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Abstract—The Spectre vulnerability in modern processors has been widely reported. The key insight in this vulnerability is that
speculative execution in processors can be misused to access the secrets. Subsequently, even though the speculatively executed
instructions are squashed, the secret may linger in micro-architectural states such as cache, and can potentially be accessed by an
attacker via side channels. In this paper, we propose oo7, a static analysis approach that can mitigate Spectre attacks by detecting
potentially vulnerable code snippets in program binaries and protecting them against the attack by patching them. Our key contribution
is to balance the concerns of effectiveness, analysis time and run-time overheads. We employ control flow extraction, taint analysis,
and address analysis to detect tainted conditional branches and speculative memory accesses. oo7 can detect all fifteen purpose-built
Spectre-vulnerable code patterns [1], whereas Microsoft compiler with Spectre mitigation option can only detect two of them. We also
report the results of a large-scale study on applying oo7 to over 500 program binaries (average binary size 261 KB) from different
real-world projects. We protect programs against Spectre attack by selectively inserting fences only at vulnerable conditional branches
to prevent speculative execution. Our approach is experimentally observed to incur around 5.9% performance overheads on SPECint
benchmarks.
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1 INTRODUCTION

The Spectre [2] vulnerabilities in processors were revealed
in early 2018. The attacks that exploit these vulnerabilities
can potentially affect almost all modern processors irrespec-
tive of the vendor (Intel, AMD, ARM) and the computer
system (desktop, laptop, mobile) as long as the processor
performs speculative execution. Speculative execution [3]
is an indispensable micro-architectural optimizations for
performance enhancement, ubiquitous in almost all modern
processors except for the simplest micro-controllers. It is an
aggressive optimization where the instructions are executed
speculatively, but the temporary results created by the spec-
ulatively executed instructions are maintained in internal
micro-architectural states that cannot be accessed by soft-
ware. The results are committed to the programmer-visible
architectural states (registers and memory) only when the
speculation is found to be correct; otherwise, the internal
micro-architectural states are flushed. The most common
example is that of the conditional branches being predicted
in hardware and the instructions along the predicted branch
path are executed speculatively. Once the conditional branch
direction is resolved, the instructions along the speculative
path are squashed in case of wrong prediction.

Spectre attacks exploit speculation to deliberately tar-
get the execution of certain “transient” instructions. These
transient instructions are speculatively executed, and are
tricked to bring in secret data into the cache. These transient
instructions are subsequently squashed but the secret re-
mains, for example, in the cache. The attacker then carefully
accesses the secret content (that is supposed to be hidden
to the outside world) through different micro-architectural
covert channels, for example, cache side-channel [4]. The

website [5] of Spectre states that “As [Spectre] is not easy to
fix, it will haunt us for a long time.”

We focus on identifying program binaries that are vul-
nerable to Spectre attack and patch those binaries as a
mitigation technique with minimal performance overhead
. We present a comprehensive and scalable solution, called
oo7, based on static program analysis. Our solution employs
control flow extraction, taint analysis and address analysis
at the binary level. Moreover, our analysis needs to model the
transient instructions along the speculative path that has never
been required in traditional program analysis dealing with only
programmer visible execution. We have successfully introduced
accurate modeling of speculative execution in oo7.

Once vulnerable code snippets are detected by oo7, we
introduce fence instructions at selected program points to
prevent speculative execution and thereby protect the code
from Spectre attack. We have validated the functional cor-
rectness of our protection mechanism with all fifteen litmus
test codes from [1] on Intel Xeon platform. We note that
the current Spectre mitigation approach introduced by Mi-
crosoft C/C++ compiler [6], detects and protects only 2 out
of 15 litmus tests for Spectre vulnerabilities [1], whereas oo7
can detect all fifteen purpose-built Spectre-vulnerable code
patterns. We can launch successful Spectre attack to access
arbitrary locations in the victim code prior to the insertion
of fence insertions by oo7; but our attempts at Spectre
attacks fail after oo7-directed automated identification and
patching of the victim code. We experimentally measure
the performance overheads from our selective fence inser-
tion and find that the overheads are 5.9% on average on
SPECint benchmarks, thereby indicating the practicality of
our approach. We also report the results of a large-scale
experimental study on applying oo7 to over 500 program



binaries (average binary size 261 KB) from different real-
world projects.

We demonstrate that oo7 can be tuned to defend against
multiple different variants of Spectre attack (see TABLE 1)
that exploit vulnerabilities in the victim code through specu-
lative execution. We also note the limitations of our analysis-
based approach in defending against certain variants of
Spectre attacks. The variants that cannot be addressed by
oo7 have potential system-level solutions introduced by
different vendors with reasonably low overhead [7], [8].
The Spectre variants handled by oo7 with low performance
overhead are either not amenable to system-level defense
mechanisms, incur high performance overhead or escape
detection with existing approaches. Thus oo7 approach via
binary analysis is complementary to all other efforts in
mitigating the impact of security vulnerabilities due to
speculative execution.

Contributions
The contributions of this paper can be summarized as fol-
lows. First, we present a program analysis based approach
called oo7 for mitigating Spectre attacks. Our solution is
based on binary analysis and does not involve changes
to the underlying operating system and hardware. It uses
taint analysis, address analysis and speculation modeling to
check potentially vulnerable program binaries, and inserts
a small number of fences to mitigate the risks of Spectre
attack. Our approach is accurate in identifying all the litmus
tests for Spectre vulnerabilities [1], has low performance
overhead (average 5.9% overhead for SPECint benchmark
suite), and is scalable as evidenced by our analysis of over
500 large program binaries.

The main contribution of this work is in proposing and
demonstrating an efficient static analysis based approach
to accurately locate potential Spectre vulnerability in the
code and then use well-established repair strategy (fences)
to fix these selected vulnerable code fragments. We have
successfully introduced accurate modeling of speculative
execution in taint analysis to achieve this. The existing
solutions cannot identify the vulnerable code fragments and
hence repair all conditional branches to prevent speculative
execution altogether resulting in significant performance
overhead.

We show that our program analysis based approach can
detect and mitigate certain variants of Spectre vulnerabili-
ties in the application code, but not all (see TABLE 1). Thus
our work provides an understanding of the class of attacks
for which an analysis based mitigation may be suitable, and
for which a system level solution is suitable.

So far, no Spectre attack has been found in the wild.
We hope that the search for zero day Spectre attack in
the wild can be substantially accelerated via community
participation using our tool. Our tool is publicly available
from https://github.com/winter2020/oo7

2 SPECTRE VARIANTS

A number of Spectre vulnerabilities that all take advan-
tage of speculative execution in modern processors have
been disclosed recently. A summary of these variants appear

in TABLE 1. We classify the different vulnerabilities into
three categories:

(a) Vulnerability in victim code: Many Spectre attacks rely
on vulnerable code snippets inside the victim process and
trigger speculative execution of the code snippet to read
secret data by supplying carefully selected inputs to the
victim process. We detect these vulnerabilities in oo7 by
identifying the potentially susceptible code fragments via
binary analysis and then introducing fences at selected pro-
gram points to prevent speculative execution and thereby
harden the victim software against any such attacks.

(b) BTB or RSB poisoning: In these Spectre variants, the
attacker poisons the Branch Target Buffer (BTB) or Return
Stack Buffer (RSB) in the micro-architecture. The victim
process, while using the poisoned BTB or the RSB for
speculative execution, is then mislead to branch or return to
a gadget that leaks the sensitive data. Any indirect branch
or return instruction in the victim code is vulnerable to this
attack and hence we do not attempt to mitigate these attacks
in oo7. There exist potential solutions such as Retpoline [9]
or RSB refilling [10] for these vulnerabilities.

(c) Transient out-of order execution: These attacks can be
directly launched by a malicious code (malware) without
the requirement of any specific vulnerable code fragment or
pattern in the victim process. Since the objective of oo7 is
to detect and repair vulnerable code fragments in general
software, the detection of malware is orthogonal to the
objective of oo7. Thus, we do not consider the detection of
Spectre-style malicious code fragments in this work.

Unlike the first class of attacks where the defense mech-
anism is to harden the victim software, here oo7 performs
malware detection, i.e., it looks for malicious code patterns
within a binary.

