
Compositional Design of Multi-Robot Systems Control
Software on ROS

STEFANO SPELLINI, University of Verona

MICHELE LORA, Singapore University of Technology and Design

FRANCO FUMMI, University of Verona

SUDIPTA CHATTOPADHYAY, Singapore University of Technology and Design

This paper presents a methodology that relies on Assume-Guarantee Contracts to decompose the problem of

synthesizing control software for a multi-robot system. Initially, each contract describes either a component

(e.g., a robot) or an aspect of the system. Then, the design problem is decomposed into different synthesis

and verification sub-problems, allowing to tackle the complexity involved in the design process. The design

problem is then recomposed by exploiting the rigorousness provided by contracts. This allows us to achieve

system-level simulation capable to be used for validating the entire design. Once validated, the software

synthesized during the process can be integrated into Robot Operating System (ROS) nodes and executed

using state-of-the-practice packages and tools for modern robotic systems.

We apply the methodology to generate a control strategy for an autonomous goods transportation system.

Our results show a massive reduction of the time required to obtain automatically the control software

implementing a multi-robot mission.

1 INTRODUCTION
The recent technological advances in the field of autonomous systems pushed the introduction

of robots in many human activities. Autonomous robotics is now widely used to clean domestic

environments, as well as to support industrial processes within production plants. The increas-

ing adoption of these technologies, especially in safety-critical applications, implies the rising

importance of reliable, and structured flows along all the steps of the design process, from the

requirement specification to the system validation.

Traditionally, the software in charge of controlling robots, as well as other families of cyber-

physical systems, is designed on top of dynamical model simulators, and its validation strongly

relies on extensive simulation [6]: a practice not providing the rigorousness required by safety-

critical applications. Recently, formal methods have been introduced in this field [13, 21], trying to

develop correct-by-construction design flows able to synthesize the control software from high-level

requirements. However, dealing with such a problem holistically leads to serious complexity issues,

especially when considering the constantly increasing size of the applications being designed.

Problem decomposition, together with abstraction, will play a central role for future system-

level design methodologies [19]. Considering the problem depicted in Figure 1, where a set of

system requirements must be implemented by a set of collaborating robots, while respecting some

This is a preprint of an article that will appear as part of the ESWEEK-TECS special issue and will be presented in the

International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019.

Authors’ addresses: Stefano Spellini, stefano.spellini@univr.it, University of Verona, Department of Computer Science,

Strada le Grazie, 15, Verona, Italy, 37134; Michele Lora, michele_lora@sutd.edu.sg, Singapore University of Technology and

Design, Information Systems Technology and Design (ISTD), 8, Somapah Rd. Singapore, Singapore, 487372; Franco Fummi,

franco.fummi@univr.it, University of Verona, Department of Computer Science, Strada le Grazie, 15, Verona, Italy, 37134;

Sudipta Chattopadhyay, sudipta_chattopadhyay@sutd.edu.sg, Singapore University of Technology and Design, Information

Systems Technology and Design (ISTD), 8, Somapah Rd. Singapore, Singapore, 487372.

2019. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in ACM Transactions on Embedded Computing Systems, https://doi.org/10.1145/nnnnnnn.
nnnnnnn.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

System Requirements and Constraints

Task
Allocation

Contract
1

Contract
2

Contract
4

Contract
3

Contract
n…

Reactive
Synthesis

Design
Problem

Robot 1

Robot 2

Robot 3

Fig. 1. Overview of problem tackled by the presented approach, and proposed problem decomposition.

constraints, abstraction and problem decomposition may be exploited in different ways. When

designing the control software for the agents composing such a system one may consider going

straight creating the coordination for the entire ensemble of robots. Otherwise, a designer may

structure its design flow by defining the tasks composing a mission. Then, allocating the tasks to

the single robots, and creating a control strategy for each of them independently. Of course, this

requires to assure that the composition of the robots’ behaviors, guided by their task allocations,

is an implementation of the intended mission. Thus, the design flow needs to be supported by a

formalism to describe system components and their abstractions.

The Assume-Guarantee (A/G) Contracts theory [3] has been developed to deal with these aspects.

A/G contracts allow to decompose system design among the different components involved (i.e.,
horizontal decomposition), and among different levels of abstraction (i.e., vertical decomposition).

An A/G contract formally represents a component as a pair of sets of behaviors defined over its

variables: the assumptions and the guarantees [3]. A system can be represented as a composition of

components (i.e., horizontal contracts), while each component may be modeled at different levels of

abstraction and according to diverse points of view (i.e., vertical contracts) [31].
We present a compositional approach to generate the control software for multi-robot systems.

The main innovation of our methodology is the structured decomposition, supported by the A/G

contract formalism, of the design process. As Figure 1 shows, it starts from a set of requirements

and constraints characterizing a mission of the system. The requirements and the constraints are

formalized as A/G contracts, to partition the design problem into multiple sub-problems. Then, we

propose to use a subset of the contracts to synthesize a control strategy for every single robot in

the system. Meanwhile, a subset of the requirements is used to perform tasks allocation among the

different robots. The information contained in the contracts are also used to automatically generate

an executable model of the system for simulation purposes. We exploit system-level simulation

to validate the results of the design flow. Once the synthesized control strategies are shown to be

correct, they can be translated into the software concretely controlling the robots. In particular,

this paper presents an approach able to generate code for the popular ROS middleware [35]. More

specifically, each agent’s control software is wrapped into a ROS node. A set of well-defined

messages and topics is created to handle the communication between the generated nodes. We

validate the results of the presented methodology by simulating the final system using Gazebo, a

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

robotic oriented 3D CAD tool and simulation environment, able to emulate the behavior of robots

controlled by ROS software.

The approach is presented through a running example based on a multi-robot goods transporta-

tion system. We evaluate the effectiveness of the approach by applying it to scenarios of increasing

complexity. The experimental results show the scalability that may be achieved by systematically

decomposing the design problem.

The contributions of this work can be summarized as follows:

• Definition of a problem decomposition strategy that allows to address compositionally the

design of control software for multi-robot systems. In particular, we exploit the A/G contracts

to automatically partition the requirements and the specifications of the system into smaller

sub-problems to be addressed individually, and obtain a set of control strategies for the

components of the system. Then, we define a simulation-based method to validate the

composition of the sub-problems solutions with respect to the main problem requirements.

• A technique to automatically generate software code implementing the control strategies

generated, and validated, for the components of the system. In particular, the generated code

is based on the popular ROS framework.

This paper is organised as follows. Section 2 analyzes the related work. It reports some key

concepts of the A/G contracts theory, the General Reactivity (1) (GR(1)) fragment and ROS. A

case study is defined, to illustrate the application of the proposed approach. Section 3 provides an

overview of the suggested methodology. The contract-based specification of the robotic system is

detailed in Section 4. The decomposed system is synthesized and validated as described in Section 5.

is presented in Section 6 presents the automatic generation of code for ROS. Section 7 shows the

applicability of obtained implementations and the scalability of the entire methodology. We finally

draw some conclusions in Section 8.

2 PRELIMINARIES AND RELATEDWORK
The increasing complexity of robotic systems led to the introduction of multiple robot software

frameworks [18] aiming at easing the development of robotic software. Notable examples are

ROS [35] and OROCOS [7]. These frameworks typically act as middleware, abstracting away

the low level details about the physical system and providing high-level primitives to develop

functionalities. Usually, designers develop the software on top of such frameworks. Then, they

evaluate the correctness of the implemented behavior by using simulators able to reproduce the

physical behavior of the system. Meanwhile, the main focus of the robotic software research

community is shifting toward the integration of cognitive functionalities to make robots everyday

more autonomous [1]. However, all these works rely on extensive simulation to reason about the

correctness of the system being controlled by the developed software. Thus, none of them is able

to provide strong guarantees about the correctness of the software being produced.

