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Abstract—In this paper, we conceptualize, design and evalu-
ate VaktBLE, a novel framework to defend BLE peripherals
against low-level BLE attacks. VaktBLE presents a novel,
efficient and (almost) deterministic technique to silently hijack
the connection between a potentially malicious BLE central
and the target peripheral to be protected. This creates a
benevolent man-in-the-middle (MiTM) bridge that allows us to
validate each packet sent by the BLE central. For validation,
we implement a flexible and extensible framework to detect a
variety of attacks due to packets that are invalid, out-of-order
or flooded. An appealing capability of VaktBLE is that it can
validate all packets down to the link layer, thus allowing us
to defend against complex BLE attacks that bypass state-of-
the art binary patching frameworks. We have implemented
VaktBLE and evaluated it with 25 state-of-the-art BLE attack
vectors from offensive tools such as SweynTooth, CyRC and
BLEDiff. Our evaluation shows that VaktBLE effectively de-
tects all these attacks and the VaktBLE MitM bridge incurs
only 10ms overhead. Moreover, we have evaluated the capabil-
ity and robustness of VaktBLE against several adaptive attacks
including fuzzing-based attacks. We also show the extensibility
of VaktBLE to counteract protocol-level attacks and rogue
peripherals. Our evaluation reveals that VaktBLE not only
stops fuzzing-based attacks with high effectiveness (97.5%),
but VaktBLE also does not incur false positives when attacks
are randomly mixed with benign connection attempts.

1. Introduction

Bluetooth Low Energy (BLE) is a widely used wireless
communication protocol for internet-of-things (IoT) devices.
Past few years have seen an increasing number of BLE
implementation vulnerabilities [1], [2], [3], many of which
target the closed-source Link Layer (LL) of BLE protocol.
Unfortunately, patches for such vulnerabilities may often
take a significant time to reach the end users (e.g., IoT
users), if at all. Hence, it is desirable to protect IoT de-
vices from attacks that may exploit hidden and unpatched
vulnerabilities in devices’ BLE implementation.

In this paper, we propose VaktBLE, a novel approach to
defend existing peripheral against the recent rise on BLE
offensive tools e.g., CyRC, Sweyntooth, BLEDiff and oth-
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Figure 1. An Illustration of VaktBLE protecting the target (BLE Peripheral)
against the attacker (BLE Central).

ers [4], [2], [3], [5]. VaktBLE is the fist real-time, hardware-
software platform that guards the target peripheral from
such low-level protocol vulnerabilities in a practical over-
the-air fashion (as depicted in Figure 1). To the best of
our knowledge, VaktBLE is also the first system to provide
protection for BLE peripherals without requiring patching.
This makes VaktBLE practical for home/enterprise environ-
ments with fewer security-sensitive devices e.g., door locks,
smart power outlets, medical equipment, etc. Furthermore,
the open platform architecture offered by VaktBLE facilitates
further research and development in areas such as BLE jam-
ming mitigation and real-time intrusion prevention systems
for BLE devices.

VaktBLE requires no specialized expertise and can be
easily deployed by non-expert users, securing low-level pro-
tocols such as Link Layer. This allows the user to temporar-
ily guard BLE peripheral, which might take significantly
long time to receive patches (if at all). VaktBLE can be easily
deployed out-of-the-box to protect arbitrary BLE peripheral.
As shown in Figure 1, the user simply needs to position
VaktBLE physically close to the target peripheral and in-
put the peripheral’s BDAddress (and passkey, if required)
into VaktBLE’s configuration. Unlike VaktBLE, state-of-the-
art solutions demand expertise in firmware programming,
reverse engineering, and binary patching. While VaktBLE’s
current implementation may be unsuitable to defend thou-
sands of devices, we note that our jamming strategy is



generic and could be employed in software defined radios
supporting many connections.

