis component (see Figure 3). This is to
verify the effectiveness of target logs in the identification
and reproduction of bugs. For AIRBUGCATCHER variant
that does not analyze target logs, AIRBUGCATCHER falls
back to use the state information, as discussed in Section 3.
Secondly, we create three variants of AIRBUGCATCHER to
evaluate the effectiveness of bug reproduction strategy (c.f.,
Test Case Generation in Section 2). Overall, we evaluate
six variants of AIRBUGCATCHER (with or without support
from targets logs) based on different types of bug grouping
and reproduction:

1) Mutation Only: AIRBUGCATCHER only processes
fuzzed packets that are mutated during Test Case
Generation.

2) Mutation + Replay: Both mutated and replayed
packets are included in Test Case Generation.

3) All: Adds flooding detection and generation to the
Test Case Generation where applicable.

The results of our ablation study is shown in Table 5
and structured as follows: Firstly, For each evaluated target,
the rows labeled with logs and w/o logs indicate variants of
the Packet Analysis Component. Secondly, columns grouped



TABLE 5: Ablation Study of AIRBUGCATCHER

Target

# Expected / Unexpected
# Unique

Bugs Max. TimeMutation
only

Mutation
+ Replay

All

w/o log
ESP32-WROOM-32

12 / 16 13 / 14 15 / 14 29 18 hr 40 min
with log 9 / 6 10 / 6 11 / 5 16 7 hr 54 min
w/o log

Cypress Board
3 / 1 5 / 0 5 / 0 6 2 hr 05 min

with log N.A. N.A. N.A. N.A. N.A.
w/o log

OnePlus Phone
2 / 3 N.A. N.A. 6 2 hr 49 min

with log 13 / 0 N.A. N.A. 14 2 hr 09 min
w/o log

SIM8202G
3 / 1 N.A. N.A. 4 1 hr 26 min

with log N.A. N.A. N.A. N.A. N.A.
w/o log

ESP-WROVER-KIT
0 / 0 1 / 0 1 / 0 2 2 hr 01 min

with log 0 / 0 1 / 1 2 / 0 4 4 hr 02 min

into Expected / Unexpected show the reproduction of
bugs using different AIRBUGCATCHER variations (1)-(3),
as discussed in the preceding paragraph. We note that only
mutated packets are exhibited in the results for 5G devices
(OnePlus Phone and SIM8202G) because there is no re-
played packets present in their fuzzing logs. Moreover, some
devices (Cypress Board and SIM8202G) do not produce
target logs when a bug occurs. Thus, those devices are
only experimented without support from targets logs. Lastly,
column Unique Bugs shows the total number of grouped
bugs obtained for each variation of the Packet Analysis
component and the final column Max. Time represents
the longest time to finish the evaluation of any respective
variants of AIRBUGCATCHER.

We observe from Table 5 that the variation of AIR-
BUGCATCHER supporting logs may yield much less
Unique Bugs than its counterpart without logs (for ESP32-
WROOM-32). This is because, in complex stateful proto-
cols (e.g., Bluetooth) and in the absence of target logs,
AIRBUGCATCHER fails to group potentially similar bugs
that are triggered in different states during the fuzzing
campaign. This is particularly observed with target ESP32-
WROOM-32, in which a total of 29 bugs are attempted to be
reproduced by AIRBUGCATCHER. Consequently, the lack
of target logs results in a worst-case time of 18 hours as
opposed to only 7.54 hours when target logs are used. In
contrast, for OnePlus phone and ESP-WROVER-KIT, the
lack of logs contributed to lower identification of unique
bugs (six and two) when compared to usage of logs (four-
teen and four). This is because many different bugs were
manifested in few 5G and Wi-Fi states only. Thus, using the
state information for bug grouping resulted identical group
for different bugs. We also observe that target logs provide
more precise bug identifier to the Test Case Generation. This
reduces the number of failures when reproducing bugs and
time taken for bug reproduction.

Finally, Table 5 clearly indicates that the variant All
generally reproduced more unique bugs as opposed to the
other variants “Mutation Only” and “Mutation + Replay”.
This is particularly observed for ESP32-WROOM-32. This
is because target ESP32-WROOM-32 contains multiple bugs
that can only be triggered by replaying or flooding packets
as opposed to only mutation.