Formally specifying high-level behaviors of robotic systems to obtain a provably correct imple-

mentation is not a new task in the autonomous robotics research area. The work presented in [38]

proposes the idea of using A/G contracts, in order to reduce the complexity required to synthesize a

control strategy for autonomous multi-robot systems. Even though it introduces the guiding ideas

supporting the presented work, it presents only preliminary results without providing a structured

methodology. It decomposes the design problem only horizontally: it decomposes the problem over

the different components only; it does not decompose over the different aspects and abstractions of

the same problem (i.e., vertical decomposition [30]). Furthermore, it does not target the generation

of actual code able to run on real systems. On the contrary, the presented contribution exploits

the ability of A/G contracts to decompose the problem also vertically. Moreover, the different

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

parts resulting from the decomposition are used to solve different sub-problems in a structured

methodology, able to generate ROS code that can be run on actual robots.

Another end-to-end methodology to generate executable code that implements high-level robot

behaviors has been proposed in [25]. The methodology is applied to the DARPA Robotic Challenge

(DRC), consisting in a semi-autonomous mission executed by a ground robot operating in a

dangerous environment for humans. This approach assumes that each sub-component of the

system is already defined in a centralized way, while concentrating on the reactive mission plan

applied to a high-level view of available actions and behaviors. The approach has been exploited

by the same team [26] to specify system capabilities that are mapped onto the task definition

and execution. The integration of robotic control-software obtained by formal specifications and

GR(1) synthesis in ROS is addressed in [39]. The authors developed a framework to automatically

synthesize a ROS node implementing GR(1) specifications. The approach relies on the reactive

synthesis algorithms by Slugs [10]. Finucane et al. [14] developed a toolbox (i.e., LTLMoP) to
develop and test high-level robot controllers from problem specification in natural English. This

tools collection is also able to set up a visual simulation of the robot mission execution. All these

contributions rely on the automatic synthesis of control strategies from Linear Temporal Logic

(LTL) specifications [22]. However, none of the previous works addressed and exploited a structured

problem decomposition to reduce the complexity of the design process.

Our methodology has similar objectives to the previously described works. Furthermore, we

also rely on the same theoretical pillars, such as the automatic generation of control strategies from

GR(1) specifications [4]. However, the work presented in this paper is able to keep manageable

larger and more detailed definitions of the system being designed thanks to the compositional

reasoning enabled by A/G contracts formalism. In addition, the robotics systems we consider are

composed of multiple agents interacting with each other, producing an extremely complex problem

to specify and synthesize in practice. As we will discuss, traditional synthesis from temporal

logic specifications is not feasible, taking into account the necessity for an optimized specification

method and synthesis algorithms. In the following, we provide some key concepts to understand

the background of the proposed approach.

2.1 A/G Contracts
A contractC for a componentM is a triple (V ,A,G), whereV is the set of the component variables,

and A and G are assertions, each representing a set of behaviors over V [3]. A represents the

assumptions that M makes on its environment, and G represents the guarantees provided by M
under the environment assumptions.

A component M satisfies a contract C whenever M and C are defined over the same set of

variables, and all the behaviors ofM satisfy the guarantees of C in the context of the assumptions,

meaning thatM is an implementation ofC . Moreover, a component E can also be associated with a

contractC as an environment for the contract. We say that E is a legal environment ofC , whenever
E and C have the same variables and the behaviors implemented by E are a subset of A. The A/G
contract theory [3] defines a set of operations, those used in this work are:

• Composition: Contracts associated to different components can be combined according to

different rules. Parallel composition builds complex contracts from simpler ones.

• Compatibility and Consistency: C is compatible if there exists a legal environment E for it. A

contract is consistent when the set of implementations satisfying it is not empty.

• Refinement: A contract C refines a contract C ′, written C ≼ C ′, if and only if A ⊇ A′ and
G ⊆ G ′.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

2.2 Linear Temporal Logic (LTL)
LTL formulas are perfectly suited to model the evolution of a system over time. A component

behaviour is expressed considering present and future paths, i.e. a condition that will eventually

hold in the future. Specifically related to A/G contracts, both assumptions A and guarantees G of a

contract C can be specified as LTL formulas [28]: a componentM satisfies a contract C if it fulfils

the logical implication A→ G , while it is a legal environment forC if it satisfies the formula A [31].

LTL Syntax. Let AP be a set of atomic propostions where π ∈ AP is a Boolean variable. LTL

formulas are constructed from atomic propostions π ∈ AP according to the following grammar:

φ ::= π | ¬φ | φ ∨ φ | ⃝φ | φUφ (1)

where ¬ (“not”) and ∨ (“or”) are Boolean operators, and ⃝ (“next”) andU (“until”) are temporal

operators. Given “next” (⃝) and “until” (U) operators, additional temporal operators can be derived

such as “eventually”: ^φ = TrueUφ and “always”: �φ = ¬^¬φ.

LTL Semantics. Semantics of an LTL formula φ are defined on an infinite sequence σ = σ1σ2... of
truth assignments to the atomic propostions π ∈ AP , where σi denotes the set of atomic propostions

that are True at position i. Whether σ satisfies LTL formula φ at position i (denoted σ , i |= φ) is
recursively defined as:

• σ , i |= φ iff π ∈ σi ,
• σ , i |= ¬φ iff σ , i ̸ |= φ,
• σ , i |= φ1 ∨ φ2 iff σ , i |= φ1 or σ , i |= φ2,

• σ , i |= ⃝φ iff σ , i + 1 |= φ
• σ , i |= φ1Uφ2 iff there exists k ≥ i such that σ ,k |= φ2, and for all i ≤ j < k , σ , j |= φ1.

The formula ⃝φ expresses that φ is True in the next “step” (the next position in the sequence) and

the formula φ1Uφ2 expresses the property that φ1 is True until φ2 becomes True.

The sequence σ satisfies formula φ if σ , 0 |= φ. The sequence σ satisfies formula �φ if φ is True in

every position of the sequence, and satisfies the formula ^φ if φ is True at some position on the

sequence.

2.3 General Reactivity (GR(1))
LTL formulas can be used as specifications of reactive systems where atomic propositions are

divided between the environment (i.e., the system input) and the system (i.e., the system output). The

realizability of LTL is 2-EXPTIME-complete, which makes it practically infeasible [37]. However,

for the GR(1) fragment of the LTL, there is an algorithm able to decide the realizability in N 3
[27].

GR(1) synthesis specifications contain assertions over initial states, safety constraints relating

the current and next state, and goals requiring that an assertion holds infinitely often during a

computation. More specifically, a GR(1) synthesis problem is defined as a game between a system

player and an environment player, with the following game structure:

• X input variables controlled by the environment

• Y output variables controlled by the system

• θ e assertion over X characterizing initial states of the environment

• θ s assertion over X ∪Y characterizing initial states of the system

• ρe (X ∪ Y,X) transition relation of the environment

• ρs (X ∪ Y,X ∪Y) transition relation of the system

• φ = GF J e → GF J s winning condition as implication between justice goals J e of the environ-
ment and J s of the system.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

The acceptance condition is finally defined as:

(θ e ∧Gρe ∧GF J e) → (θ s ∧Gρs ∧GF J s) (2)

where Gρe and Gρs are safety conditions over the environment and the system while GF J e and
GF J s are liveness properties over the environment and the system.

In the literature, many different tools implement reactive synthesis from the GR(1) fragment [10,

13]. These tools accept a GR(1) LTL specifications and return a Mealy Machine implementing a

control strategy that allows the system player to win over the environment player. In this paper,

we are going to use the GR1C tool of the Temporal Logic Planning (TuLiP) toolbox [13] to perform

reactive synthesis from GR(1) specifications.

2.4 The Robot Operating System (ROS)
ROS [35] is a collection of packages for developing robotic software, from low-level device control

to communication protocols between robot components. Tipically, a robotic system is organized

in ROS as a set of distributed processes connected to each other. As such, a ROS-based system

is usually represented by a graph depicting its architecture where nodes represent the processes

implementing the computation in the system. For the same reason, in the ROS terminology, the term

node is synonym of process. Each node of the graph corresponds to a component of the system, i.e.,
a sensor, an actuator, or an algorithm implementing a functionality. Each node is usually connected

to other nodes using different styles of communication, such as synchronous RPC-style services or

asynchronous data streaming over topics. More specifically, a topic is an abstraction used to identify

a specific message subject or content, while ROS messages through nodes can be considered as

particular data structures, composed by multiple fields with specific field types (i.e., int8 or string). A
message_generation package is available to define custom system-level messages: by specifying a set

of data fields and types, a C++ header file is generated, which can be used by nodes implementations

to pack and unpack topic’s messages structures. A ROS node is generally implemented by using a

well-defined client library. Such a library provides an application programming interface in different

languages, such as C++ or Pyhton. In particular, the roscpp library provides interfaces and standard

functions to create a ROS node in C++, capable of interacting with topics and services. A less

runtime-performant but more intuitive method of designing nodes is provided by the rospy client

library, which is similar to roscpp in terms of functionalities.