2.1 Vulnerability in Victim Code
Spectre Variant 1: The following victim code frag-

ment exhibits Spectre vulnerability Variant 1.
void victim_function_v01(size_t x) {

if (x < array1_size) { //TB: Tainted Branch
y = array1[x]; //RS: Read Secret y
temp &= array2[y * 256]; //LS: Leak Secret y

}
}

In this example, the parameter x is under the attacker con-
trol in the sense that x can be influenced by external input.
Hence we consider the conditional branch as a Tainted
Branch (TB). The attacker first trains the branch predictor
to expect that the branch will be true (i.e., the array bound
check will pass). The attacker then invokes the code with an
input x value outside the bound of array1. The branch pre-
dictor expects the branch condition to be true and the CPU
speculatively reads y using malicious value x outside the
array bound. We call this action Read Secret (RS) because
y can be a potential secret that is not legitimately acces-
sible through malicious input without speculation. This is
followed by the CPU speculatively accessing array2 using
an address that is dependent on the secret y leading to cache
state change. We call this action Leak Secret (LS) because
the change in the cache state lingers even after the CPU
realizes that the branch prediction was wrong and squashes
the speculatively executed instructions. The attacker can
now launch cache side-channel attack [4] to detect this
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TABLE 1: The existing speculative execution based attacks and the ability of oo7 for handling them

Classification Exploit name Public vulnerability name oo7 capability

Vulnerability in victim code

Spectre variant 1 Bounds Check Bypass (BCB) Detect and patch vulnerable victim code
Spectre variant 1.1 Bounds Check Bypass Store (BCBS) Detect and patch vulnerable victim code
Spectre variant 1.2 Read-only protection bypass (RPB) Detect and patch vulnerable victim code
Spectre-NG variant 4 Speculative Store Bypass (SSB) Potentially possible but not handled yet by oo7

BTB or RSB poisoning Spectre variant 2 Branch Target Injection (BTJ) -
Spectre RSB Return Mispredict -

change in cache state and discover the secret y. Specifically,
for Prime+Probe side-channel attack, the attacker ensures
that array2 was not cached before the memory access LS
by evicting the cache line through priming the cache set.
Then the attacker triggers LS action to leak the secret to
the cache side channel. Finally, the attacker performs the
probe phase to get the timing of the memory accesses for
array2 and discovers the value of y. The multiplier 256
in array2[y*256] guarantees that different values of y
lead to different cache line access, and normally, this value
is greater than or equal to the cache line size.

Spectre Variant 1.1: The idea behind the Spectre Vari-
ant 1.1, also known as Bounds Check Bypass Store (BCBS),
is to bypass bound check and execute a store instruction
speculatively [11]. In the following example, x can poten-
tially be under attacker control, hence, the conditional x <
array1_size is a Tainted Branch (TB). However, unlike the
Read Secret (RS) in Spectre Variant 1, this variant uses a Spec-
ulative Write (SW) to modify arbitrary memory location.
For instance, the example modifies an arbitrary memory
location pointed to by array1[x] when the conditional
branch is mispredicted for a value x ≥ array1 size. Al-
though this speculative store is squashed upon resolving the
branch outcome, it can leak secret values from the program.
For instance, array1[x] may overwrite the return address
and transfer control to a gadget that leaks arbitrary secret
value via a side-channel (similar to LS in Spectre Variant 1).
void victim_function_v1.1(size_t x, y) {
if (x < array1_size) { //TB: Tainted Branch
array1[x] = y; //SW: speculative Write

}
}

Spectre Variant v1.2: This vulnerability bypasses the
protection enforced by read-only memory, e.g., code point-
ers [11]. Consider the victim_function_v1.1 where the
valuation of the conditional captures whether x points out-
side the read-only memory. If x is under attacker control,
then the write to a read-only memory can be speculatively
executed and modify crucial data structures such as code
pointers in the cache. As a result, like Spectre Variant 1.1,
the program control may transfer to arbitrary location to
execute attacker chosen code. Like Spectre Variant 1.1, this
variant also requires the presence of TB and SW.

Spectre-NG Variant 4: Spectre Variant 4, also called
Speculative Store Bypass (SSB), is based on the fact that the
processor may execute a load instruction speculatively even
when a prior store instruction in program order is pending
because the address for the store is not yet known. Thus a
speculative load may read a stale value that should have
been modified by a prior store instruction if they access
the same memory address; in that case, the speculative load
should be squashed after the store address is known.

oo7 can detect and patch victim binary code with poten-
tial Spectre variant 1, 1.1. and 1.2 vulnerabilities. oo7 can
potentially handle Spectre variant 4 by identifying the vul-
nerable code pattern but requires precise address analysis
(that the load and the store are accessing the same memory
address) that is not supported yet in our framework.

2.2 BTB or RSB poisoning 1

Spectre Variant 2: Most architectures support indi-
rect branches in the form of “jmp [r1]”. For such jump
instructions, the program control is diverted to a location
stored in the register r1. For improving program perfor-
mance, the processor leverage Branch Target Buffer (BTB) to
store the frequently used target locations of branch instruc-
tions, including indirect branches. An attacker can poison
the Branch Target Buffer (BTB) to include its preferred target
locations. When the victim executes an indirect branch in-
struction, it consults this poisoned BTB and the speculative
execution can potentially be misled to a target location
chosen by the attacker. Any indirect branch is vulnerable
to this attack. The indirect branches can be easily identified
by static analysis and mitigated by Retpoline [9] approach.

SpectreRSB: SpectreRSB vulnerability [10] is similar
to the Spectre Variant 2. Instead of poisoning the BTB
with attacker chosen location, the SpectreRSB vulnerability
manipulates the return stack buffer (RSB), which is used by
the processor to predict the return address. As a result of
a successful exploit, a function may return to an attacker
controlled location due to the mis-prediction of the return
address inflicted by an attacker. Subsequently, the program
may execute arbitrary code in the attacker-controlled loca-
tion until the return address is finally resolved. All return
instructions are potentially vulnerable to such exploit. RSB
refilling is a potential approach to mitigate SpectreRSB [10].

Our proposed oo7 approach focuses on identifying vul-
nerable code fragments (e.g. attacker controlled branch in-
structions) that can be fixed by the insertion of memory
fence instructions. This is to prevent speculative execution
with the objective to prevent the attack. Since Spectre Vari-
ant 2 and Spectre RSB need different solutions than patching
fences, our oo7 approach does not target fixing these subset
of Spectre vulnerabilities.

3 RELATED WORK

3.1 Mitigation in the future processors

Intel has reportedly developed hardware fixes [12] in the
form of improved process and privilege-level separation for

1. Even though these are considered as Spectre variants, they are very
different from the vulnerability in victim code.
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only Spectre Variant 2. Three capabilities: Indirect Branch
Restricted Speculation, Single Thread Indirect Branch Pre-
dictors, Indirect Branche Predictor Barrier will be supported
in future products to mitigate the branch target injection
attack. Vladimir et al. [13] proposed DAWG, which is a
generic mechanism to isolate the cache side-channel by
partitioning the cache ways to limit the data leakage across
different secure domains. InvisiSpec [14] is another new
architecture design to defend against Spectre-like attacks.
InvisiSpec uses a Speculative Buffer (SB) to temporarily hold
the data during speculative execution instead of directly
loading the data to the cache. The data in SB will be finally
visible to the cache hierarchy when the speculative load is
safe to be committed. InvisiSpec slows down the execution
by 21%. Obviously, both DAWG and InvisiSpec cannot be
used in the legacy systems.

3.2 Mitigation in Legacy systems
Several approaches have been applied to mitigate Spectre
attacks in legacy system. Microsoft Visual C/C++ com-
piler [15] provides a compiling option Qspectre to enable
the mitigation of Spectre Variant 1 by inserting lfence
serializing instruction in the potential vulnerable code lo-
cations. However, the mitigation technique can detect only
2 out of the 15 litmus tests proposed by Paul Kocher [1].
Speculative Load hardening [16] mitigates Spectre Variant
1 by inserting hardening instruction sequences that zeros
out the pointers that have data dependency with the branch
conditions. As it inserts hardening instructions at all condi-
tional branches, the technique involves 36.4% performance
overhead. Oleksenko et al. [17] propose the introduction of
artificial data dependencies to protect from Spectre attacks.
This solution is coarse-grained and will effectively disable
speculation between any conditional branch and subsequent
load instructions. Moreover, the authors explicitly acknowl-
edge the absence of precise taint tracking and leaves it to the
developer to examine whether the potential vulnerable loca-
tions reported by the tool can be controlled by the attacker.
Microsoft has developed Windows patches [18] through
CPU microcode update for Spectre Variant 2 (but not for
Variant 1). Moreover, this update has been reported to
cause performance overhead (specially on older platforms)
and system instability. Google Chrome has developed “Site
isolation” mechanism that sandboxes the memory pages
associated with each website to a separate process [19] at the
cost of 10–13% memory overhead. In contrast, oo7 does not
require either operating system or processor changes. Retpo-
line [20] has been proposed for the gcc and LLVM compiler
to mitigate Spectre version 2. Retpoline replaces vulnerable
indirect branches with non-vulnerable instruction sequence
that forces the CPU to jump to the real destination instead of
the predicted target suggested by the BTB. Recently [21] has
proposed the use of symbolic execution and SMT solver for
detecting Spectre Variant 1. This is a higher overhead and
less scalable approach than ours. Moreover, no mitigation is
proposed, as we do by inserting fence instructions.