VaktBLE jams the central packet that is transmitted
during the start of a BLE connection (see Figure 3), thus
causing the target peripheral to never receive such packet
due to CRC error. Then, VaktBLE takes control of the
communication with the central by simply proceeding with
the connection as per Bluetooth Core Specification [6].
Consequently, our technique of hijacking the communication
with the central (i.e., peripheral impersonation) is simpler
and unique from prior works which apply jamming dur-
ing either the Discovery phase or after the connection has
already been established (see Figure 3). Specifically, prior
works require jamming and spoofing many packets in the
Discovery phase [7], [8] (i.e., peripheral advertisements).
Similarly, works that hijack an established BLE connec-
tion [1], [9] are not applicable to our over-the-air defense
since it takes time to hijack the connection, thus allowing
the central to attack the peripheral in the meantime. More-
over, VaktBLE addresses the challenge of high delay when
switching from radio reception to transmission as reported in
prior works [9]. This is achieved by using an undocumented
feature of the nRF52840 Radio v1.7 (as described in product
specification Section 6.20.5).

Prior works on BLE defense use commercial Bluetooth
dongles which do not offer control of the BLE Link Layer to
the MitM bridge [10]. Additionally, LightBlue [11] involves
user expertise and access to firmware binaries for patching
and fails to protect against several BLE Link-layer attacks.
In contrast, VaktBLE can be used completely out-of-the-box,
yet it protects BLE peripherals down to link layer.

After providing a brief overview of VaktBLE (Section 2),
we make the following contributions:

1) We present a novel jamming technique to silently
hijack the connection (Section 3).

2) We present our comprehensive and extensible soft-
ware validation component that checks attacks due
to invalid packets, out-of-order packets and flooding
(Section 3). Indeed, based on official data from
2019 to 2024 [12], we analyzed that these three
attack scenarios cover about 54% (49/90) CVEs
related to BLE vulnerabilities.

3) We implement and evaluate VaktBLE with 25 state-
of-the-art attacks from tools e.g., Sweyntooth [2],
BLEDiff [3], CyRC [4] and InjetctaBLE [1]. Our
evaluation reveals that VaktBLE effectively and ef-
ficiently stops all these attacks in various configu-
rations (Sections 4-5).

4) We show the efficiency of VaktBLE in terms of the
timing overhead introduced in the bridge. We show
that the median latency is only 10ms, significantly
less to the minimum connection interval as per the
Bluetooth core specification (Section 5).

5) We show that VaktBLE detects attacks within 2cm
attacker distance and even if the attacker is 10m
away, VaktBLE detects 100% of attack attempts
(Section 5).

Launch
Attack

Flood

Malicious
BLE Central

Malform

Adversarial Actions

Victim
BLE Peripheral

1
Wait Peripheral
Advertisements

2
Send Connection
Request

3
Untrusted Data Link
Communication

Advertises
Name

Out-of-Order

Figure 2. Illustration of attack model considered by VaktBLE during the
BLE connection procedure. In such scenario, the malicious BLE central can
inject any malicious packet during the BLE connection procedure (steps 2
and 3).

6) We evaluate VaktBLE with several adaptive attacks,
including potential attacks launched by a state-
of-the-art fuzzer such as Sweyntooth [2]. In an
one-hour fuzzing session, our evaluation reveals
even in the presence of potentially unknown attack
attempts launched by the fuzzer, VaktBLE stops
97.5% (1170/1200) of these attempts. In our evalu-
ation with potential attacks and benign connection,
VaktBLE also does not exhibit any false positives
(Section 5).

7) We compare VaktBLE with LightBlue [11] and
show that the link-layer attacks stopped by VaktBLE
can bypass protections offered by such debloater
(Section 5).

Aside from these contributions, we foresee VaktBLE
as an essential tool in the arsenal of wireless security
researchers and as a strong foundation for further studies
on BLE intrusion prevention and jamming techniques. We
discuss some limitations and future enhancements of Vakt-
BLE in Section 6 before concluding in Section 8.

2. Overview

Attacker Model: The attacker model scenario that Vakt-
BLE aims to defend against is depicted in Figure 2, which
illustrates a normal BLE connection procedure between the
central and periphral. In this context, the adversary is repre-
sented as a malicious BLE Central (e.g., a smartphone), that
initially waits for the victim (i.e., BLE peripheral, smartlock)
advertisements in step 1 . Subsequently, the attacker sends a
connection request in step 2 and establishes direct control
over the Untrusted Data Link communication in step 3 .
This sequence of steps is inherent to bluetooth standard
and such can always be performed between a connectable
peripheral and an arbitrary central. Consequently, this means
that the attacker has the capability to perform certain Ad-
versarial Actions during communication such as replay,
injection, flooding, drop, and transmission of out-of-order
or malformed packets in an attempt to trigger vulnerabilities
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within the victim (i.e., peripheral) without ever reaching
authentication procedures of BLE. Given the potential for
such attacks, any packet originating from the central device
is treated as inherently untrusted. Consequently, certain
validation procedures ought to take place such that only
legitimate and non-malicious data can be forwarded to the
peripheral, thereby heavily mitigating the risk of successful
exploitation by a malicious central.