The ROS ecosystem is completed by some tools for analysis and simulation. Gazebo [33] is a 3D
CAD tool, that allows designing the mechanical parts of robots. Furthermore, it provides a robust

3D simulation environment. It includes a solid physical engine and multiple extension packages,

such as gazebo_ros_pkgs, that allow the integration of newly defined ROS nodes into Gazebo logic

and visual models. More specifically, Gazebo interacts with ROS by using a set of defined messages

and services, which acts as an interface between a standalone simulation client and various ROS

nodes representing a robotic system.

2.5 Case study: goods transportation system
For the sake of clarity, we exemplify the concepts described on the paper on a running example.

The case study is inspired by autonomous multi-robot goods transportation systems. Figure 2

gives a schematic representation of the system being considered. A set of robots moves in a two-

dimensional space, such as a building floor. The robots are required to move a set of objects to

specific positions in space. Such positions are called targets. They are indicated in Figure 2 by the

star icons. The order in which the targets must be reached is imposed by the system requirements,

i.e., the requirements define a partial order over the set of targets. Each robot may move in four

directions (i.e., up, down, left and right). Robots must avoid crashing into eventual obstacles and

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

Main variables values

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟1 = 0

𝑡𝑎𝑟𝑔𝑒𝑡𝑟1 = 16 (i.e., T2)

𝑠𝑒𝑛𝑠𝑜𝑟_𝑙𝑒𝑓𝑡𝑟1 = 𝑓𝑎𝑙𝑠𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑟𝑖𝑔ℎ𝑡𝑟1 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑢𝑝𝑟1 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑜𝑤𝑛𝑟1 = 𝑓𝑎𝑙𝑠𝑒

𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑟1 = 4 (i.e., right)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟2 = 18

𝑡𝑎𝑟𝑔𝑒𝑡𝑟2 = 7 (i.e., T3)

𝑠𝑒𝑛𝑠𝑜𝑟_𝑙𝑒𝑓𝑡𝑟2 = 𝑓𝑎𝑙𝑠𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑟𝑖𝑔ℎ𝑡𝑟2 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑢𝑝𝑟2 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑜𝑤𝑛𝑟2 = 𝑡𝑟𝑢𝑒

𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑟2 = 1 (i.e., up)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑂1 = 17

𝑶𝟏T2

T4

T3

T5T1

T6

𝒓𝟐

𝒓𝟏 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Fig. 2. Running example: an autonomous goods transportation system, composed of two robots, coordinating
to reach six different targets.

into each other. Each robot is equipped with proximity sensors, providing to the robot information

about the physical objects present in the robot’s immediate surrounding environment. In practice,

at each instant the robot is aware of the space available in the four directions it can move. Figure 2

depicts the case in which two robots (i.e., R1, and R2) must collaborate to complete all six tasks. The

right side of Figure 2 reports the main variables used in the formalization described in Section 4,

and their values according to the state depicted in the left side of the figure.

It is important noticing that the methodology can be extended to many classes of robotic systems.

In fact, it is trivial to extend the formalization described in Section 4 to consider three-dimensional

spaces. Such an extension requires to simply add a further variable modeling the third dimension

for every variable referring to the position of a system component. The extension allows to extend

the field of applicability to autonomous unmanned vehicles [9]. However, using a three-dimensional

case study would not add any information about the methodology, while complicating the formulas

used in the formalization step.

Furthermore, the approach can be extended to deal with robots composed of multiple independent

mobile parts moving in the three-dimensional space. In such a case, the formalization would have

multiple components (i.e., the mobile parts of the robot) rather than multiple robots. Indeed, a set of

logical assertions must be added, during the formalization step, modeling the constraints about the

relative positions of the components. As long as the different mobile parts act independently to one

another, the approach can be used to generate a ROS node for each mobile part to be controlled.

3 OVERVIEW
Given a multi-robot system and a set of targets to be reached by the system, the final objective of

our work is to automatically generate the control software for each robot composing the system.

The generated software is targeted to the ROS framework, and it allows the ensemble of robots to

accomplish all the required targets. Figure 3 summarizes all the phases composing the proposed

flow, enumerated within gray boxes.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

System Components
Specifications

System
Requirements

1. Problem Decomposition and Formalization

Environment
Contract

3. Synthesis

Robots
Contracts

2. Synthesis

ROS-based
Implementation

8. ROS Code
Generation

7. Simulation for Composition Validation

4. Simulation for
Timing Analysis

C++ World
Model

C++ Control
Strategies

5.
 R

ef
in

em
en

t
(T

im
e

A
nn

ot
at

io
n)

C++ Task
Scheduler

6. Task
Allocation

Mission
Contract

OK

Er
ro

r

Fig. 3. General schema of the proposed methodology. Requirements and specifications are formalized and
decomposed as a set of A/G contracts (Step 1). After solving the sub-problems (Steps 2 to 6), their composition
is validated through simulation (Step 7). In case the validation results in a positive outcome, ROS code
implementing the control strategy of each robot is automatically produced (Step 8).

Initially, the design problem is characterized by a set of requirements and specifications. The

system components specifications define all the resources available in the system, as well as the

constraints on their use. On the other hand, the system requirements specify which are the objectives
of the system, such as the operations that must be accomplished by the the robots and the timing

constraints on such operations. Requirements may differ between different systems, and they

can be captured in different ways. Many different approaches have been proposed to specify and

formalize requirements and components for robotics and cyber-physical systems in general [12,

34]. Requirements management methodologies allow to automatically cast the formalization of

requirements and components within a specific theory or design flow [32]. For instance, a structured

management of requirements is helpful when aiming at automatically partitioning a complex design

problem by using A/G contracts [2, 29]. While requirements management is not in the scope of

this paper, we assume that the design process starts from requirements managed by such a kind

of techniques. In the case study introduced in Section 2.5, the requirements are the targets to be

reached and the timing within these must be reached. Its components are indeed the robots, but also

the two-dimensional physical space in which the robots move. As the physical space is a component

of the system, then the constraints imposed by the physics are part of the system component

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

specifications. Thus, for instance, the presence of physical obstacles, as well as the reaction time, or

the features of the robots’ sensors are part of the system components specifications.

The Problem decomposition and formalization step (i.e., Step 1) formalizes the specifications and

requirements composing the design problem by using A/G contracts. Alternatively, the design

problem may be represented by a single contract having all the identified requirements as guar-

antees, and assuming all the identified constraints, as many state-of-the-art approaches do [22].

Theoretically, such a holistic contract may also be processed to perform reactive synthesis, and

to generate a control software for the entire system [13]. However, the problem would be com-

putationally intractable [29]. Conversely, the presented approach partitions the design problem

into multiple sub-problems, each of them represented by a contract. As such, the design problem

formalization is partitioned into the following contracts:

• multiple Robot Contracts, one for each robot in the system, describing each robot constraints

and behavior. Each contract assumes the characteristics of the environment, while guaran-

teeing to react to external stimuli properly.

• one Environment Contract describing the constraints imposed by the system, and assuming

the behavior of the robots, i.e., it assumes the robots properly reacting to environmental

stimuli. It must guarantee the assumptions made by the robot contracts.

• one Mission Contract describes the tasks the robots must accomplish. It assumes the ability

of the robots of reaching each target within a given time limit. It guarantees the existence of

a sequence of tasks for each robot, such that the entire ensemble of robots completes all the

required tasks.

The defined contracts are used in different manners. Each robot contract is used to synthesize

a control strategy for each robot by applying reactive synthesis (Step 2). Thus, for each robot

contract it is produced a Mealy Machine implementing the contract. The generated Mealy Machine

is translated into an equivalent C++ executable model of the control strategies for the robot. The
same flow is applied to the environment contract (Step 3), thus producing a C++ model of the world
containing the robots (i.e., the environment).