Compared with all existing approaches for mitigation in
the legacy system, oo7 introduces the lowest performance
overhead (around 5.9% on SPECint) as oo7 only hardens
a small number of branches in repairing Spectre-like vul-
nerabilities. Moreover, oo7 is a flexible approach that can

be tuned to defend against different variants of Spectre (as
shown in this work) as well as detect malicious code frag-
ments for Spectre-NG variant 3a and Spectre-NG LazyFP.

4 BRIEF OVERVIEW OF OUR APPROACH

Our approach to identify vulnerable code fragments for
Spectre variants 1, 1.1, 1.2 or malicious code fragments for
Spectre-NG variant 3a and Spectre-NG LazyFP proceeds via
static taint analysis of program binaries. All input sources
including files are initially marked as tainted. Taint propa-
gation across instructions proceeds by usual computation
of forward data and control dependencies. Thus, for data
dependency based taint propagation, if any of the operands
of an instruction is tainted, the result of the instruction is
tainted. For control dependency based taint propagation
(also called as implicit flows in taint analysis literature),
the decision taken by a branch, and hence the instructions
conditionally executed owing to the decision are tainted;
the identifiers (memory/registers) written by such tainted
instructions are also treated as tainted. Details of the formal
treatment of taint propagation policies appear in Section 5.

One of the novel aspects of our analysis is in con-
sidering speculative execution paths while capturing taint
propagation. Conceptually this is handled by considering
both possibilities in a branch b, and checking which in-
structions fall inside the speculative execution window of
a branch meaning they can be speculatively executed prior
to a branch’s outcome being known. There is no need to
explicitly maintain the speculatively executed paths as a
separate set of bounded length paths, as long as we consider
both directions of a branch in our analysis. An instruction
i can be speculatively executed pending the outcome of a
branch b, only if the distance between i and b is less than the
speculative execution window set by the processor.

To check Spectre attack scenarios such as Spectre variant
1, we then need to look for a tainted branch instruction
(TB), a load-like instruction which reads secret (RS) with
the memory address read by RS being tainted, and RS being
potentially speculatively executed owing to TB being un-
resolved. Note that once the occurrence of TB and RS are
established, the secret data has already been speculatively
accessed and can be potentially ex-filtrated via various side
channels. To detect an instance of potential Spectre variant 1
vulnerability that is consummated via a cache side-channel
attack, we need to also locate an instruction LS to leak
the secret, where the memory address accessed by LS is
dependent on the output of RS. Once again, the detailed
treatment of the condition for checking Spectre variant is
deferred to the next section.

For forward taint propagation along all possible paths,
we use the Binary analysis Platform (BAP) tool [22]. As
BAP is based on conservative analysis, it can report false
positives. BAP leverages a set of techniques to construct
the control flow graph for a binary. As is well known in
binary analysis literature, accurate construction of control
flow graph is a notoriously difficult problem owing to
indirect branches. Tools like BAP use forced execution [23]
and other techniques to construct a control flow graph.
Forced execution (i.e., execution of both branch directions)
is leveraged to construct all possible control flow edges of
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a branch. As the control flow paths are constructed, taint
is propagated along the paths as per the taint sources and
taint policies set in our approach (please see next section for
details).

On the challenges of binary analysis: During the
translation of source code to the binary representation,
optimizing compilers usually forfeit such properties as type
preservation and control flow integrity, thus not only open-
ing a possibility to a wide range of security vulnerabilities,
such as buffer-overflow and control-flow hijacking but also
complicating the task of reverse engineering and making
sound static analysis of binary code merely impossible. The
problem of control flow reconstruction is especially hard
due to indirect branches where the branch targets are dif-
ficult to determine at compile-time. Therefore, any analysis
of the binary code is doomed to be an approximation and a
lot of care [24] should be taken to preserve the correctness of
any analysis, and especially if that analysis involves a fixed
point computation on the control flow graph, such as data
flow analysis. In oo7 we leverage Primus, a Microexecution
framework that tries to preserve the program behavior of
the binary, while extracting control flow graph from the
binary.

On false negatives: Our taint propagation policies
and rules (see Section 5) avoid under-tainting, thus, in
their own merit, they do not introduce any false negatives.
Nonetheless, as our approach is based on the control flow
graph constructed by the underlying tools, we cannot guar-
antee zero false negatives, if the control flow graph con-
structed by BAP does not capture all possible flows. In other
words, the completeness of our taint analysis is modulo
the completeness of the control flow graph extraction in
BAP. Also, in BAP, loops are unrolled to track the program
dependencies across loop iterations and might be a source
of false negatives in BAP analysis if the unrolling depth is
low. However, with correctly provided loop bounds, this
problem can be alleviated.

On taint analysis and symbolic execution: In iden-
tifying vulnerable code susceptible to many Spectre attack
variants, the key is to find attacker controlled branches, and
memory locations that can be speculatively read/written
pending outcome of attacker controlled branches. For this
reason, we have employed static taint analysis and con-
sidered read/write instructions that may be speculatively
executed within the speculative execution window. It is pos-
sible to take a different, albeit higher-overhead approach.
For example, instead of capturing the taint propagation
along paths, one may summarize the execution behavior
in a more fine grained fashion using symbolic execution,
where the memory locations accessed by a read/write is
captured as symbolic expressions over (tainted) input, in-
stead of simply maintaining that the location accessed by
a read/write is tainted. This leads to additional overhead
of constraint accumulation and solving. In this way, higher
overhead detection approaches can be constructed such as
the recent work of [21] that handles Spectre variant 1 and
potentially variant 1.1. This work [21] only reports results
for different variants of the Spectre litmus tests with few
lines of code. As is shown by our experiments, even a
low overhead approach like ours consumes high analysis
times on a few real-life programs from SPECint and OSS-

Fuzz. Hence we feel higher overhead approaches are not
scalable enough for possible real-life usage. Furthermore,
for any Spectre attack detection approach, it is not enough
to detect leaks, the analysis needs to suggest a small number
of fences to plug the leak. This is done in our approach.
On the other hand, symbolic approaches like [21] simply
detect leaks without suggesting concrete fence instructions
to harden Spectre vulnerable code.

5 SPECTRE VULNERABILITY DETECTION

To describe our analysis, we use the notations in TABLE 2.
We say that an instruction inst is tainted, i.e., τ(inst) is
true, if and only if the instruction operates on some tainted
operands. We first discuss the checker for Spectre Variant 1.

5.1 Detecting Spectre Variant 1

An important concept that we need for our analysis is
the Speculative Execution Window, abbreviated SEW . We
posit that information about SEW needs to be exposed by
processor designers for the sake of detecting Spectre attacks.
By default, it seems that SEW can be set to the size of
the re-order buffer in an out-of-order processor. However,
if the size of the re-order buffer is n, it is not sufficient
to have a lookahead of n instructions from a tainted con-
ditional branch TB, in our search for memory access RS,
in order to detect Spectre attacks. For processor execution,
each instruction is decoded to a sequence of micro-ops.
Each micro-op will occupy one slot of the re-order buffer
during execution. However, micro-ops can be fused [25]
both within an instruction as well as across instruction.
When micro-ops are fused across instructions (also called
macro-fusion), the micro-ops of at most two instructions
can be fused into a single micro-op. For this reason, if the
size of the re-order buffer is n, we conservatively set the
Speculative Execution Window to 2n in our analysis, so as
to avoid any false negatives in our analysis.

Φspectre ≡ br(TB) ∧ load(RS) ∧mem(LS)∧
τ(TB) ∧ τ(addr(RS)) ∧ τ(addr(LS))∧

Dep(RS , addr(LS)) ∧ (∆(TB,RS) ≤ SEW ) ∧ (∆(TB,LS) ≤ SEW )

(1)

We now elaborate the checking condition for detecting
Spectre. oo7 locates TB , RS and LS by checking Φspectre.
Intuitively, the first two lines of Φspectre capture the pres-
ence of tainted branch instructions TB and tainted memory-
access instructions RS and LS . The last line shows that
RS and LS are located within the speculation window of
TB , and they are data-dependent. Φspectre reflects Spectre
variant 1. Later we show that Φspectre can easily be modified
to detect other Spectre variants, for example, variant 1.1.