Key Insight: Broadly, VaktBLE involves two key pro-
cedures. Firstly, it introduces a novel technique to silently
hijack the connection between the central and the target
peripheral. This, creates a man-in-the-middle (MitM) bridge
between the central and the target peripheral. Secondly,
VaktBLE employs a validation component that forwards
packets sent by the central to the target peripheral only if
the packets are legitimate. To the best of our knowledge,
VaktBLE is the first work to (i) leverage a BLE MitM bridge
for defense instead of performing attacks, and (ii) to enable
real-time BLE link-layer defense instead of just intrusion
detection.

VaktBLE is a hardware and software framework that en-
ables the user to defend an arbitrary BLE peripheral against
BLE attacks exploiting known and unknown BLE vulnera-
bilities. To take advantage of VaktBLE, the user deploys the
hardware running VaktBLE nearby the BLE peripheral to be
protected. Figure 1 shows a common scenario ( 1 ) where
the attacker directly connects to a target peripheral (e.g.,
BLE Smart Lock) and launches attacks over the BLE data
link. BLE peripherals commonly accept connections from
arbitrary centrals and exchange protocol messages before
authentication. Hence, a peripheral with vulnerabilities in
its BLE protocol implementation can be exploited during
early communication with an attacker-controlled central [2].
Figure 1 ( 2 ) illustrates a novel real-time and non-intrusive
countermeasure against BLE protocol (implementation) vul-
nerabilities by introducing VaktBLE near the peripheral.
VaktBLE listens for connection attempts towards the target
peripheral. Upon detecting a Connection Indication from an
arbitrary BLE central it hijacks the Link Layer connection
between the central and peripheral. VaktBLE then acts as
a friendly Link Layer MitM bridge, validating packets re-
ceived from the central before forwarding to the periph-
eral. If the central launches an attack, VaktBLE invalidates
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Figure 4. An attacker attempting to trigger Key Size Overflow against a
peripheral under protection of VaktBLE.

and blocks associated malformed, out-of-order, or flooding
packets, preventing exploitation attempts from reaching the
legitimate peripheral.

VaktBLE exerts its defense in a completely non-intrusive
fashion, not demanding any modification or re-configuration
of the legitimate peripheral. Instead, VaktBLE hijacks BLE
connection attempts by tracking the peripheral’s advertise-
ment address within a Connection Indication packet. Con-
sequently, the hijacking and establishment of the friendly
MitM bridge is performed completely over-the-air, enabling
easy deployment of VaktBLE to protect arbitrary BLE pe-
ripherals.

Benevolent MitM Bridge in Action: Figure 4 depicts
an attacker (i.e., malicious central) attempting to exploit a
peripheral, which is vulnerable to Key Size Overflow (CVE-
2019-19196). At start of the BLE connection procedure (Un-
trusted Link), VaktBLE intercepts the attacker by selectively
jamming the (Link Layer) connection request destined to the
peripheral (step 1 ). Then, VaktBLE communicates with the
central and queues received packets during the Link Layer
Setup procedure (step 2 ). Subsequently, VaktBLE starts its
exclusive connection with the peripheral (step 3 ) and for-
wards the previously queued packets to the peripheral if such
packets are valid (step 4 ). Such an exclusive connection
establishes a benevolent MitM bridge used for validating
packets destined to the peripheral (Trusted Link).

As illustrated in Figure 4, an attacker proceeds to pair-
ing procedure and attempts to trigger CVE-2019-19196 by
performing two malicious actions: Firstly, it sends a pairing
request with an oversized encryption key size ks (step 5 )
and secondly, the attacker preemptively starts an out-of-
order encryption procedure (step 6 ). In both cases, VaktBLE
prevents the attack by blocking the BLE packets associated
with the malicious actions, namely non-compliant encryp-
tion key size and out-of-order encryption start request. The
detection of such actions is respectively performed by the
filtering and FSM Check components (see Section 3 for
details). Finally, the connection with the malicious central is
dropped and VaktBLE alerts the user of the attack attempt.