The implementations obtained by synthesizing the robot and environment contracts are merged

and compiled together to create a custom simulator for the system. Such a custom simulator

provides higher simulation speed by integrating the simulation engine and all the models into a

single executable [24], and it is used to perform multiple simulations necessary to evaluate the time

required by each robot to reach each target (Step 4). The information retrieved by the simulation is

used to refine the mission contract: for each robot and each task, the mission contract assumes the

timing value retrieved from the simulations as the time the robot needs to reach the target.

The mission contract is given to a task allocation algorithm that takes care of allocating the tasks

to the single robot (Step 6). The procedure generates a C++ task scheduler assigning to each robot

the tasks to perform. After this step, we have both a strategy for each robot and a task allocation

for the entire system. However, each sub-problem has been solved by using different assumptions.

As such, it is necessary to verify that the composition of the solution is still a solution for the initial

specification. Proving the correctness of the composition using formal methods leads to intractable

complexity. For this reason, the presented approach performs simulation for composition validation.
The C++ models of the control strategies, environment (i.e., the world model), and the C++ task

scheduler can be compiled together to create an executable specification of the entire system, thus

composing the solutions of the sub-problems into a fast custom simulator. The composed system

is simulated for all the initial conditions that are admissible according to the initial specification

assumptions (Step 7). In the case none of the simulations violates the initial requirements, then the

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

C++ control strategy of each robot is automatically translated into a ROS-based implementation

(Step 8).

On the contrary, in the case the simulation for composition validation step fails, then the designer

may either try to generate an alternative task allocation, or to relax the system requirements and

iterate the design flow. In either cases, the trace generated by the failing simulation may be helpful

to identify the conflicting requirements [8, 23]. However, a more in-depth investigation of this

strategy is beyond the scope of this paper.

4 DESIGN PROBLEM SPECIFICATION
For each instance of the design problem, three contract-based specifications have been created:

a contract representing the entire problem holistically, i.e., the System Contract (CS); a contract

specifying a single robot instance, i.e., the Robot Contract (CR); a contract that describes the

environment in which various robots move, i.e. the Environment Contract (CE); and a contract

specifying the tasks to be performed to complete the mission, i.e., the Mission Constract (CM).

Contracts CR , CE and CM are obtained by decomposing CS . An implementation of the composition

of the multiple instances of CR (one for each robot in the system), CE and CM must implement the

initial contract CS .

Such a partition decomposes the problem horizontally (i.e., among the different components

of the system) by dividing the problem among the different robots composing the system. It also

decomposes the problem vertically (i.e., among different levels of abstraction), as the Mission

Contract may be seen as an abstraction of the composition of robots and environment. In fact,

while satisfying the mission contract requires the existence of a task assignment, satisfying the

composition of the Robot Contracts and the Environment Contract requires to identify a control

strategy for each problem that is able to implement the solution of the Mission Contract. The

following of this section provides the details of these specifications.

4.1 System Contract (CS)
The representation of the two-dimensional space is discretized and represented as an occupancy

grid [11]. Each robot r is characterized by four boolean variables, expressing the four directional

sensors (i.e. sensor_up, sensor_down, sensor_le f t , sensor_right), an integer variable for the position
(i.e. position = n), and an integer variable representing the robot command (i.e. command = c). A
boolean value for each cell of the occupancy grid is used to store whether a position is free or not

(i.e. f reep where p is the index of the cell). Target positions are given as input to each robot. Finally,

each robot stores an integer value to represent the number of steps it performed (i.e., how many

times its position changed). The system specification is within the GR(1) fragment.

The initialization assumptions predicates about the robots’ initial positions and sensor values:

• two robots cannot have the same position, for each grid cell n:

¬(positionri = n ∧ positionr j = n ∧ i , j)

• For every position n, a conjunction over all the robots defines the occupation status of the
cells:

f reen = (
∧
ri

¬(positionri , n))

• Sensors values are set according to cells adjacent in the occupancy grid and the grid boundaries.

For instance, the assertion:

positionri = 18→ (sensor_le f tri = f ree17)

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

specifies that the value of the left sensor of a robot in position 18, depends on the occupancy

state of position 17. CS specifies one assertion such as this for each position and each sensor.

The initialization guarantees set the initial command of every robot to stay, and its steps counter
to zero. Initialization assumptions have to hold also at each time step, so they are also duplicated as

safety guarantees.

The safety assumption properties define the robots motion:

�((positionr = n ∧ commandr = c) → ⃝(positionr =m))

wherem is the position adjacent to the position n, in the direction specified by the command c .
Then, safety assumptions model the global time of the system advancing at every evaluation step:

�(timer = t → ⃝timer = t + 1)

The safety guarantees specify that the robot decide the next command based on the sensor values.

Thus, considering the running example in Section 2.5, and the command up the system guarantees

are as follows:

�(⃝(commandri = up) → sensor_upr1)

The same guarantee must be inserted for each robot, and each command modifying the status of

the system, in the case study: up, down, left and right. CS guarantees also the correct evolution of

the step counters:

�(((positionri , ⃝positionri) ∧ stepsri = n) → (⃝stepsri = n + 1))

The only goal of the system is that each robot ri target should be reached within a certain amount

of time T , i.e.,
�^(positionri = targetri ∧ timer ≤ T)

4.2 Robot Contract (CR)
The A/G contract of every robot instance is an abstraction of CS (i.e., CS ≼ CR) obtained by

increasing the set of assumptions by assuming an environment that allows the robot to move freely

(i.e. AS ⊂ AR). The resulting A/G contract responds with the appropriate command value to input

sensors values provided by the environment. For every position n, assumptions are as follows:

�(positionri = n → (sensor_upri ∧ sensor_downri ∧ sensor_le f tri ∧ sensor_rightri))

However, it is possible to define different configurations inserting assumptions about obstacles.

Considering the example in Figure 2, it is possible to assume the existence of the obstacle O1 by

inserting assumptions that forces different values for the sensors, such as:

�(positionri = 12 → (¬sensor_upri ∧ sensor_downri ∧ sensor_le f tri ∧ sensor_rightri))

However, CR does not consider the other robots in the system, thus assuming that other robots

do not act as obstacles.

The guarantees expressed in the CR are the subset of guarantees of CS that generates the value

for the next command to send according to the sensors values.

In particular, if the target position is reached, the only possible command is stay:

�((positionr = targetr) → ⃝(possible_command = stay))

Finally, if the output command is different than stay, the robot has moved. Thus, the time required

by the agent to reach the desired target is incremented by 1.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

4.3 Environment Contract (CE)
The environment contract is an abstraction of the general system contract modeling the physical

environment in which the robots act. The occupancy grid is represented by a set of boolean

variables, one for each cell. Each variable values true if and only if the corresponding block is

free. The environment contract assumes the behavior of the robots. Thus, its behavior is based

on the command values assumed the robots would generate. Its output is the set of positions for

the robots, as well as the sensor values for each robot. More specifically, for each robot r , for each
position n and each command c , an assertion is in charge of computing the next position of the

robot. Assertions describing robot movements are:

�(positionr = n ∧ commandr = c → ⃝ (positionr =m))

The environment contract also guarantees some trivial constraints of the physical system, i.e., two
robots can never share the same position. Thus, for each pair of robots ri and r j :

¬(positionri = n ∧ positionr j = n ∧ i , j)

4.4 Mission Contract (CM)
The mission contract formalizes system requirements specifying the timing constraints of the target

to be reached by the robots, as well as their ordering. It assumes the main features of the system, i.e.
the number of cooperating robots, as well as the time needed by each robot to complete each target.

Furthermore, it assumes that no obstacle can create a situation such that a robot gets stuck in some

positions in the two-dimensional space. Meanwhile, the contract guarantees a certain time-bound

within every task of the system will be completed. That is, the mission will be completed within N
steps.

The maximum time required by each robot to move to every target is hard to be computed.

Retrieving such time requires computing, for each robot, all the possible paths between every pair

of targets in the system. For this reason, system simulation is used to enrich the contract with

the travel time information for each robot and each target. The execution of synthesized robot

controllers into the generated environment model ensures that a robot rn can reach a target tm in

k steps. The contract is defined as follows:

• Assumptions: each robot possible path to each available target is structured as a triple (I ,D,T)
where I is the initial robot position, D is the destination cell and T is the time required to

reach that cell.