5.2 Taint Analysis

We use taint analysis [22] to determine whether conditional
branch instructions (e.g., TB ) and the memory-access in-
structions (e.g., RS and LS ) can be controlled via untrusted
inputs. In the following, we outline the taint propagation
policies and rules used to detect Spectre vulnerabilities. To
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TABLE 2: Symbols used in describing oo7

Symbol Interpretation
br(inst) inst is a branch instruction
time(inst) inst is an timing instruction, e.g.,

rdtsc
mem(inst) inst is a memory access instruction
load(inst) inst is a load instruction
addr(inst) the data memory address accessed

by a memory-related instruction
inst

reg(inst) set of registers accessed by instruc-
tion inst

set(addr) cache set accessed by memory ad-
dress addr

τ(inst) instruction inst is tainted
τ(x) instruction operand x is tainted

where x could be a register, mem-
ory location or the value located in
a memory location

∆(inst1, inst2) minimum no. of instructions exe-
cuted to reach inst2 from inst1.
If inst2 is unreachable from inst1,
then ∆(inst1, inst2) = ∞.

Dep(inst, x) x is data-dependent on instruction
inst

CDep(inst) set of instructions control-
dependent on inst

val(x) value located at memory address x
SEW Speculative Execution Window =

2n, where n is the size of re-order
buffer in the processor

illustrate our taint propagation policy, we use the following
instructions.

• z = x op y : Binary operation on register x and
register y. The operation op can be either arithmetic
operation (e.g., addition or subtraction) or a logical
operation (e.g., a logical comparison).

• y = op x : Unary operation on register x. The
operation op can either be arithmetic (e.g., unary
minus) or a logical one (e.g., logical negation).

• y = load(x) : Loads value from memory address x
to register y.

• y = store(x) : Stores value from register x to
memory address y.

• branch(L, x) : Branch to label L if the logical formula
x is true.

Taint Propagation Policies:
Initially, all variables that read value from un-trusted
sources (e.g., files, network) are tainted. The taints from
these variables are then propagated via a well-defined set
of rules shown in the following; for each rule, the premises
appear on the top of the horizontal bar and the conclusions
appear below the horizontal bar. Our taint propagation
tracks both data dependencies and control dependencies
(also known as implicit flows in taint analysis). Typically
such implicit flows come in the form of the tainted data en-
abling or disabling a branch condition b, and the outcome of
b affecting the computation of a variable that would not be
tainted otherwise purely by tracking of data dependencies.

Taint Propagation Rules

z = x op y τ(x) ∨ τ(y)
[Binary operation]

τ(z) ∧ τ(inst)

y = op x τ(x)
[Unary operation]

τ(y) ∧ τ(inst)

y = load(x) τ (val(x))
[Memory load]

τ(y) ∧ τ(inst)

y = load(x) τ(x)
[Memory load]

τ(y) ∧ τ(inst)

y = store(x) τ(x)
[Memory store]

τ (val(y)) ∧ τ(inst)

br(inst) τ(x)
[branch(L, x)]

τ(inst)

τ(x) Tinst = CDep(inst)
[branch(L, x)]

∀t ∈ Tinst . τ(t) ∧ ∀w ∈Write(Tinst). τ(w)

Taint Propagation Rules:
Based on the discussions in the preceding paragraphs, the
taint propagation rules are shown. In the taint propagation
rules, we assume that inst captures the current instruc-
tion for which the taint propagation is being computed.
Write(Tinst) captures the set of operands written by a set
of instructions Tinst . In the following, we discuss a few
salient features of our taint propagation rules:
Computation: For instructions involving computations
(e.g., addition, subtraction and multiplication), we consider
them tainted if and only if they operate on tainted operands.
Moreover, the result computed by such tainted instructions
are also marked tainted. This is because the outcome of these
instructions can be controlled by an attacker if they operate
on tainted operands. As oo7 operates at the binary code
level, most computations can be captured via either binary
or unary operations, as shown in our taint propagation
rules.
Memory Load: Accounting taint propagation through mem-
ory load instruction is crucial for the effectiveness of oo7. To
this end, we need to consider two different scenarios: (i)
taint propagation through the value being loaded, and (ii)
taint propagation through the accessed memory address for
the load. In both cases, the loaded register can be controlled
by an attacker, as either the accessed address or the value
located therein can be manipulated to load an attacker
controlled value. To model these taint propagation rules, we
need to accurately track the tainted status of the accessed
memory regions and this, in turn, involves a conservative
analysis of possible aliases in the program.
Memory Store: We note that a tainted value can be stored
in an arbitrary memory address y. For such an operation,
we conclude that the value located in address y can be
tainted, as captured by the predicate τ(val(y)). Such a store
operation, however, does not conclude anything about τ(y),
as the store operation “y = store(x)” cannot control the
address y via the tainted operand x.
Conditional Branch: Conditional branches are involved in
accounting for both the explicit and implicit (i.e., taints
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through control dependencies) propagation of taints. For
example, the outcome of a conditional branch can be con-
trolled by an attacker (i.e., tainted) if the variable x in
branch(L, x) is tainted. Moreover, we discover the set of
instructions Tinst that are control dependent on a branch
instruction. If the branch is tainted, then the value of
any variable written by instructions in Tinst is indirectly
(i.e., implicitly) controlled by the attacker. Consequently,
we mark all such values tainted, as captured by our taint
propagation rules.

For the sake of brevity, the aforementioned taint prop-
agation rules are described based on a simplified syntax of
low-level binary code. The taint propagation rules avoid any
under-tainting. However, these taint propagation rules may
lead to over-tainting as described in the following.

Sources of Over-tainting: Over-tainting in oo7 may lead
to some instruction inst or data element (i.e., a value or
an address) x to be tainted (i.e., τ(inst) or τ(x) holds,
respectively) even in the absence of any feasible execution
where τ(inst) or τ(x) is true. Such a phenomenon may
occur due to the following scenarios:

1) Conservative extraction of CFG: It is often chal-
lenging to extract an accurate control flow graph
from the binary code. This is primarily due to the
difficulty in precisely identifying the branch targets,
such as the targets of indirect branches and calls.
This, in turn, leads to conservative approximation
of control flow edges in the extracted CFG. As our
taint propagation rules walk the CFG and leverage
control dependency graph (CDG) to compute im-
plicit taint propagation, the method might lead to
over-tainting due to the additional edges in the CFG
and CDG.

2) Conservative alias analysis: As our taint propaga-
tion rules involve taint tracking through both the
memory addresses and the values in these memory
addresses, oo7 may over-taint due to a conservative
alias analysis. For example, two memory addresses
x and y might be considered aliases even if x and
y do not point to the same memory address in any
feasible execution. Nonetheless, our taint propaga-
tion rules will conservatively assume that all values
in memory locations pointed by y are tainted, given
that the values in memory locations pointed by x
can be attacker controlled.

3) Approximate memory model: An accurate taint
tracking requires the tainted status of each possible
memory address that can be accessed by a program.
This might often be expensive and the static analysis
may resort to conservative approximation for scala-
bility. For instance, even if a particular data element
in an aggregate (e.g., a structure) is tainted, to speed
up the analysis, oo7 might conservatively assume
values in all the memory addresses occupied by the
aggregate data structure to be tainted.

4) Non-analyzable function calls: The return values
from non-analyzable function calls are conserva-
tively considered to be tainted. These function calls
might be libraries or other third-party software that
cannot be analyzed.

Properties: In summary, oo7 guarantees the following cru-
cial property via its taint propagation rules:
Property 1. For a given program P , consider an arbitrary register

or memory location xP that can be controlled by an attacker.
Moreover, let the outcome of instruction instP may also be
controlled by an attacker. The taint propagation rules of oo7
guarantee that τ(xP ) and τ(instP ) hold.

We consider all inputs arriving from external sources
(e.g., network, files, command lines) are tainted initially.
These are called taint sources. Our taint propagation rules
then avoid any under-tainting, by considering the forward
transitive closure of all control and data dependencies from
the taint sources.

5.3 Detecting other Spectre variants
In the preceding section, we discussed the detection of
Spectre variant 1 [2]. Note that Spectre variant 1 can leak
the secret data in other ways instead of performing the LS
action. Such variants can be detected via simple manipula-
tion of Φspectre:

Φ
weak
spectre ≡ br(TB) ∧ load(RS) ∧ τ(TB) ∧ τ(addr(RS))∧

(∆(TB,RS) ≤ SEW )
(2)

Our oo7 approach can be fine tuned to detect other
Spectre variants. For instance, consider Spectre Variant 1.1
(cf. TABLE 1). Such a variant can easily be detected by the
following condition:

Φ
v1.1
spectre ≡ br(TB) ∧ store(SW ) ∧ τ(TB) ∧ τ(addr(SW ))∧

(∆(TB,SW ) ≤ SEW )
(3)

where store(SW ) captures the presence of a speculative
write instruction, as needed to exploit Spectre Variant 1.1.