The illustrated attack and defense scenario (Figure 4),
across SMP Pairing and Link Layer Encryption procedures,
concretely demonstrates the capability of VaktBLE to protect



arbitrary peripherals from attacks in multiple BLE protocols
down to the data link (i.e., the Link Layer). Consequently,
VaktBLE is the first practical approach to enable real-time
defense against difficult-to-patch BLE vulnerabilities such
as Sweyntooth [2], BLEDiff [3] and CyRC [4].

3. Design of VaktBLE

In this section, we delve into discussing the different key
components of VaktBLE.

3.1. Hijacking the BLE Connection

We employ a novel and efficient BLE jamming approach
to hijack the connection between a central and periph-
eral. This is done by introducing a non-compliant periph-
eral that can selectively jam the CRC of BLE CONNEC-
TION INDICATION packet while reading the unmodified
connection parameters of such packet. We argue that our ap-
proach is much more efficient in hijacking BLE connections
as compared to other works [8], [7], [13], [14], [9] that rely
on jamming and spoofing new advertisements. Contrary to
these works, VaktBLE only jams a single packet (connection
request) and does not introduce any redundant packet during
the hijacking process.

As shown in Figure 5, jamming only the CRC of
CONNECTION INDICATION induces the real peripheral
to ignore central connection attempts while keeping packet
contents intact. Our non-compliant peripheral ignores the
jammed CRC and reads unmodified packet bytes, using
correct CONNECTION INDICATION parameters to hijack
the central connection. This allows us to silently ”steal” the
connection while preventing the legitimate peripheral from
ever receiving the correct connection request.

Our approach works because the BLE standard does
not enforce any mutual validation at the start of the BLE
connection procedure. As shown in Figure 5, the central
assumes that the CONNECTION INDICATION is correctly
received by the legitimate peripheral and establishes a link
layer connection upon receiving an arbitrary response (i.e.,
anchor point) from the peripheral within the time window[
∆w, ∆w+∆s

]
. We note that the anchor point is transmitted

by the peripheral in a precise time window and with specific
BLE channel parameters such as CRCInit and Hop Interval.
Extracting all parameters from the jammed packet is crucial
for the non-compliant peripheral to correctly transmit the
spoofed anchor point, ensuring the central continues the data
connection.

The selective jamming of the CRC presents two chal-
lenges: Firstly, it introduces the risk of corrupting the bits
immediately before the start of the three CRC bytes. Sec-
ondly, the time it takes for the BLE hardware to switch from
reception to transmission (i.e., jamming) is often longer than
the time required to finish the over-the-air transmission of
the CRC, which is 24us at 1mbps. In summary, if the
packet is jammed too early, we risk corrupting relevant bits
so that spoofing the anchor point response is impossible.

Otherwise, if jamming occurs too late, the CRC will not
be corrupted and the legitimate peripheral will transmit the
anchor point, thus preventing the hijacking. To address these
challenges, the non-compliant peripheral uses the bit-counter
feature of the Nordic nRF52840 System-on-Chip (SoC) to
specify the exact received over-the-air bit in which to trigger
a software interrupt. Subsequently, this software interrupt
triggers the jamming of the CRC as quickly as possible.
This is achieved by using an undocumented feature of the
nRF52 radio hardware, which reduces the time to switch
from reception to transmission to about 20us, just in time
to corrupt the last CRC byte (see Figure 14 in the Appendix
for details of this implementation). In contrast, switching the
radio mode from RX to TX for jamming takes more than
40us due to default mode switching sequence (RX ramp
down and TX ramp up). We reduce the time for the nRF52
hardware to switch radio modes by directly enabling the
radio TX mode (ramp up), without disabling RX mode first
(ramp down) (see Figure 5).

3.2. Validating packets down to the Link Layer

Detecting Invalid Packet: VaktBLE classifies a BLE packet
as invalid under two conditions. Firstly, if the bytes within
the packet cannot be decoded, then such packet is clas-
sified malformed. This occurs with truncated packets or
mismatched byte values in the expected protocol structure
(i.e., grammar). Secondly, a packet that is fully decoded
(i.e., not malformed), but contains a field value violating
the protocol specification, is categorized as non-compliant.
As shown in Figure 8, VaktBLE detects malformed packets
upon receiving an error in the Decoding component. In
contrast, non-compliant packets are detected by the Filtering
component.