Overall, the ablation results of AIRBUGCATCHER reveal

TABLE 6: AIRBUGCATCHER Effectiveness w.r.t. Different
Maximum Fuzzed Packet Generation (Maxfpg) and Maxi-
mum Trial Time (Maxtt).

Target Maxfpg Maxtt # Expected # Unexpected

ESP32-WROOM-32

3
10 min 9 5
20 min 11 5
40 min 11 5

1
60 min

9 6
2 11 5
3 11 5

Cypress Board

3
10 min 3 0
20 min 3 2
40 min 5 0

1
60 min

4 0
2 5 0
3 5 0

OnePlus Phone

3
10 min 12 1
20 min 12 1
40 min 13 0

1
60 min

12 1
2 12 1
3 13 0

SIM8202G

3
10 min 1 3
20 min 2 2
40 min 3 1

1
60 min

1 3
2 3 1
3 3 1

ESP-WROVER-KIT

3
10 min 1 1
20 min 1 1
40 min 1 1

1
60 min

1 1
2 1 1
3 2 0

that its proposed components are suitable and resilient to
reproduce bugs over a range of different configurations.

RQ4: How do the various execution parameters affect
the effectiveness of AIRBUGCATCHER?
To evaluate the effectiveness of AIRBUGCATCHER running
with different parameters, we carry out experiments using
different values for Maxfpg and Maxtt. Table 6 presents
the results of our experiment conducted on all five target
devices. In our findings, a larger Maxfpg helps to reproduce
more bugs. This is expected because certain bugs require
more fuzzed packets to trigger than others. Furthermore,
longer trial time contributes to the increase on the number
of expected and unexpected bugs. One possible reason is
that certain bugs are triggered by the fuzzed packets that
are far away from the bug location. Consequently, these
fuzzed packets are not generated during trials if Maxtt is
small since fuzzed packets closer to the bug location are
tried first. Finally, Maxfpg and Maxtt have little impact
for the target OnePlus phone, because most of its bugs
can be triggered by only one fuzzed packet. Therefore, a
smaller window size and shorter maximum trial time suffice
to trigger most bugs. Moreover, the impact of Maxfpg and
Maxtt on ESP-WROVER-KIT is not obvious because its
fuzzing log contains only four unique bugs and bugs are
more difficult to reproduce in a complicated Wi-Fi protocol.

RQ5: How does AIRBUGCATCHER compare to existing
tools?



TABLE 7: Effectiveness of Baseline (replay) Experiments

Target
# Reproduced Bugs in Trial /
# Total Bugs in Fuzzing Log

# 1 # 2 # 3 # 4 # 5

ESP32-WROOM-32 13/190 16/190 23/190 13/190 16/190

Other Targets 0 0 0 0 0

In this experiment, we compare our AIRBUGCATCHER
approach against baseline approaches used by other protocol
fuzzers [3], [7].

To this end, we evaluate the intuitive approach of base-
line fuzzers to reproduce bugs by replaying all TX packets
from the fuzzing log (i.e. Simple Replay). The idea behind
this approach is that a bug might be reproduced if an identi-
cal sequence of packets can be replayed to the target device,
since the bug happens after such a sequence of packets were
exchanged. However, this is often not a deterministic task,
due to the fact that we only have control over TX packets
but not RX packets which are received from the test device
in real-time. Nonetheless, we run baseline experiment with
the Simple Replay approach against all five target devices
without grouping bugs. Then, for each target device, we
attempt to generate and run as many PoCs as the number
of crashes in the respective fuzzing logs. We also repeat
the baseline experiments five times on each target device
to potentially reduce the impact from non-deterministic
behaviors of over-the-air protocols. During each trial, the
control of packet transmission is performed by either direct
injection of replayed TX packets (Bluetooth) or replacing
(i.e., overwriting) TX packets of live communication with
replayed TX packets in the sequence (5G, Wi-FI). The slight
difference in the simple replay, based on target protocol,
is due to the implementation details of the tool [8] used
by AIRBUGCATCHER to communicate with target devices.
Each PoC has a crash detection timeout of 60 seconds (the
same as our other experiments). The result of our baseline
experiments are presented in Table 7. We observe that simple
replay approach is only able to trigger a few bugs (13-23
out of 190 across five trials) in the ESP32-WROOM-32
target, while no bugs were triggered at all in other targets.
In contrast, AIRBUGCATCHER is able to reliably reproduce
16 unique bugs (out of 16 unique bugs in fuzzing log)
for ESP32-WROOM-32 as highlighted in the Reproduced
column of Table 4. The underwhelming performance of
baseline is due to communication timeouts or the target
expecting random packet field values (context) during bug
reproduction. Since the target does not receive a response
that corresponds to such field values, it drops the connection
or send rejection messages during bug reproduction.