Spectre Variant 1.2 (read-only protection bypass) needs
exactly the same condition Φv1.1

spectre to be satisfied, except
that the speculative write (SW ) happens to be in read-only
memory. For the rest of the paper, we do not distinguish
between Spectre Variant 1.1 and 1.2, as oo7 uses the same
condition to detect both the variants.

To detect Spectre Variant 4, we need to check whether
a load instruction (RS ) follows a store (WR) to the same
address, yet RS can speculatively load a value not yet writ-
ten by WR. Checking for this condition requires accurate
address analysis, more accurate than what we can currently
support. We are currently working in this direction.

5.4 Code repair
Our repair strategy is based on systematically inserting
memory fences after each tainted branch (i.e., TB ) in
vulnerable code fragments for Spectre variants 1, 1.1 and
1.2. The original article describing Spectre attacks [2] sug-
gests insertion of memory fences following each conditional
branch. However, using our analysis, we can obtain the
exact sequence 〈TB ,RS ,LS 〉 (for Variant 1) or the sequence
〈TB ,SW 〉 (for Variant 1.1 and Variant 1.2) vulnerable to
Spectre attacks. As a result, we can accurately locate the
program point where the memory fence should be inserted.
In particular, we insert memory fences following TB in-
struction and immediately before the execution of RS and
SW , respectively, for Spectre Variant 1 and Variant 1.1,
1.2. This prevents execution from loading the secret value
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Fig. 1: Overview of oo7 framework. The components in grey represent the core modules of oo7: vulnerability detection
module and code repair module.

into the cache (for Variant 1) and writing to an attacker-
controlled location (for Variant 1.1, 1.2) speculatively.

Nevertheless, inserting memory fences may affect the
overall program performance. oo7 inserts memory fences
only for the branches identified as TB (for variants 1, 1.1
and 1.2). This has less overhead than inserting fences after
each conditional branch, or after each tainted conditional
branch. We show empirically that such a strategy has accept-
able performance overheads of average 5.9% for SPECint
benchmarks. When selecting the fence instruction, we ob-
served in experiments that cpuid [26], lfence and mfence
are able to prevent Spectre attacks (while sfence cannot).
However, if cpuid is used for repairing Spectre vulnera-
bility in the assembly code, then it modifies the general-
purpose registers. Specifically, the return value of cpuid
is stored in registers such as EAX, EBX, ECX or EDX. Thus,
additional instructions are required to store and restore the
impacted register(s) before and after invoking cpuid, which
introduces additional performance overhead. On the other
hand, lfence is officially confirmed and recommended by
Intel [8] to mitigate Spectre attack. Therefore, in this work,
we use only the lfence instruction to repair vulnerable
code.

6 IMPLEMENTATION

Fig. 1 provides an overview of oo7 tool. oo7 contains two
main modules: a vulnerability detection module for detect-
ing the Spectre vulnerabilities, and a code repair module to
fix the Spectre vulnerabilities.

Vulnerability detection module. The vulnerability de-
tection module of oo7 is supported by three major tech-
nologies: forced execution, taint analysis and vulnerability
checker.

Forced execution [23], [27], as its name suggests, forces
the program to execute along all possible paths by pre-
dicting the branch outcomes to both true and false. The
capability of forced execution is in exploring the different
execution paths and simulating the execution to expose
the behavior of a given program. Forced execution satisfies

the semantics of speculative execution, because speculative
execution may lead the processor to execute the instructions
on both outcomes of a branch when the branch prediction
is wrong. Forced execution engine explores all possible
paths by maintaining a pool of execution paths that may
be explored in future by switching more predicates. A
predicate is represented as a tuple (Isrc, Idst) where Isrc
and Idst denote the source instruction and forced execution
target (the branch outcomes), respectively. New predicates
are added when a branch instruction is evaluated. As forced
execution is a well-known technique, for details of forced
execution technique, we refer the readers to relevant previ-
ous works [23], [27], [28], [29].

Taint analysis performed by the taint propagation engine
tracks the data and instruction that can be controlled by
the attacker. The taint analysis works along with the forced
execution engine. When forced execution engine evaluates
a call instruction, it checks if the destination of the call
is in the taint source list. The taint source list is a set
of APIs which can import the data to the program from
the un-trusted channels such as network, user input, file
reader. In the implementation, we consider all interfaces
(e.g. fgetc(), recv()) in the commonly used libraries
(e.g. glibc) which import data from outside of program
as the taint sources. If the destination of a call instruction
executed by the forced execution engine is in the taint source
list, the taint propagation engine marks the imported data as
a tainted object. After the tainted object is imported from the
taint source, the taint engine propagates this tainted object
during the execution by applying the taint propagation rules
explained in section 5.2.

Vulnerability checker detects whether the current state
satisfies the conditions of arbitrary vulnerabilities presented
in section 5.3. The vulnerability checker works after the taint
engine taints an instruction. When the taint engine taints
a new conditional branch instruction, the vulnerability
checker records this tainted branch and sets up a Speculative
Execution Windows (SEW) for it. SEW is decremented by
one at the end of the evaluation of each instruction along the
execution path. The vulnerability checker reviews whether
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a memory instruction satisfies the condition for RS or LS
before the SEW is decremented to zero. The vulnerability
checker records down TB , RS and LS as a potentially
vulnerable code fragment for the final report.

We adopt BAP [22] as our primary analysis platform.
BAP provides a toolkit for implementing automated binary
analysis and it supports multiple architectures such as x86,
x86-64, ARM, PowerPC, and MIPS. BAP lifts binary code
into RISC-like intermediate representation (IR) named BAP
Instruction Language (BIL). Program analysis is performed
using the BIL representation and it is architecture inde-
pendent. BAP contains a microexecution framework named
Primus performs forced execution and taint analysis. BAP
provides several interfaces to export crucial information to
other analysis modules during the analysis. We implement
the vulnerability checker bases on these interfaces.

Vulnerability repair module. Once a vulnerable code
fragment is detected in the binary, we locate the corre-
sponding assembly code for repair. To this end, we first
mark the address(es) of Spectre vulnerable code, as obtained
during the detection stage of oo7. Concurrently, we obtain
the disassembled code from the binary and the assembly
code from the source (via “-S” option in gcc compiler). As
most optimizations are employed during the compilation
stage rather than assembler stage, there is no substantial
difference between the assembly code and the respective
disassembled code. This allows us to easily map the dis-
assembled code back to the assembly code and locate the
instructions vulnerable to Spectre attack.

Finally, our repair module directly modifies the assembly
code by inserting memory fence instructions in the appro-
priate location (e.g., inserting lfence before RS or SW for
mitigating Spectre Variants).

7 EVALUATION SETUP

In this section, we present the details of our evaluation
setup. We first describe the programs used in our experi-
ment. Then we introduce the platform used for the evalua-
tion.

7.1 Subject Programs
We conduct evaluation on three sets of subject programs.

• We first apply oo7 on 15 code examples purpose-
built to demonstrate different variations of Spectre
vulnerabilities from Paul Kocher’s blog post [1]. We
call these Litmus Tests.

• Next, we conduct evaluation on SPECint bench-
marks, which have been well-studied by the com-
puter architecture community. These are detailed in
TABLE 4. We concentrate on complete analysis of
the SPECint (integer) benchmark suite because it
includes more control-intensive code compared to
SPECfp (floating point) and Spectre exploits vulnera-
bility through conditional branches. SPECint bench-
mark suite contains 18.31% branches in the instruc-
tion mix compared to only 5.75% for SPECfp [30].

• Last but not the least, we conduct evaluation with a
large number of software projects from Google OSS-
Fuzz repository [31] and GitHub. The program bina-
ries in these project include the main application and

miscellaneous support tools. TABLE 6 summarizes
the characteristics of these projects consisting of a
total of 507 program binaries with size ranging from
8.5KB to 21.8MB (average size 261.4KB).

7.2 Evaluation Platform
We conduct experimental evaluation on Intel Xeon Gold
6126 [32] running at 2.6GHz with 192GB memory. The
underlying micro-architecture is Skylake with 224-entry re-
order buffer (ROB) [33]. Due to the potential expansion of
instructions into micro-operations and subsequent fusion in
x86 micro-architectures (Section 5), we conservatively set
the speculative window to twice the effective ROB size,
i.e., SEW = 448. Intel Xeon Gold 6126 is equipped with
12 cores and 19.25MB non-inclusive shared last-level cache
(LLC) with 64 byte line size. The LLC cache miss penalty
is about 200 cycles. Non-inclusive LLC is more secure
than the inclusive cache and can thwart certain LLC based
side-channel attacks (e.g., Flush+Flush, Prime+Probe).
However, it is still vulnerable to Flush+Reload attack.
Thus the Spectre and Meltdown attacks can potentially be
carried out in this platform.