While malformed packets can be indicated by the de-
coding library (i.e., Bluetooth Wireshark Decoders) as pars-
ing errors, detecting non-compliance in packets is more
involved. In such cases, we provide to the Filtering compo-
nent, a set of filtering rules that contains invariant θi for each
protocol layer P i

L of the decoded packet PD. These invari-
ants specify compliance tests against fields of BLE protocols
such as Link Layer, L2CAP, SMP and ATT. This invariants
ensure that the decoded field values are semantically correct
according to the Bluetooth Core Specifications [6]. Some
invariants θi for multiple BLE protocols are presented in
Equations 1-4.

θi(PD) =



ks ≥ 7 ∧ ks ≤ 16 if P i
L = SMP ∧ opcode = 0x1 (1)

0x01 ≤ opcode ≤ 0x1e ... if P i
L = ATT (2)

len(PB) = PB [23 : 24] + 4 if P i
L = L2CAP (3)

∆hop ≥ 5 ∧ ∆W ≥ 0 ... if P i
L = LL ∧ opcode = 0x5 (4)

... ... (5)

In Equations 1-4, ks captures the key size field value, len
captures the packet length in bytes and ∆hop, ∆W are other
field values from PD. In VaktBLE, we created a total of only
six (6) filtering rules for checking the semantic correctness.
After the Decoding component outputs the decoded packet
PD, the Filtering component generates invariant of the
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decoded packet θi(PD) that matches with each packet layer
P i
L (rightmost side of Equations 1-4). For example, consider

a decoded SMP Pairing Request (P ′
D) yields the information

in line with Equations 6-8. Therefore, such P ′
D matches

Equations (1) and (3) and results in the invariant θ(P ′
D) of

Equation 9. Consequently, θ(P ′
D) is evaluated as valid by

the filtering component and hence the Pairing Request is
forwarded to the peripheral. In contrast, let us consider the
decoded SMP Pairing Request (P ′

D) resulted the information
in line with Equations 6-7, but the key size ks = 50,
hence, non-compliant. In this case, θ(P ′

D) evaluates to the
logical formula false for layer P i

L = SMP , leading to an
invalidation of P ′

D and termination of the connection with
the central.

Pairing Request ⇒ P ′
D =


P ′
L = [LL,L2CAP, SMP ] (6)

opcode = 0x1 (7)
ks = 16 (8)

θ(P ′
D) = (ks ≥ 7∧ks ≤ 16)∧(len(P ′

B) = P ′
B [23 : 24]+4) (9)

We note that adding more invariants can easily be ac-
complished by appending new rules, thus making VaktBLE
flexible to handle more protocols or specific user-defined
validation cases.
Detecting Out-of-Order Packet: This detection is crucial
to prevent attacks exploiting incorrect handling of protocol
message procedures. To this end, VaktBLE leverages a state
machine model of the pairing procedures to check if a
packet addressed to the target is received in the correct
sequence (i.e., FSM Check component of Figure 7). This
ensures, for example, that a malicious central fails to trick
a vulnerable peripheral into starting the encryption proce-
dure during an ongoing pairing procedure. Particularly, such
approach can effectively stop attacks exploiting known se-
curity bypass vulnerabilities such as Zero LTK Installation,
DHCheck Skip [2], Legacy Pairing Bypass [3] etc. However,
certain Control PDU packets (e.g., LL FEATURE REQ,

LL VERSION IND, etc.) can be transmitted in different se-
quences during normal communication. This variability also
often depends on the specific implementation by different
vendors. Therefore, to avoid yielding false positives due to
this variability, VaktBLE is specifically designed to ensure
that normal communication protocols remain uninterrupted.
To this end, VaktBLE enforces out-of-order detection only
for sequential procedures such as pairing and encryption,
thus not hindering standard communication process.