• Guarantees: mission requirements can be fulfilled since a set of targets can be reached in a

predictable time limit.

The consistency of the mission contract provides a possible allocation of tasks to the robots that

may potentially realize initial requirements and constraints. This contract is an abstraction of CS ,

as it defines a larger set of assumptions: it assumes for each robot, and each pair of targets, the

maximum travel time required by the robot to travel between the two targets. As such, while the

solution obtained satisfy CM , it may not satisfy all of its refinements such as CS . Thus, the solution

must be validated. The following section details how the allocation is generated and validated.

5 SYNTHESIS AND VALIDATION
After decomposing the design problem, the sub-problems represented by the contracts defined

above must be solved. Then, their solutions must be combined to obtain a solution to the design

problem. Thus, each contract must undergo different steps, as introduced above in Section 3. This

section details the different steps.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

5.1 Code generation and simulation
Contracts describing the robots and the environment of the system undergo reactive synthesis.

They are formalized within the GR(1) fragment of the LTL. Thus, each of them can be used to

synthesize a control strategy by using a reactive synthesis tool. In our case, we rely on GR1C [13].

After being synthesized, each strategy is expressed as a Mealy Machine in JSON format.

An automatic tool has been developed to generate executable C++ code starting from each of

the Mealy Machine descriptions. It includes a JSON parser creating an intermediate representation

of a Mealy Machine object. Then, the tool generates a C++ class implementing the Mealy Machine

by exploiting automatic homogeneous code generation [15]. This allows creating an executable

specification for each A/G contract emulating the behavior of the component specified by the

contract.

Composing the executable models of robots and environment enables early simulation for the

system. Each C++ class representing a robot is instanced by a top-level component, together with

the class generated by the environment contract. The inputs of the robots are the outputs of

the environment model and vice versa. A scheduling procedure [15] is in charge of reproducing

the concurrency, and managing the communication and synchronization among the different

components of the system.

5.2 Task allocation
The simulation environment defined above can be used to retrieve the set of times required by

robots to reach all the available targets. This is done by simulating the system multiple times. At

each simulation, one robot moves between a pair of targets. The process is repeated for each robot,

and each pair of targets to be reached consecutively. The information gathered by such simulation

phase is then used to generate a tasks allocation over the available robots.

The task allocation problem can be resolved in multiple ways, and much research has been

already carried on in this field [16]. Furthermore, the solution generated by performing reactive

synthesis from the system contract CS , without decomposing the design problem, already embeds

in itself the solution of the task allocation sub-problem. The framework we implemented to evaluate

the positive impact of problem decomposition relies on a procedure made in-house. However, it is

important noticing that any other technique for task allocation can be used to address this step. For

the sake of completeness, we report the details about our solution to better clarify how to connect

other solutions to our methodology.

The procedure encodes the problem as a directed weighted graphG = (V , E). VerticesV represent

either robots initial positions and target positions. Edges E and their associated weight represent

cost of paths connecting nodes. A partial or total ordering relation may be defined over the targets

by the mission specification, i.e., a set of constraints about the order in which the tasks must be

performed. Furthermore, the mission may impose that two consecutive tasks are carried on by the

same robot. This may be useful to represent a robot moving an object from one target to another.

Figure 4 shows the graph extracted by the case study described in Section 2.5.

Algorithm 1 takes the graph representation as input, to produce a task allocationwhileminimizing

the overall mission cost, i.e., the sum of all the robots actions. It also aims at keeping balanced the

number of actions performed by each robot. Thus, trying to increase concurrency, and decreasing

the overall mission duration. Line 1 to 3 initialize some lists: the list of n robots, the costs of each

robot, and a list that will be used to store temporary values, one for each robot. Then, the list of the

allocations is initialized empty: it will contain a list of robot/task pairs, each indicating that a task

must be performed by the assigned robot. The procedure iterates over the targets in the task_list
(Line 6). Then for each robot, the min_path function, based on the Dijkstra shortest path algorithm,

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

Fig. 4. Weighted graph extracted from the case study. It represents the costs of all the paths from robots to
targets.

returns the cost for the robot of the shortest path to the given target. Then, it allocates the target

to the robot having the minimum value in costs, after summing the cost to reach the considered

target (Lines 10-11). A pair is added to the allocation list, to indicate which robot will perform the

task (Line 12). Then, the remove_edges sub-routine updates the graph by removing all the edges

entering the node representing the allocated task. Then, the algorithm iterates to the following

target in task_list. Finally, the procedure will return the list of allocated tasks (Line 16).

5.3 Simulation for system validation
Generating a control strategy for each robot of the system by synthesizing the complete system

contract CS provides a control strategy that already contains the solution of all the design sub-

problems. Meanwhile, in our approach, every sub-problem is solved by using a set of assumptions

that is larger than the set of assumptions of CS . The task allocation is generated under the

assumptions of the Mission Contract (CM), that is an abstraction of the System Contract (CS). Thus,

CM makes more assumptions with respect to CS . For this reason, the solution of CM may or may

not be a solution also forCS . Consequently, it is necessary to validate the generated task allocation.

The final step of the design flow is a System-level validation through simulation. The objective

is to verify that task allocation to each robot is feasible and the control software will be able to

complete the given mission while respecting the constraints imposed by CS . The simulation relies

on the executable models generated by the approach in Section 5.1, while being driven by the

generated task allocation. The allocation is encoded as a C++ static scheduler assigning the tasks

to the different robots instantiated by the C++ executable model of the environment.

The different C++ models are integrated and compiled together into an executable system-level

model of the system. Such a model is simulated for all the possible combination of initial conditions

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

Algorithm 1 Task allocation

Require: graph of costs, task_list

Ensure: minimize total mission cost and robot cost differences

1: robots ← [r1, r2, ..., rn]
2: costs ← [0, 0, ..., 0]
3: tmp_costs ← [0, 0, ..., 0]
4: allocation ← ∅
5: procedure assign_tasks
6: for task in task_list do
7: for r in robots do
8: tmp_costs[r] ←min_path(graph, r , task) + costs[r]
9: end for
10: best_robot ←min_cost_move(tmp_costs)
11: costs[best_robot] += tmp_costs[best_robot]
12: allocation.insert(best_robot , task)
13: remove_edges(graph, task)
14: tmp_costs ← [0, 0, ..., 0]
15: end for
16: return allocation
17: end procedure

admissible according to the system contract. Finally, if the system-level validation returns a positive

outcome, then the control strategies generated are correct under the assumptions defined by the
initial requirements, and formalized by the system contract CS . It is important to keep in mind that

if the actual system does not respect assumptions specified in the requirements, then the generated

implementation may be unable to control the system properly.

Once validated, the C++ implementations of the control strategies for the robots may be used as

control software for the multi-robot system. Next Section describes how the validated C++ control

strategies are used to produce ROS nodes.

6 ROS CODE GENERATION
The integration into ROS of the generated implementations requires to create a ROS node for each

component of the defined system (i.e., a robot). The set control strategies generated and validated

for each robot in the system is the starting point to create multiple ROS nodes, each enclosing the

control strategy of one component. The structure of such control strategy is depicted in the listing 1.

In particular, it outlines the code implementation of the FSM that realizes the control strategy for

such an agent: at each executeMachine call (Line 5), the next state is elaborated according to the

current state (Lines 9, 28) and input parameters (Lines 11 and 19) while appropriately setting output

variables (Lines 15-17 and 23-25).

The listing 2 describes the standard structure of a robot node implementation in C++, using the

roscpp library. Input and output messages have a precise structure of type msgs::robot_output
and msgs:env_output (Lines 1, 21). The first is composed of a set of boolean values, one for each

directional sensor, and two integer variables, one representing the current position and one for the

assigned target. The output message is characterized by two integer values, one for the produced

command and one for the executed movements count.