8 EVALUATION RESULTS

Our evaluation investigates three different aspects:

1) Effectiveness: How effective is oo7 in detecting Spec-
tre vulnerabilities in program binaries?

2) Analysis Time: How long is oo7 analysis time to
detect Spectre vulnerabilities?

3) Performance Overhead: How much is the performance
overhead introduced by oo7 to protect vulnerable
code fragments?

8.1 Evaluation on Litmus Tests
oo7 can correctly identify all code snippets purpose-built
with different variations of Spectre vulnerabilities [1] as
potential victim code fragments. 14 code examples are iden-
tified with taint propagation only along data dependencies.
The remaining code example is detected with taint propaga-
tion along program (both control and data) dependencies.

The latest Microsoft Visual C++ compiler [6] has in-
tegrated /Qspectre switch for mitigating a limited set
of potentially vulnerable code patterns related to Spectre
vulnerabilities. Specifically, after compiling an application
with /Qspectre enabled, Visual C++ compiler attempts
to insert an lfence instruction upon detecting Spectre
code patterns. Paul Kocher [1] has evaluated the Microsoft
compiler using 15 litmus tests. The blog post [1] mentions
that only two of the micro-benchmarks are identified and
protected by Visual C++ compiler. In contrast, oo7 can
correctly detect all 15 code examples as potential victims.

The example (v13 [1]) that requires taint propagation
along both control and data dependencies is given below.
__inline int is_x_safe(size_t x) {

if (x < array1_size) return 1; else return 0;
}
void victim_function_v13(size_t x) {

if (is_x_safe(x)) temp &= array2[array1[x]*512];
}
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TABLE 3: bzip2 randomly inserted with σ vulnerable func-
tions. VF source: number of functions inserted in the source
code; VF oo7: number of vulnerable functions identified
by oo7. Analysis time: Minutes spent by oo7 to complete
analysis.

σ 10% 20% 30% 40% 50% 60% 70% 80%
VF source 12 26 45 70 105 158 245 420
VF oo7 12 26 45 70 105 158 245 420
Analysis
time
(Minutes)

25.18 26.15 28.43 30.5 32.03 32.6 33.53 43.6

The branch in the victim function
victim_function_v13 is tainted as the return value
of is_x_safe(x) is controlled via untrusted input x.
However, the return value of is_x_safe(x) is control-
dependent and not data-dependent on x. Thus oo7 can
detect this code pattern as potential vulnerability only if
both data- and control-dependent taint propagation are
applied.

8.2 Validation of Patching
We design an attacker process to steal secrets via cache side-
channel from the victim process (litmus test example [1])
once the secret data is brought into the cache through
Spectre attack. We successfully extracted data from arbitrary
memory locations in the victim process on our platform for
10 out of 15 litmus tests. We then allow oo7 to automatically
insert lfence instructions at appropriate program locations
to prevent speculation in vulnerable code fragments. We
verify that the attacker process can no longer extract data
from the victim processes running with the oo7 fix for all
10 litmus tests even though we had successfully extracted
secret data from all of them before patching.

For further evaluating the effectiveness of oo7, we de-
sign an experiment to check whether oo7 can detect all
potentially vulnerable code. We select the program bzip2
from SPECint CPU benchmark suite [34], and insert several
vulnerable functions to the source code of bzip2. The
vulnerable functions are randomly chosen from the Spectre
v1 variants suggested by Kocher [1]. Assume that bzip2
has P functions, we use σ to represent the ratio of inserted
vulnerable functions, where σ = N /(N + P) and N is the
number of inserted vulnerable functions. We use different
values for σ to evaluate the effectiveness of oo7. The in-
vocation to each vulnerable function is inserted in random
locations of the bzip2 source code. Besides, each vulnerable
function contains a taint source to guarantee the vulnerable
code can be controlled by the attacker.

TABLE 3 presents the number of functions inserted in
the source code of bzip2 (VF source), and the number
of vulnerable functions identified by oo7 (VF oo7) in the
modified program with σ ranging from 10% to 80%. Pro-
gram bzip2 contains P = 105 functions, so we insert
dσ×105/(1−σ)e vulnerable functions. For example, we in-
sert 12 randomly picked vulnerable functions in the bzip2
code when σ = 10%. As observed in TABLE 3, our analysis
can identify all the vulnerable code fragments over the
varying range of σ (i.e. [10%, 80%]). Moreover, as shown
in TABLE 3, the analysis time increases from 25.18 minutes
with σ = 10% to 43.6 minutes with σ = 80%.
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Fig. 2: Execution time and performance overhead compar-
ison between vulnerable bzip2 with ratio σ vulnerable
functions inserted and the patched program repaired by oo7.

Fig. 2 show the execution time of the modified vulner-
able bzip2 and the patched version by oo7 along with the
performance overhead introduced by patching. The abso-
lute execution time in fig. 2 are shown by bars, and the
performance overhead is shown by the line with markers.
As shown in fig. 2, the execution time is higher when σ is
increased, for example, the test with σ = 10% can finish
in 379 seconds, but the test with σ = 80% finished in 445
seconds. We use fence instructions to repair the program.
We note that fence instructions introduce extra runtime
overhead, as they prevent speculative execution. We can
see from fig. 2 that the repaired program with σ = 10%
takes only one second more than the vulnerable program,
but the repaired program with σ = 80% takes 20 seconds
more than the vulnerable program. Moreover, the repaired
program has negligible performance overhead. Specifically,
the minimum overhead is 0.26% (when σ = 10%) and the
maximum overhead is about 4.49% (when σ = 80%).

8.3 Evaluation on Specint Benchmarks

We use SPECint CPU benchmark suite [34] to quantify the
performance overhead of oo7 protection mechanism as well
as for evaluating the efficacy of our detection and repair.

SPECint benchmark suite contains twelve programs in
C and C++. TABLE 4 outlines the salient features of these
program: the binary size, analysis and repair time, the
number of conditional branches, the number of tainted
branches TB , the number of 〈TB ,RS 〉 pairs as well as the
number of 〈TB ,SW 〉 pairs. We run oo7 on the programs in
SPECint benchmark suite for at most 150 hours; only gcc
and xalancbmk do not complete in 150 hours. This is because
gcc and xalancbmk have higher number of conditional
branches.

In this set of experiments, we treat any APIs from
the standard library that can import data to the program
as potential taint sources. TABLE 5 lists the taint sources
identified by oo7 in SPECInt benchmark suite. Most of the
programs in SPECint read the input from one or more
files; so the file reading functions from standard C library
are taint sources in these programs. For example, in gcc
benchmark, fread(), read(), getcwd(), getenv() and
_IO_getc() from glibc are used in the code and are
marked as taint sources.
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TABLE 4: Results for the detection of Spectre vulnerable code fragments in SPECint. #〈TB〉 denotes the tainted conditional
branches detected by oo7. 〈TB,RS〉 satisfies Spectre Variant 1 condition, while 〈TB, SW 〉 satisfies Spectre Variant 1.1, 1.2
conditions as detected by oo7.

Program Binary Size LoC Analysis
time(h—m)

Repair
time (s)

#Conditional
branches # 〈TB〉 # 〈TB,RS〉 #〈TB, SW 〉

perlbench 1.2MB 97,314 125h 5 21,972 60 18 5
bzip2 69 KB 5,115 27.4m 1 942 102 81 5
gcc 3.6MB 365,844 > 150h 11 59,614 103 8 2
mcf 23 KB 1,370 3.5m 4 202 42 0 0
gobmk 3.9 MB 154,170 19.2h 1 11,549 57 13 0
hmmer 319KB 19,267 3.67h 1 4,468 49 15 0
sjeng 153 KB 10,147 2.6h 1 2,146 18 3 0
libquantum 51KB 2,212 1.35h 1 444 30 0 0
h264ref 577 KB 32,623 25.3h 1 6,743 16 0 0
omnetpp 768KB 22,603 21h 2 4,812 90 26 3
astar 52 KB 3,003 21.2m 1 541 19 0 0
xalancbmk 5.8MB 186,997 > 150h 15 62,209 72 47 2

TABLE 5: Detected taint sources for programs from SPECint

Program Taint source list

perlbench
getpid(), getgid(), getuid(), geteuid(), getegid(),
read(), fgetc(), getcwd(), getenv(),
gettimeofday(), fread()

bzip2 read()

gcc fread(), read(), getcwd(), getenv(),
IO getc()

mcf fgets()
gobmk fgets(), getenv() IO getc()
hmmer fread(), fread chk(), fgets(), getenv()
sjeng fgets(), IO getc()
libquantum fgetc(), fread(), getenv()
h264ref fread(), read(), isoc99 fscanf(),
omnetpp fgets(), getenv(), IO getc()
astar read(), fscanf()
xalancbmk getcwd(), fread(), getenv()