These results highlight the practicality of AIRBUG-
CATCHER to reproduce bugs under non-deterministic and
adverse protocol communication scenarios.

6. Threats to Validity

Comprehensiveness of the Target Logs: The usage of
target logs to identify unique bugs is one of the fundamen-

tal steps for precisely grouping bugs. If the target cannot
provide logs, which contain crash dumps, the precision of
the bug identifier is impaired. This may increase the time to
reproduce bugs as can be observed in the results reported
in Table 5. We mitigate this risk by enabling debug logs in
the evaluated targets and by providing several mechanism
of log collection such as via serial port, SSH and Logcat.
Number of bugs within bug groups: The number of
bugs within a bug group may affect the capability of AIR-
BUGCATCHER to reproduce complex bugs. For example, if
there are only few bugs within a group, then it reduces the
variations of test cases to be tried by AIRBUGCATCHER
(e.g., due to the lack of many locations for the bug). To
mitigate this, we set the parameters Max lfi and Max fpg

(see Table 1) appropriately such that many combinations of
fuzzed packets are explored by AIRBUGCATCHER.
Completeness of Packet Filtering Rules: For AIRBUG-
CATCHER to create test cases, it needs to generate certain
packet filters that match specific packets during the trial of
the PoCs. Such is required for systematic transmission of
mutated, replayed or flooding packets towards the target. In
this context, it is important that the user provides reasonable
packet filtering rules to the Packet Analysis component
of AIRBUGCATCHER. We address this threat by creating
packet filtering rules based on protocol standard, as also
explored by prior works in protocol fuzzing [8].
Reproducible Target Builds: Since AIRBUGCATCHER re-
lies on fuzzing logs of an existing fuzzing pipeline, us-
ing a slightly different target (or firmware version) within
the same fuzzing pipeline may lead AIRBUGCATCHER to
not reproduce bugs. This is due to deviations in target’s
behaviour. Such deviations might be caused by different
responses from the target during PoCs trial or target logs
mismatches (e.g., different crash dumps addresses) between
what is received during fuzzing versus what is received
during bug reproduction. We mitigate this by using the same
target or firmware version throughout fuzzing and AIRBUG-
CATCHER test case generation to ensure reproduction of
results.

7. Related Work

Bug Reproduction Within Protocol Fuzzers: Existing
protocol fuzzers that offer reproduction of stateful bugs
normally implement an approach that records the sequence
of packets exchanged with the target [3], [7]. Subsequently,
they replay benign or fuzzed packet sequences towards the
target. While this approach may reproduce bugs for proto-
cols that are mostly sequential and deterministic in nature,
it does not consider deviations of the target’s response
due to non-deterministic behaviour of wireless protocols.
Specifically for wireless communication, full control over
the target’s state during a test is not guaranteed. There-
fore, replay techniques employed in prior works ought to
fail reproduction of deeply rooted or ambiguous bugs. In
contrast, AIRBUGCATCHER addresses this shortcoming by
adopting a minimal number of state machine rules that can