Each state machine model instance is associated with
a pairing configuration, e.g., legacy pairing and secure con-
nections. Therefore, VaktBLE dynamically selects the correct
state machine model based on certain pairing messages
exchanged between the central and target. Concretely, Vakt-
BLE generates state machines for pairing configurations and
tracks communication states during pairing. This is achieved
by constructing simple Mapping Rules that map BLE packet
types to protocol states.

Figure 6 provides an example on how our state map-
ping works. The mapping rules illustrate the protocol
layer (via layer.name) SMP and the name of the field
(via field.name) where packet type is located (i.e.,
btsmp.opcode). When a packet P1 is analyzed from the
offline captures (P1 is shown above the mapping rules in
Figure 6), it’s last layer (i.e., SMP for P1) is first used
to identify the mapping rule. Since P1 protocol layer SMP
matches with the layer.name of the mapping rule, the
opcode value is extracted from the packet and the corre-
sponding opcode string is obtained from lookup dictionaries
(see Figure 6). The state name is then formed with packet
direction (i.e., TX), layer name (i.e., SMP) and the opcode
string (i.e., Pairing Req.).

Using the state mapper explained in the preceding para-
graph, the workflow for detecting out-of-order packets is
illustrated in Figure 7. Firstly, offline captures of different
pairing modes, as well as the Mapping Rules file, are
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provided to the State Mapper (step 1 ). Then, FSM Check
selects at runtime the pairing model based on the pair
of messages ⟨Pairing Request, Pairing Response⟩ (step 2 ).
After the model selection, FSM Check validates every re-
sponse from the central until the pairing and encryption
procedure ends in the expected sequence. Otherwise, any
packet received at an unexpected state S′ is blocked, as
shown in step 3 . The aforementioned sequence of events
highlight the practicality of FSM Check to protect the tar-
get against out-of-order attacks exploiting security bypass
vulnerabilities e.g., Legacy Pairing Bypass [3].
Detecting Flooding: Detecting DoS attacks such as ATT
Sequence Deadlock [2] and CyRC Repeated LL Packets [4]
requires tracking the rate of requests that are received in
the MitM bridge and subsequently blocking new requests
if such rate is higher than expected. Since BLE technology
relies on channel hopping, the rate of requests is captured
relatively via a counter named connection event (CE). This
indicates the number of channel hops since the start of
the BLE connection (step 2 of Figure 4). In such case,
the Filtering component indicates a flooding attempt if a
request packet is received before a minimal number of
connection events (CEmin) since the reception of previous
request. Therefore, the central must satisfy CE ≥ CEmin

throughout the communication with the target. This enforces
a fixed connection event gap (CEgap) that the central is
ought to wait before sending new requests.

Given that each protocol layer allows an ongoing request
procedure, CEmin is independently instantiated for the last
protocol layer of a request. This is so that requests of dif-
ferent protocols are not incorrectly flagged as flooding. For
each protocol layer, CEmin is initialized to zero. Whenever
a request is sent from the (attacker) BLE central, CEmin is
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set to CEgap. Thus, by enforcing CE ≥ CEmin, VaktBLE
ensures that no two consecutive requests within the same
protocol layer are sent within CEgap connection events.
Violation of the condition CE ≥ CEmin results in a
dropped connection.
Detecting Encryption Failure: Detecting Failures in BLE
encryption is required to prevent exploits that purposely
fail the encryption integrity check (i.e., HCI Desync Dead-
lock [2]). Such failure can be easily detected by getting
the status of the AES CCM message integrity check in
the Encryption component (see Figure 8). Once such check
fails in any instance of the BLE communication, no fur-
ther packets are forwarded to the target, and the central is
immediately disconnected from the VaktBLE MitM bridge.
The component monitors the pairing procedure, deriving
the encryption key for communication between peripheral
and central devices. This is vital for VaktBLE to validate
packets in encrypted communication links. While simple
secure pairing (SSP) automatically obtains encryption pa-
rameters, methods like Passkey Entry require user input of
the peripheral’s passkey into VaktBLE.