Initially the ROS node is initialized (Line 8) and its handle is defined (Line 9), with its update

rate (Line 10). At Line 12, the Robot controller is declared and instantiated. Then, a subscriber

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

1 String state;
2 int32_t steps_out;
3 int32_t target_out;
4

5 void Robot :: executeMachine(bool up_in ,
6 bool down_in , bool left_in , bool right_in ,
7 int32_t target_in , int32_t position_in)
8 {
9 if (state == std:: string("0"))
10 {
11 if (up_in == false && down_in == false
12 && left_in == false && right_in ==false
13 && target_in == 0L && position_in == 0L)
14 {
15 state = "20";
16 steps_out = 1L;
17 command_out = 0L;
18 }
19 else if (up_in == true && down_in == false
20 && left_in == false && right_in == false
21 && target_in == 0L && position_in == 0L)
22 {
23 state = "28";
24 steps_out = 1L;
25 command_out = 0L;
26 }
27 ...
28 else if(state == std:: string("1"))
29 {
30 ...
31 }
32 ...
33 }

Listing 1. Code structure of the synthesized control software using the proposed methodology. The control
logic is implemented by the executeMachine function, that models the behavior of an Finite State Machine
(FSM).

and a publisher are created to manage the message passing protocol: the publisher (Line 14)

sends messages of type msgs::robot_output to the /r01/robot/output topic, while the subscriber
component listens to /r01/environment/output for msgs:env_output messages, calling a callback

function (Line 3) to handle the received message and to fill the internal inputs structure. The while
loop at Line 21 simulates the robot controller with input parameters gathered from the received

message (Lines 22-24) and publishes an output message representing the computed values from the

controller (Lines 26-30).

A node subscription, as well as publication, is not constrained to a single topic: the environment

node, in our case, is composed of N subscribers and publishers, attached to N topics, where N is

the number of robots acting in the system. The mission execution is handled by another similarly

defined node: it subscribes to each robot position, checking whether the current target is reached.

In that case, it publishes to the environment node the next target.

The execution of each node is started by publishing an initial message to each robot, containing

the initial conditions of the entire robotic system. It is terminated when each robot reaches all the

targets the mission nodes has assigned to it.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

1 msgs:: env_output inputs;
2

3 void callback(const msgs:: env_outputConstPtr &msg) {
4 inputs = *msg;
5 }
6

7 int main(int argc , char** argv) {
8 ros::init(argc , argv , "robot_controller");
9 ros:: NodeHandle nh("~");
10 ros::Rate r(1);
11

12 Robot robot_ctrl;
13

14 ros:: Publisher p = nh.advertise <msgs:: robot_output >
15 ("/r01/robot/output", 1);
16 ros:: Subscriber s = nh.subscribe <msgs::env_output >
17 ("/r01/environment/output", 1, &callback);
18

19 msgs:: robot_output output;
20

21 while (ros::ok()) {
22 robot_ctrl.executeMachine(inputs.up0 , inputs.down0 ,
23 inputs.left0 ,inputs.right0 , inputs.target0 ,
24 inputs.position0);
25

26 output.steps = robot_ctrl.steps_out;
27 output.command = robot_ctrl.command_out;
28 output.target = inputs.target0;
29

30 p.publish(output);
31

32 ros:: spinOnce ();
33 r.sleep ();
34 }
35

36 ros:: shutdown ();
37

38 return 0;
39 }

Listing 2. Code structure used to implement and instantiate the control software into a ROS node. At each
update, input message parameters are gathered and passed to the control strategy instance. This produces
new output values, that are published to the destination topic.

7 EXPERIMENTAL RESULTS
Every phase of the proposed design flow has been automated. We set up a proof-of-concept tool-

chain created specifically to bind A/G contract reasoning and simulation-based techniques. Each

sub-component or aspect of the problem is specified through an A/G contract in the SPIN syntax

of LTL [17]. Consistency checking of each contract is performed by using GR1C [13]. The tool is

also able of performing reactive synthesis to produce a Mealy Machine implementing the given

specification. GR1C produces a JSON description of the state machine whenever the specification is

realizable. The JSON specification is parsed by a tool we built on top of the HIFSuite APIs. Relying
on the HIFSuite we can exploit its automatic C++ generation tool [5] to generate the executable

model of the original specification. The task planning algorithm has been implemented in Python.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

Table 1. Comparison between the time needed to obtain the final control strategy using the holistic system
contracts, and decomposing the design problem. The experiments have been carried on by varying the three
main dimensions of the problem.

Problem Dimension Non-decomposed system formalization Decomposed system formalization

Blocks # Robots # Targets Synthesis
time (s)

Code
Generation (s)

Total
Time (s)

Synthesis
time (s)

Code
Generation (s)

Simulation for
Validation (s)

Total
Time (s)

9 2 2 20.36 20.47 40.83 6.85 37.31 0.01 44.17
16 1 2 31.48 25.83 57.31 20.54 40.46 0.03 61.21
16 2 2 3924.18 1906.16 5831.37 33.13 244.48 0.02 277.63
16 2 4 3924.22 1910.79 5835.01 33.17 247.97 0.04 281.18
16 2 6 3924.60 1913.95 5838.55 33.17 247.96 0.07 281.20

16 3 6

Time Out

(6 hours)

Time Out

(6 hours)

Time Out
(6 hours) 71.59 380.86 0.04 452.49

16 4 6 Time Out Time Out Time Out 184.35 810.34 0.05 994.74
16 4 8 Time Out Time Out Time Out 184.35 814.56 0.06 998.97
25 2 4 Time Out Time Out Time Out 55.54 292.94 0.08 348.56
25 2 6 Time Out Time Out Time Out 55.54 295.08 0.09 350.71
25 3 9 Time Out Time Out Time Out 142.79 504.25 0.12 647.16
25 4 12 Time Out Time Out Time Out 238.83 943.75 0.17 1182.75
25 5 15 Time Out Time Out Time Out 312.64 1351.49 0.21 1664.34

Finally, we developed a backend producing the final ROS implementation of the control software

as described in Section 6.

A series of Python scripts has been produced to generate various scenarios of the problem. The

scenarios we vary the number of deployed robots and the size of the environment. For all the

scenarios, we produced the holistic (i.e., non-decomposed) specification of the system to be solved

by state-of-the-art techniques based on reactive synthesis [22]. Then, we generated the decomposed

specification as discussed in Section 4, and we apply the proposed approach.

In Section 7.1, we compare the time necessary to obtain a valid control strategy using our

approach, against the state-of-the-art reactive synthesis of the non-decomposed system specification.

For each specification, we set a timeout of six hours. Then, we compare qualitatively the code

generated by the two approaches.

We also evaluate the applicability of the proposed methodology by building virtual models of

the scenarios we considered using the Gazebo simulator [20]. Then, we deployed the ROS code

generated by our methodology to control the dynamical models of the robots instantiated in Gazebo.

Then, we monitor the behavior of the system to evaluate if it meets the initial requirements, and it

is thus properly controlled by the generated code. Contrary to the system-level simulation relying

on the code synthesized by the contracts (i.e., steps 4 and 7 of Figure 3), the simulation performed

using Gazebo is not a step of the methodology. However, it allows evaluating the properties of the

generated code once deployed in a real system. Section 7.2 provides the details about the Gazebo

simulations.

7.1 Methodology evaluation
Table 1 reports the time required by the various design phases, i.e., the realizability, synthesis,
the control software generation and its execution based on the finite state machines produced

by reactive synthesis tools. The different entries have been obtained by varying the three main

design problem dimensions, i.e., the number of blocks in the two-dimensional space representation,

number of robots, and the number of targets. The Non-decomposed formalization columns report

the time required to synthesize the control strategy from the contract representing the system

“holistically”. The last four columns report the time required by applying the presented approach.

In both cases, we reported the time necessary to perform reactive synthesis, code generation,

and the total time required. In the case of the decomposed system formalization, we report also

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

Table 2. Qualitative comparison of the generated code.

Blocks Robots Target
Synthesized

States
Number of

ROS Messages
Non-

decomp. Decomp. Non-
decomp. Decomp.

9 2 2 10704291 2664 * 2 15 19

16 1 2 3435704 8432 35 39

16 2 2 72938223 8432 * 2 20 24

16 2 4 72938223 8432 * 2 40 48

16 2 6 72938223 8432 * 2 55 67

the simulation time required for validating the generated code. It is worth noticing that the code

generated from the non-decomposed system formalization does not require further validation, as

its synthesis relies on a state-of-the-art, and proved to be correct-by-construction [4], synthesis

methodology.