guide its test case generation towards only specific parts
of the communication with the target. Additionally, prior
works attempt to reproduce bugs by sending the entire
fuzzed sequence instead of communicating a minimal set
of fuzzed packets that contribute to the bug. Consequently,
AIRBUGCATCHER is more suitable to help triaging teams
to focus on the relevant attack vector and hence fix the root
cause of bugs faster.
Deterministic Network Replay or Instrumentation:
Works that focus in reproducing [18], [20], [27] or mon-
itoring [24] communication behaviour of network systems
do not offer precise modification of protocol contents or in-
terfacing with network protocols other than Ethernet. Aside
from such works’ usefulness in deterministically debugging
wired network protocols, their support for construction of
test cases is limited to only the recorded protocol packets.
Moreover, collecting target logs is out-of-scope for such
works. Consequently, analysis of target bugs are limited to
hangs or performance degradation [18].
Wireless Sensor Network Replay: Tardis [25] and Min-
erva [23] offers packet replay facilities for wireless networks
based on intrusive approaches. For example, Tardis requires
access to the target’s source code such that debugging code
can be introduced into the target firmware. Subsequently, the
new firmware generates instrumentation logs during normal
operation of the target and is then used inside an emulator
to replay packets offline. Similarly, Minerva enables replay
of wireless packets through use of external debugging hard-
ware (i.e., JTAG) attached to the target. In summary, both
works require intrusive approaches which are not suitable to
reproduce protocol bugs in closed wireless stacks such as
the IoT devices targeted by AIRBUGCATCHER.
Reproduction of Bugs in Software: Our work is orthogonal
to several parallel works that aim to reproduce the behaviour
of both distributed software systems [19], [11], [26] and
mobile applications [6], [29]. Concretely, these works are
tailored to reproduce bugs within software binary that runs
full-fledged operational system and hence they do not gen-
eralize to operate with external hardware, as often required
with wireless fuzzers. In contrast, AIRBUGCATCHER fo-
cuses solely in the protocol interaction between two peers
and hence it does not need to take into account the full
behaviour of the underlying OS used by the targets during
the fuzzing campaign.
Automated Exploit Generation: AIRBUGCATCHER runs
orthogonally to prior works that automatically generate ex-
ploitable code based on open-source code or binary soft-
ware. On the one hand, Siege [14] and Evomaster [2] are
whitebox approaches that generate exploitable code based
on static analysis of the target program. On the other hand,
Crax [13] and Flowstitch [12] generate exploits solely using
the program binary. While the latter works are well suitable
to reproduce bugs in a blackbox target, these approaches
are orthogonal to our objective, as we aim to reproduce
bugs based on existing test case scenarios obtained from
a wireless fuzzer. Moreover, leveraging such binary analy-
sis [13], [12] may introduce significant technical challenges

to reproduce protocol (e.g., stateful) bugs and to support
static analysis on different architectures. In this context,
AIRBUGCATCHER distinguishes itself by generating test
cases while being inherently hardware and protocol agnostic.
This is because AIRBUGCATCHER focuses on the bugs dis-
covered by wireless fuzzers and integrates well to accelerate
the triaging process.
Root Cause Diagnosis on Software Code: There are
several works that can indicate the root cause of bugs within
software code via static or dynamic analysis [17], [4], delta
debugging [28], as well as pinpointing the commits in which
bugs were firstly introduced [1]. However, such works are
neither directly applicable to stateful protocols fuzzing, nor
applicable to closed-source IoT targets.

8. Conclusion

In this paper, we propose and implement AIRBUG-
CATCHER, to automatically and systematically reproduce
bugs in wireless IoT devices to accelerate the troubleshoot-
ing, triaging and fixing process of vulnerable IoT devices.
We show that the non-deterministic nature of wireless
protocols demand a fundamentally different approach for
bug reproduction, as simple replay-based techniques fail to
preserve the dynamic context during wireless communica-
tion. Moreover, our AIRBUGCATCHER approach provides a
range of offline analysis to reduce the size of PoC to only a
few packets, which, we believe should significantly help in
understanding the root cause of bugs for the vendors. Apart
from reliably reproducing wireless implementation bugs, we
believe the capabilities embodied in AIRBUGCATCHER can
be leveraged for several other future research directions in
wireless security. For example, the extracted filtering con-
ditions by AIRBUGCATCHER are used for test-case gener-
ation, however, such conditions may also assist in over-the-
patch creation or input repair to protect the vulnerable IoT
devices. Moreover, this input-repair process may also guide
the fuzzing process to discover other vulnerabilities that do
not appear in the fuzzing log. We hope AIRBUGCATCHER
provides a valuable tool to improve the security testing
pipeline of IoT devices. To advance research in the area
of wireless security and testing, we have made our tool and
all experimental data available in the following:

https://github.com/asset-group/air-bug-catcher
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Appendix

Packet Filtering Rules

In this section, we provide packet filtering rules for the
OTA protocols used in our experiment. Precisely, Figure 7,
Figure 8 and Figure 9 demonstrate the packet filtering rules
for Bluetooth Classic, 5G NR and Wi-Fi respectively.

Figure 7: Bluetooth Classic Packet Filtering Rules

Figure 8: 5G NR Packet Filtering Rules

Figure 9: Wi-Fi Packet Filtering Rules
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