3.3. Extensibility of VaktBLE

VaktBLE provides the user fine-grained control over BLE
protocols to non-invasively enforce security properties of the
target peripheral. Our implementation, centered around rule-
based and stateful mechanisms, is inherently designed for
easy extensibility. Extending or modifying the rules requires
minimal knowledge of the BLE protocol and Wireshark and
these rules can also be easily maintained by open-source
communities as opposed to waiting for proprietary vendor
patches. For instance, the user can avoid attacks exploiting
Knob BLE variant by modifying the invariant of Equation 1
to ks = 16, thus rejecting any reduction to the encryption
entropy. Furthermore, the user can add more invariants to the
filtering rules (see Equations 1-4) and thus force the pairing
procedure to only accept a specific configuration such as
Secure Connections with Passkey Entry. This translates to
the invariant auth.SC = 0x01 ∧ IOcap = 0x03, where
auth.SC constraint ensures that BLE secure connection is



used during pairing and IOcap constraint enforces use of
Passkey Entry pairing. Subsequently, the user needs to input
the known passkey into Pairing component before starting
VaktBLE. This approach is particularly useful against Key-
Size Confusion Attack and Method Confusion Attack, which
relies on either changing the encryption key size or mixing
different pairing modes [5].

Unilateral Packet Validation: The current implementa-
tion of VaktBLE is to validate the packets forwarded in a
one-way connection stream. We note that our framework
does not provide defense against attacks targeting the BLE
central [15], although it can be addressed by constructing
invariants that account for the central role. Additionally,
protecting the central could be achieved by extending Vak-
tBLE to block invalid BLE advertisements [16] and scan
response originated from a malicious peripheral. Further-
more, VaktBLE has the potential to prevent impersonation
of peripherals by jamming all advertisements matching a
specific bdaddress. While these validations are not discussed
in our evaluation, design of spoofing countermeasures is
discussed in Section 3.4.

Incompleteness of rules: The validation component of
VaktBLE employs filtering rules and reference state ma-
chines to detect inconsistencies on the Link Layer (LL),
Logical Link Control Adaptation Protocol (L2CAP), At-
tribute Protocol (ATT) and Security Manager Protocol
(SMP). In contrast, other parts of the BLE stack, such as
advertisement and scan request, are examples of packets
not considered in the current implementation. In addition,
VaktBLE validation rules are projected on the BLE protocol
version 5.2. Therefore, future protocol versions may require
updating rules, but our open platform allows extending
research to enhance the validation component for uncon-
sidered attacks.

3.4. Attacks against VaktBLE

In the following, we discuss potential attack vectors
of introducing VaktBLE in the BLE environment and their
countermeasures:

Fake Peripheral: VaktBLE leverages a novel selective jam-
ming to establish a bridge. However, jamming techniques
that spoof fake peripheral advertisements while blocking
the legitimate peripheral could trick VaktBLE to establish a
bridge to such fake peripheral, hence opening a gap for the
attacker to connect to the legitimate peripheral and launch
attacks. Such an attack vector is shown in the leftmost side
of Figure 9 (a).

To defend against the aforementioned attack and its
variations, three countermeasures are proposed. Firstly, (i)
During startup, VaktBLE keeps alive a bridge to the le-
gitimate peripheral all the time, thus preventing the pe-
ripheral to accept new connections and hence forcing any
central to always connect to the VaktBLE bridge. This would
notably not require hijacking of the connection request,
albeit draining more battery of the peripheral due to the
continuous connection with VaktBLE. (ii) Alternatively, the
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Figure 9. Illustration of attack vectors against VaktBLE and their corre-
sponding countermeasure.

non-compliant firmware of VaktBLE can inform whether
advertisements of the legitimate peripheral are received with
CRC errors. Consequently, receiving too many CRC errors
can indicate that an attacker is jamming legitimate adver-
tisements and spoofing new advertisements. In such case,
the non-compliant peripheral firmware can trigger jamming
of any advertisement matching the same address of the
legitimate peripheral (see rightmost side of Figure 9 (a)).
This action would block any connection to the peripheral
(legitimate or not). While this countermeasure is not ideal
due to self-imposed denial of service, jamming all matching
advertisements can temporarily block any exploitation of
a vulnerable peripheral while the attacker is nearby and
additionally alert the user of such occurrence.

Furthermore, measuring the Received Signal Strength
Indicator (RSSI) of advertisements can reveal attack vector
which relies on exploiting a race condition of the connection
requests when multiple peripherals with the same address
are being utilized (leftmost side of Figure 9 (b)). In this
context, connection requests initiated due to advertisements
with an RSSI value lower than a given legitimate peripheral
RSSI value threshold, are ignored by VaktBLE. As shown
in rightmost side of Figure 9 (b), this prevents the bridge to
connect to rogue peripherals which are normally not close
to the peripheral.