The state-of-the-art approach [22] using the non-decomposed system formalization suffers the

computational complexity of the reactive synthesis algorithm. Thus, the synthesis process requires

more than six hours for the majority of our benchmarks. The complexity rises significantly by

increasing the number of robots in the system. This can be explained by the substantial number of

safety invariants needed to model the set of guarantees of the holistic representation. By increasing

the granularity of the grid representation, the problem’s complexity rises more gradually, since

most of safety invariants regarding the environment shape and size compose the set of assumptions,

that are more easily managed. On the other hand, the approach proposed in this paper allows

synthesizing also the instances that are otherwise intractable. In particular, it shows good scalability

also when increasing the number of robots in the system, as highlighted by the experiments using

the 16 and 25 blocks occupancy grids.

Notice that whenever the set of targets of the mission is changed, then it will be possible

to perform only the task allocation while maintaining the previously synthesized strategies for

the single robots. In this case, the time required by the task allocation procedure is negligible

in comparison to the entire design flow, as the algorithm required at most 1.3 seconds in our

experiments.

Table 2 provides a qualitative comparison between the code produced by our approach, and

the code generated by using the non-decomposed system specification. We compare the number

of states composing the synthesized Mealy Machines. Then, for each scenario we simulate the

generated code using Gazebo, we monitor their behavior and we quantify it by counting the ROS

messages used to control the system. It is important noticing that in ROS messages are the main

software primitive.

Using the non-decomposed specification leads the generated Mealy Machines to grow exponen-

tially. Meanwhile, using the presented approach, i.e., synthesizing multiple Mealy Machines from

the multiple contracts composing the decomposed system specification, allows generating smaller

Mealy Machines. Thus, the proposed methodology provides a more compact implementation for

the same given set of requirements. Meanwhile, the generated software requires slighter more

messages to control the system. This is due to the fact that using our methodology, each robot

needs to broadcast the information about the target aimed by the robot. Thus, for each target, two

additional messages must be broadcast to all the robots in the system. Additional details about the

Gazebo simulation are provided below.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

Table 3. Results obtained by the Gazebo simulation.

Blocks Robots Targets Steps ROS
Messages

Simulation
Time (s)

9 2 2 3 19 20.53

16 1 2 7 39 98.21

16 2 2 4 24 34.78

16 2 4 8 48 85.67

16 2 6 11 67 110.24

16 3 6 8 52 75.27

16 4 6 7 47 60.02

16 4 8 10 66 82.86

25 2 4 12 68 104.13

25 2 6 15 87 119.44

25 3 9 17 103 133.26

25 4 12 20 124 94.86

25 5 15 19 125 70.32

Overall, this set of experiments shows that the proposed decomposition strategy allows managing

systems otherwise intractable.

7.2 Software deployment: Gazebo simulation
The concrete applicability of the methodology has been evaluated by deploying the code being

generated to control the mechanical models of real robots running in Gazebo [20]. In this work we

use different instances of the open source robot Turtlebot3 [36]. Gazebo provides great adherence to

systems physical reality, as well as integration with ROS. These features, make Gazebo simulation

a widely used practice to evaluate the behavior of a robot system in absence of the final hardware

systems.

Additional topics must be defined to set-up a 3-dimensional simulation of robots physical behavior.

The turtlebot3_simulation package exposes a specific node that is controllable publishing on
the already defined topic cmd_vel. It also provides information about the robot position in the

simulated Gazebo environment through its odometry functionality. The messages of the cmd_vel
topic are of Twist type, that expresses both linear and angular velocity through vectors. Moreover,

the odometry messages are constructed by a pose point with x , y and z components, together with

a quaternion that models the actual orientation of the robot.

For each robot, we create a new node to instantiate the control strategy generated by the

presented approach for the robot, and to interface the generated control strategy with the robot

hardware. First, cell positions are mapped into a range of x and y coordinates. Then, since the

contract-based specification does not take into account the rotation of the robot, the turtlebot3

has to be rotated to face the direction of the target cell before moving: from odometry messages

the destination position and rotation can be calculated using traditional algebraic formulas. More

specifically, the angle facing the target is determined in radians by calling the atan2(x,y) function.
Moreover, the actual Euler rotation angle of the robot is collected by its odometry module, applying

the euler_from_quaternion function to the rotation quaternion sent on the odometry topic.

Figure 5 shows the simulation environment emulating the case study used throughout the paper.

We monitored the Gazebo simulation of different scenarios used to evaluate the methodology. For

each scenario we used one of the possible initial conditions. Table 3 reports for each scenario, the

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Compositional Design of Multi-Robot Systems Control Software on ROS

Fig. 5. The case study analyzed in this paper represented in a Gazebo simulation. Through publisher/subscriber
architecture, each robot subscribes for messages from the environment controller, which publishes the set of
sensor values and each agent position. A robot command is then produced by the implemented controller,
wrapped in another ROS node.

number of steps performed by the robots (i.e., the sum of commands generated by the control

strategies of all the robots), the number of ROS messages passing in the system, the time needed

to simulate the scenario in Gazebo. In all the monitored cases, the system is implementing the

requirements without violating any constraint. The simulation time using Gazebo is many order

of magnitude higher than the system-level simulation used for validation (Table 1). This is due

to the fact that Gazebo simulates every detail of the systems’ physical behavior. Meanwhile, the

system-level simulation emulates the details interesting the control strategies of the different robots,

while relying on a coarse abstraction of the system’s kinematics. It is also worth noticing that the

time required by Gazebo to simulate does not depend on the scenario’s parameters. The time is

affected by the parallelism due to the presence of multiple robots, as well as the equations to be

solved for emulating the dynamical models.

In conclusion, the proposed decomposition allows producing more compact ROS code, able to

fulfill the initial design requirements, while slightly increasing the number of messages.

8 CONCLUSIONS
In this paper, we proposed an approach to exploit assume-guarantee reasoning to decompose, and

make more efficient, the design of robotic control software. The approach decomposes the main

design problem into multiple sub-problems, formalized as A/G contracts. Then, the composition of

the sub-problems solutions is validated through simulation to verify that the solution implements

the initial requirements. The experimental results show the advantage of decomposing the design

problem, highlighting a substantial reduction of the required design time.

ACKNOWLEDGMENTS
This work has been supported by the following grants: the Singaporean National Robotics Pro-

gramme (NRP) – Robotics Enabling Capabilities and Technologies (RECT), Grant no. 172 25 00022;

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

Stefano Spellini, Michele Lora, Franco Fummi, and Sudipta Chattopadhyay

the Singaporean Ministry of Education (MoE), Grant no. MOE2018-T2-1-098; the Italian Ministry

of Education, University and Research (MIUR) “Dipartimenti di Eccellenza” 2018-2022 grant.

REFERENCES
[1] HoussamAbbas, Indranil Saha, Yasser Shoukry, Rudiger Ehlers, Georgios Fainekos, Rajesh Gupta, RupakMajumdar, and

Dogan Ulus. 2018. Special Session: Embedded Software for Robotics: Challenges and Future Directions. In Proceedings
of the International Conference on Embedded Software, (EMSOFT) 2018.

[2] Nikunj Bajaj, Pierluigi Nuzzo, Michael Masin, and Alberto Sangiovanni-Vincentelli. 2015. Optimized selection of

reliable and cost-effective cyber-physical system architectures. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition. EDA Consortium, 561–566.

[3] Albert Benveniste et al. 2018. Contracts for system design. Foundations and Trends® in Electronic Design Automation
12, 2-3 (2018), 124–400.

[4] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Saar. 2012. Synthesis of reactive (1) designs.

J. Comput. System Sci. 78, 3 (2012), 911–938.
[5] Nicola Bombieri, Giuseppe Di Guglielmo, Michele Ferrari, Franco Fummi, Graziano Pravadelli, Francesco Stefanni,

and Alessandro Venturelli. 2010. HIFSuite: Tools for HDL code conversion and manipulation. EURASIP Journal on
Embedded Systems 2010, 1 (2010), 436328.