We note that eight out of twelve programs from
Specint benchmark exhibit the vulnerability pattern of
Spectre variant 1 as evidenced by the presence of
〈TB,RS〉 pattern in perlbench, bzip2, gcc, gobmk,
hmmer, sjeng, omnetpp, xalancbmk. By looking for
the 〈TB,RS〉 pattern, we conservatively assume the
strictest security requirement of reading secret data. The
subsequent mechanism to leak the secret data can vary
with the most common mechanism being the cache
side-channel with 〈TB,RS,LS〉 code pattern. Five of
the benchmarks (perlbench, bzip2, gcd, omnetpp,

xalancbmk) are vulnerable to Spectre variant 1.1, 1.2 as
evidenced by the presence of 〈TB, SW 〉 pattern. The anal-
ysis time varies from 3.5 minutes (mcf) to 150 hours (gcc).
The analysis time not only depends on the binary size but
also the complexity of the program logic, more specifically,
the number of branches, for example gcc and xalancbmk
contain 59,614 and 62,209 branches in there binary. Since
gcc and xalancbmk contain more branches than other pro-
grams, there are more execution paths to explore. Therefore
our analysis times out after 150 hours. Our repair works on
the assembly code and can complete in 15 seconds for these
benchmarks.

We evaluate the runtime overhead due to fence insertion
by executing each modified program ten times and report
the average values. Fig. 3 shows the normalized execution
time. The average performance overhead is 430% when
fences are inserted naively at both paths of all conditional
branches. This is the safest strategy in the absence of an
accurate program analyzer such as oo7. In contrast, oo7
only inserts fences at detected conditional branches covering
Spectre Variants 1, 1.1, 1.2 and hence incurs only 5.9%
overhead on an average.

8.4 Evaluation on interactive program

lighttpd is a lightweight web server which allows pro-
grams to interact with it by sending HTTP requests. We run
oo7 on lighttpd to evaluate its effectiveness on interactive
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unsigned char* 

buffer_append_base64_decode(..., char*in, ...) {                         

...

for (i = 0; i < in_length; i++) {

unsigned char c = (unsigned char) in[i];

int ch; 

...

if (c >= 128) return NULL; /* TB */

ch = base64_reverse_table[c];        /* RS */

if (-3 == ch) {

if (group < 2) return NULL;

break;

} else if (-2 == ch) {

continue; 

} else if (ch < 0) {

return NULL; 

} 

...

Fig. 4: Potential Spectre vulnerability in base.c within
project lighttpd. in is tainted from a taint source recv(). TB ,
RS are highlighted.

programs. We identified nine taint sources in lighttpd,
detected 129 tainted branches and 40 Read Secret (RS ).
In the identified taint sources, recv() is a critical inter-
face that receives data from arbitrary clients through the
network, which poses potential threats for data leakage in
the server caused by deliberately constructed data from
the attacker. Moreover, we evaluate the performance of
repaired lighttpd by sending 10000 HTTP requests to the
lighttpd server; the experiment shows our repaired code
only slows down lighttpd by 5.6%.

Fig. 4 shows a typical Spectre variant 1 vulnerability
detected in function buffer_append_base64_decode()
within file lighttp1.4/src/base64.c of lighttpd
project. buffer_append_base64_decode() is called to
decode the base64 string after recv() receives data from
the network. The code extracts a sequence of characters to
variable c from the input buffer in and checks whether c is
less than 128 (TB ). If c < 128, then the value of c is used to
index the table base64_reverse_table. The attacker can
first train the branch “if (c >= 128)” by using values of
c to be less than 128. Then the attacker can pass a value of
c to be 128. This results in accessing bytes outside of the
array base64_reverse_table[] being read to variable
ch. This happens when the branch “if (c >= 128)” is
mispredicted for c = 128 and during the speculative ex-
ecution of the array access base64_reverse_table[].
The attacker can infer whether the leaked data is equal
to -3 by probing the cache line impacted by the follow-
ing if statement. Moreover, the type of c is unsigned
char with a value range 0 to 255. Therefore this vul-
nerable code can at most leak 128 bytes outside of array
base64_reverse_table[].

8.5 Evaluation on various software projects

We observe that the detection of Spectre Variant 1 (as
opposed to variants 1.1, 1.2) takes the longest time from
our experiments with SPECint benchmarks. So we evalu-
ate the scalability of Spectre variant 1 detection on real-
world programs. In the evaluation, we select 507 binaries
from OSS-fuzz repository of Google and other open-source

static int command_lcp(...,char **argv,...) 
{ 
 keylen2 = atoi(argv[3]); 
 if ((keylen2 < 0) ||         /* TB */ 

       (keylen2 > (int) BITSOF(strlen(argv[2])))) { 
     ... 
     return -1; 
  } 
  … 
  lcp = fr_trie_path_lcp(…,keylen2,…); 
} 

static int fr_trie_path_lcp(…, int keylen2, …) 
{ 
... 

  if (end_bit > keylen2) end_bit = keylen2;  
  ... 
  e2 = end_bit; 
  ... 
  xor <<= s2; 
  xor |= lcp_end_bit[e2 - s2]; /* RS */ 
  lcp = xor2lcp[xor];          /* LS */ 
  ... 
} 

Fig. 5: Potential Spectre vulnerability in trie.c within
project freeradius. argv is tainted from a taint source gets().
The triplet 〈TB ,RS ,LS 〉 is highlighted.

projects; most of the selected binaries receive input data
from the outside world through network interface. We apply
oo7 on the program binaries from selected projects as shown
in TABLE 6. The analysis are performed for at most 24
hours to detect potential Spectre variant 1 code snippets to
demonstrate the scalability of our analysis.

The column ”# of vulnerable binaries” in TABLE 6 shows
the number of program binaries in each project with poten-
tial vulnerabilities. We identify a program as vulnerable if it
has at least one 〈TB,RS〉 pattern in the code that can poten-
tially be exploited by the attacker to read secret data, i.e., we
conservatively assume the strictest security requirement. As
mentioned earlier, the subsequent mechanism to leak the se-
cret data can vary with the most common mechanism being
the cache side-channel with 〈TB,RS,LS〉 code pattern. For
each project, we report the number of vulnerable programs,
the average number of 〈TB〉 and the average number of
〈TB,RS〉 patterns under two different taint propagation
strategies: data dependencies and program (data & control)
dependencies. For example, in project samba, out of total 230
programs, oo7 detects 62 and 91 binaries as potential victims
under data- and program-dependence taint propagations,
respectively. Program-dependence based taint propagation
identifies additional vulnerable code fragments compared
to data-dependence only. Altogether, 233 (or 290) out of 507
programs are labeled as potential victims by oo7 under data-
(or program-) dependence taint propagation. TABLE 6 also
show the analysis time in hours for detecting 〈TB,RS〉 pat-
terns using data dependencies, and program dependencies.

Potential Spectre Vulnerability in Large-scale Code:
We show one example of a Spectre vulnerability unearthed
by oo7 in Fig. 5. This code snippet is identified by oo7
in a program (src/lib/util/trie.c) within the project
freeradius. Note that oo7 identifies the vulnerability at bi-
nary level. For the sake of exposition and brevity, we
show only the portions corresponding to the Spectre vul-
nerability pattern at source code level. As comments, we
highlight the code fragments detected as TB , RS and
LS . The argument argv is a tainted array read from an
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TABLE 6: Software projects used from Github and OSS-Fuzz and the detected Spectre v1 Vulnerabilities.