[6] Davide Bresolin, Luigi Di Guglielmo, Luca Geretti, Riccardo Muradore, Paolo Fiorini, and Tiziano Villa. 2012. Open

problems in verification and refinement of autonomous robotic systems. In Proceedings of Euromicro Digital System
Design (DSD) 2012. IEEE, 469–476.

[7] H. Bruyninckx. 2001. Open robot control software: the OROCOS project. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Vol. 3. IEEE, 2523–2528. http://ieeexplore.ieee.org/document/933002/

[8] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003. Counterexample-guided abstraction

refinement for symbolic model checking. Journal of the ACM (JACM) 50, 5 (2003), 752–794.
[9] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A Seshia. 2017. Drona: A Framework for Safe

Distributed Mobile Robotics. In 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS). IEEE,
239–248.

[10] Rüdiger Ehlers and Vasumathi Raman. 2016. Slugs: Extensible GR(1) Synthesis. In Proceedings of International Conference
on Computer Aided Verification (CAV). Springer, 333–339.

[11] Alberto Elfes. 1989. Using occupancy grids for mobile robot perception and navigation. Computer 6 (1989), 46–57.
[12] Yishai A Feldman andHenry Broodney. 2016. A cognitive journey for requirements engineering. In INCOSE International

Symposium, Vol. 26. Wiley Online Library, 430–444.

[13] Ioannis Filippidis, Sumanth Dathathri, Scott C Livingston, Necmiye Ozay, and Richard M Murray. 2016. Control Design

for Hybrid Systems with TuLiP: The Temporal Logic Planning Toolbox. In Proceedings of IEEE Conference on Control
Applications (CCA) 2016. 1030–1041.

[14] C. Finucane and H. Kress-Gazit. 2010. LTLMoP: Experimenting with language, Temporal Logic and robot control. In

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1988–1993.
[15] Franco Fummi, Michele Lora, Francesco Stefanni, Dimitrios Trachanis, Jahn Vanhese, and Sara Vinco. 2014. Moving

from Co-Simulation to Simulation for Effective smart systems design. In Proceedings of IEEE/ACM Design Automation
and Test in Europe (DATE) 2014. 286.

[16] Brian P Gerkey and Maja J Matarić. 2004. A formal analysis and taxonomy of task allocation in multi-robot systems.

The International Journal of Robotics Research 23, 9 (2004), 939–954.

[17] G.J. Gerard J Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software Engineering 23, 5 (1997), 279.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=588521

[18] Pablo Iñigo-Blasco, Fernando Diaz-del Rio, Ma Carmen Romero-Ternero, Daniel Cagigas-Muñiz, and Saturnino Vicente-

Diaz. 2012. Robotics software frameworks for multi-agent robotic systems development. Robotics and Autonomous
Systems 60, 6 (jun 2012), 803–821.

[19] Kurt Keutzer, A Richard Newton, Jan M Rabaey, and Alberto Sangiovanni-Vincentelli. 2000. System-Level Design:

Orthogonalization of Concerns and Platform-Based Design. IEEE transactions on computer-aided design of integrated
circuits and systems 19, 12 (2000), 1523–1543.

[20] N. Koenig and A. Howard. 2004. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In

Proceedings of IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), Vol. 3. IEEE, 2149–2154.
http://ieeexplore.ieee.org/document/1389727/

[21] Hadas Kress-Gazit. 2011. Robot challenges: Toward development of verification and synthesis techniques. IEEE Robotics
& Automation Magazine 18, 3 (2011), 22–23.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

http://ieeexplore.ieee.org/document/933002/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=588521
http://ieeexplore.ieee.org/document/1389727/

Compositional Design of Multi-Robot Systems Control Software on ROS

[22] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-logic-based reactive mission and motion

planning. IEEE transactions on robotics 25, 6 (2009), 1370–1381.
[23] Daniel Kroening, Alex Groce, and Edmund Clarke. 2004. Counterexample guided abstraction refinement via program

execution. In International Conference on Formal Engineering Methods. Springer, 224–238.
[24] Michele Lora, Sara Vinco, and Franco Fummi. 2019. Translation, Abstraction and Integration for Effective Smart

System Design. IEEE Trans. Comput. (2019).
[25] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-Gazit. 2016. Reactive high-level behavior synthesis

for an Atlas humanoid robot. In IEEE International Conference on Robotics and Automation (ICRA). 4192–4199.
[26] J. W. McDonald Hayhurst and D. C. Conner. 2018. Towards Capability-Based Synthesis of Executable Robot Behaviors.

In SoutheastCon 2018. 1–8.
[27] Amir Pnueli Nir Piterman and Yaniv Saar. 2006. Synthesis of Reactive(1) Designs. In Proceedings of VMCAI 2006.
[28] P. Nuzzo, A. Iannopollo, S. Tripakis, and A. Sangiovanni-Vincentelli. 2014. Are interface theories equivalent to contract

theories?. In 2014 Twelfth ACM/IEEE Conference on Formal Methods and Models for Codesign (MEMOCODE). 104–113.
[29] Pierluigi Nuzzo, Michele Lora, Yishai A Feldman, and Alberto Sangiovanni-Vincentelli. 2018. CHASE: Contract-based

requirement engineering for cyber-physical system design. In Proceedings of IEEE/ACM Design Automation and Test in
Europe (DATE) 2018. 839–844.

[30] Pierluigi Nuzzo and Alberto L Sangiovanni-Vincentelli. 2018. Hierarchical System Design with Vertical Contracts. In

Principles of Modeling. Springer, 360–382.
[31] Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti, and Tiziano Villa. 2015. A platform-

based design methodology with contracts and related tools for the design of cyber-physical systems. Proc. IEEE 103, 11

(2015), 2104–2132.

[32] Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, and Richard M Murray. 2015. Methodology and Tools for Next

Generation Cyber-Physical Systems: The iCyPhy Approach. In INCOSE International Symposium, Vol. 25. Wiley Online

Library, 235–249.

[33] Open Source Robotics Foundation (OSRF). 2018. Gazebo Simulator. (2018). https://www.openrobotics.org/

[34] Roberto Passerone, Imene Ben Hafaiedh, Susanne Graf, Albert Benveniste, Daniela Cancila, Arnaud Cuccuru, Sebastien

Gerard, Francois Terrier, Werner Damm, Alberto Ferrari, et al. 2009. Metamodels in Europe: Languages, tools, and

applications. IEEE Design & Test of Computers 26, 3 (2009), 38–53.
[35] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng.

2009. ROS: an open-source Robot Operating System. In IEEE International Conference on Robotics and Automation
(ICRA), Vol. 3. Kobe, Japan, 5.

[36] Robotis. 2017. Turtlebot3. (2017). http://www.robotis.us/turtlebot-3/

[37] Roni Rosner. 1991. Modular Synthesis of Reactive Systems. PhD thesis. The Weizmann Institute of Science (1991).
[38] S. Spellini, M. Lora, S. Chattopadhyay, and F. Fummi. 2018. Work-in-Progress: Introducing Assume-Guarantee

Contracts for Verifying Robotic Applications. In 2018 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS). 1–2.

[39] K. W. Wong and H. Kress-Gazit. 2017. From High-Level Task Specification to Robot Operating System (ROS) Imple-

mentation. In 2017 First IEEE International Conference on Robotic Computing (IRC). 188–195.

ACM Trans. Embedd. Comput. Syst., Vol. TBD, No. TBD, Article . Publication date: July 2019.

https://www.openrobotics.org/
http://www.robotis.us/turtlebot-3/

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 ag Contracts
	2.2 Linear Temporal Logic (LTL)
	2.3 General Reactivity (GR(1))
	2.4 The Robot Operating System (ROS)
	2.5 Case study: goods transportation system

	3 Overview
	4 Design problem specification
	4.1 System Contract (CS)
	4.2 Robot Contract (CR)
	4.3 Environment Contract (CE)
	4.4 Mission Contract (CM)

	5 Synthesis and validation
	5.1 Code generation and simulation
	5.2 Task allocation
	5.3 Simulation for system validation

	6 ROS Code Generation
	7 Experimental results
	7.1 Methodology evaluation
	7.2 Software deployment: Gazebo simulation

	8 Conclusions
	Acknowledgments
	References