Project Project Description # of
binaries

Avg.
binary
size

Data-dependency Program-dependency
# of
vulnerable
binaries

Avg. # of
〈TB〉
per binary

Avg. # of
〈TB,RS〉
per binary

Avg.
analysis
time(h)

# of
vulnerable
binaries

Avg. # of
〈TB〉
per binary

Avg. # of
〈TB,RS〉
per binary

Avg.
analysis
time(h)

samba SMB/CIFS networking protocol 230 124.0KB 62 16 9 0.76 91 32 46 1.2
coreutils GNU OS file, shell and text manipulation utilities 114 125.3KB 78 14 4 0.22 84 83 57 1.3
cups Common UNIX Printing System 52 134.3KB 30 40 31 1.07 46 141 122 3.09
freeradius Popular open-source RADIUS server 47 49.9KB 18 13 24 0.21 25 82 25 0.45
openldap Lightweight Directory Access Protocol 31 1.3MB 28 291 98 8.05 25 580 484 20.59
openssh Network utilities based on SSH protocol 11 791.9KB 4 21 4 21.13 6 72 15 > 24
xrdp Remote desktop protocol (rdp) server 10 107.3KB 5 23 2 0.59 5 48 22 3.04
ppp PPP daemon and associated utilities 4 322.0KB 2 56 41 5.11 2 77 60 6.16
dropbear Small SSH server and client 4 1.2MB 2 148 20 > 24 2 172 44 > 24
netdata Distributed real-time performance monitoring 2 1.9MB 2 109 45 12.05 2 198 175 12.41
wget Content retrieval from web servers 1 937.2KB 1 134 25 16.1 1 542 430 > 24
darknet Convolutional Neural Networks 1 663.9KB 1 76 42 3.17 1 183 195 6.8
Total - 507 - 233 - - - 290 - - -

external file through the taint source gets(). The condi-
tional check in the function command_lcp is therefore a
tainted branch (TB ). Taint is propagated to the function
fr_trie_path_lcp via the parameter keylen2. Conse-
quently, the array load lcp_end_bit may use the value of
e2 (potentially controlled by the attacker through argv[3])
during speculative execution. This speculative execution
may take place due to the misprediction of the conditional
branch in command_lcp that reflects a bound check. Finally,
the array access xor2lcp may reveal information out of the
boundary of array lcp_end_bit[] via cache side channel.
Though the pattern 〈TB,RS,LS〉 is found in the wild by
oo7, the vulnerable code fragment is executed only once at
run-time, making it impossible for the adversary to poison
the branch and launch an attack. The distance between
TB and RS is 145 Intel x86 instructions. The example
illustrates that Spectre vulnerability in real-world may span
over multiple functions requiring inter-procedural program
analysis.
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Fig. 6: Cumulative distribution of distance (#instructions)
between TB and RS for binaries in TABLE 6 under data- and
program dependence based taint propagation.

Sensitivity to Speculative Execution Window size:
We set the speculative execution window size SEW = 448
as twice the effective ROB size in our platform. This is a
conservative assumption to take care of micro-operations
generated from the instructions and processed within the
micro-architecture. We investigate the sensitivity of our
analysis on SEW value. Fig. 6 shows the distance in instruc-
tions between TB and RS (∆(TB,RS)) for vulnerable code
fragments across all 507 binaries. The results show that 82%
and 79% of the tainted memory accesses (RS) occur within
100 instructions from the tainted branch (TB) for data-and
program-dependence based taint propagation, respectively.
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Fig. 7: Cumulative distribution of analysis time for binaries
in TABLE 6 under data- and program dependence based
taint propagation.

Analysis and Repair Time of oo7: The analysis time
depends on the size and complexity of the binary. Fig. 7
shows the distribution of analysis time across all the bina-
ries. Under data-dependence based taint propagation, the
analysis time is less than 20 minutes for 72% of the binaries.
Program-dependence based taint propagation increases the
analysis time; still the analysis completes within 20 minutes
for 52% of the binaries. Only 3% and 9% of the analysis
across 507 binaries did not complete in 24 hours. The repair
time is minimal; for all of the 507 binaries, it is within 30
seconds.

Quantitative Analysis of Vulnerabilities: Our anal-
ysis shows that on an average only 7.3% (variance 0.3%) of
conditional branches are tainted across 290 programs with
at least one tainted branch. Moreover, 217 out of 507 binaries
do not have any tainted branch at all.

Next we check the percentage of conditional branches
in these program binaries that are tainted (TB) and are
followed by tainted memory access (RS) within speculative
execution window. If we want to ensure strict security
requirements, then lfence instruction should be inserted
after all these tainted branches. On an average, our analysis
shows only 3.72% (variance 0.3%) of conditional branches
satisfy this criteria leading to very low overhead in fixing
Spectre vulnerability.

Finally, we check the percentage of conditional branches
in these program binaries that are tainted (TB) and are
followed by tainted memory access (RS) within specula-
tive execution window and a subsequent tainted memory
access (LS) to leak the data to the cache. This is denoted
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as TB+RS+LS. If we assume cache side-channel attack as
the only mechanism to leak the secret brought into the
cache, then oo7 only needs to add lfence instruction after
these branches. On an average, only 2.32% of conditional
branches (variance 0.1%) satisfy this criteria. This strongly
indicates that the performance overhead from inserting
fences suggested by our technique will be low. However
we could not collect the exact performance overhead for
all of these 507 binaries because it will involve running
each binary against many inputs and averaging the per-
formance overhead across inputs. Furthermore, for some of
the binaries such as coreutils, a large set of inputs (each
input being a command) is possible. For this reason, we
meaured performance overheads on SPECint benchmarks
instead, which is a standard benchmark suite with inputs
specified for performance analysis.

Higher vulnerable code fragment percentage in
program-dependency enabled analysis. : As shown in
TABLE 6, oo7 detects more vulnerable code fragments with
program-dependency analysis (that considers both data
dependency and control dependency) compared to only
data-dependency analysis. For example, in samba project,
oo7 detects on an average 16 tainted branches per bi-
nary when considering only data-dependency. In contrast,
with program-dependency analysis, the number of tainted
branches detected increases to 32 branches on average per
binary. The reason is that if a conditional branch is tainted,
all the instructions that have control-dependency with the
conditional branch are also marked as tainted. Thus, anal-
ysis with program-dependency enabled inevitably causes
over-tainting.

9 LIMITATIONS OF OUR APPROACH

oo7 relies on BAP, which, in turn incorporates a taint analysis
engine. The taint analysis statically interprets the code by
unrolling the loops up to a certain depth. In order to ensure
that our approach does not introduce false negatives we
need to pay attention to the following three issues.

• First of all, optimistic loop unrolling may introduce
false negatives (missing vulnerabilities) in oo7. How-
ever, with correct or worst-case loop bounds being
supplied to BAP, such a limitation can be mitigated.

• Secondly, taint sources are provided to the taint
analysis engine, and if taint sources are under-
specified then the taint analysis may not identify all
the branches that can be controlled by the attacker.
We thus conservatively assume all user inputs via
console, file, and network as taint sources.

• Finally, the completeness of the control-flow extrac-
tion also plays a role to decide whether our analysis
will introduce false negatives. If the branch targets of
register indirect jumps are not identified, the control
flow graph extracted from the binary will not be com-
plete, and as a result the taint analysis results may
miss tainted branches. Thus, our approach always
depends on the control flow graph being as complete
as possible, in trying to ensure that we do not have
false negatives in our analysis.

oo7 finds tainted memory accesses following a tainted
conditional branch within a fixed speculation window. In-
correct setting of this speculation window size may lead
to false positives (window size too big) or false negatives
(window size too small). We conservatively set the window
length to twice the size of the of the reorder buffer, as
explained earlier.

oo7 works on native code for program binaries. We have
not investigated Spectre detection on interpreted code.

We also assume that all memory references in the victim
code have been protected with appropriate checks to pre-
vent overflow and underflow (e.g., array bound overflow).
Thus, there does not exist any overflow/underflow error in
normal (i.e., non-speculative) execution traces.

The taint analysis capability gives oo7 the flexibility to
adapt to Spectre variants. We have discussed in detail (Sec-
tion 2) the class of Spectre variants that we can handle and
the ones that cannot be handled. In addition, new variants
are constantly being found, we could face some variants in
future that oo7 cannot be adapted to handle.

The underlying technology used by oo7 is forced ex-
ecution, which is able to handle the obfuscated or self-
modifying code [23]. Thus, oo7 can potentially analyze ob-
fuscated or self-modifying code. Moreover, code obfuscation
and self-modifying code are common evasive techniques
used by malware, while oo7 focuses on identifying and
repairing vulnerabilities in the general software instead of
detecting malware.

oo7 is based on program analysis. As a result it can detect
(and patch) vulnerable code patterns that can be exploited
by malicious program inputs. It cannot detect scenarios
where an external process affects micro-architectural states
(e.g., flushing dynamic branch predictor) and thereby intro-
duce vulnerabilities in another program (e.g., by exploiting
the default static branch predictor as the dynamic branch
predictor has been flushed). Such scenarios cannot be de-
tected by our analysis.

10 DISCUSSION

We have built oo7 for detecting Spectre vulnerabilities in
binary code and protecting against the attack with minimal
overhead. Our approach is employed post-compilation on
binary code to take into account all the compiler optimiza-
tions. No change to the operating system or the processor
is needed as the approach proceeds by program analysis.
We demonstrate that systematic analysis is useful both for
detecting Spectre vulnerabilities and to repair them with
minimal performance overhead. Our work also provides an
understanding of the class of Spectre attacks for which an
analysis based mitigation may be suitable, and for which
classes of attacks a system level solution is suitable. Our
tool is publicly available from
https://github.com/winter2020/oo7
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