Privacy Violation: Finally, VaktBLE is susceptible to pri-
vacy violation attacks via passive sniffing [1]. Differently
than exploitation of the peripheral via active connections,
passive sniffing allows an attacker to capture a privacy-
sensitive response (e.g., device name) in the link between
bridge central and legitimate peripheral. This is because
an attacker can send a valid request (ATT request) and
passively sniff the over-the-air response on the peripheral
side of the bridge (leftmost side of Figure 9 (c)). This
cannot be initially blocked by VaktBLE as its software is not
aware of potential privacy violations on the peripheral side.
Moreover, the communication between bridge central and
peripheral is inherently vulnerable to eavesdrop of plaintext
peripheral responses via passive sniffing. To address such
issue, VaktBLE can destroy peripheral responses according
to hardcoded strings provided by the user. Such hardcoded



strings indicate responses that might violate user privacy
(e.g., name, device model, etc). Once VaktBLE receives an
over-the-air payload containing a hardcoded string, selective
jamming starts and destroys the rest of the payload. Thus,
eavesdroppers will inherently receive a corrupted response.
Extensions to VaktBLE selective jamming: VaktBLE im-
plements a set of features to activate the discussed counter-
measures. Concretely, to avoid rogue peripherals, the non-
compliant peripheral informs to VaktBLE validation compo-
nent, the CRC status and RSSI signal of every BLE packet
received over-the-air. Moreover, the non-compliant central
blocks privacy-sensitive payloads by triggering selective
jamming. Such payloads match a peripheral response with
any user given string provided before VaktBLE startup.
Fake VaktBLE: It is conceivable that a malicious VaktBLE
exists within the range of communication, attempting to
hijack the connection simultaneously with a benevolent
VaktBLE. In such scenarios, owing to the characteristics of
a BLE connection, multiple collisions are expected to occur,
as both VaktBLE will attempt to forward packets to the
peripheral (i.e., target). Table 1 illustrates two deployments
of VaktBLE setups (elaborated in Section 4): a malevolent
setup and a benevolent setup. Concurrent operation of both
setups may lead to numerous collisions, with none of them
successfully hijacking the connection. Thus, even if the
idea of VaktBLE is used for malicious intent, such attacks
are unlikely to succeed due to the inherent nature of BLE
connections.

Setup #Connection
Attempts

#Connection
Collisions

#Successful
Connections

#Malevolent
Hijack

#Benevolent
Hijack

Malevolent close 2800 2778 7 14 1
Malevolent far 2800 2765 4 29 2

TABLE 1. EVALUATION WITH MULTIPLE VaktBLE INSTANCES

4. Experimental Setup

VaktBLE implementation is shown in Figure 10. The first
setup (a), represents a fully functional VaktBLE software
with all validation components enabled (i.e., invalid, flood-
ing and out-of-order packets), albeit not portable (anchored).
In contrast, setup (b) showcases a lightweight and portable
version of VaktBLE software which only block malformed
packets. While the former setup is used to evaluate the
full capabilities of VaktBLE, the latter is used to showcase
the deployability and extensibility of VaktBLE concept to
protect portable peripherals. The focus of our evaluation is
on the anchored setup, but we showcase the capability of
the portable setup in RQ2.
Implementation: In Figure 10, the ESP32-DevKitC and
ESP32-Wrover-Kit-VE are the actual peripherals under pro-
tection. These modules support Wi-Fi, Bluetooth, and Blue-
tooth LE for various applications. VaktBLE is generic and
therefore, the ESP32 peripherals can be replaced with any
other device supporting BLE connection, keeping the Vak-
tBLE design unchanged. For instance, some of our tested
attacks require legacy pairing, which ESP32 devices do not
support. Thus, we tested such attacks using Motorola G (5s)
as the target.

Validation Software
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Figure 10. An Illustration of the experimental setup for VaktBLE. (a)
Anchored setup with full VaktBLE software. (b) Portable setup with
lightweight VaktBLE software.

Default values for “X” and “Y” (Figure 10) are set to
80 cm and 30 cm, respectively. We consider fixed value
for “Y” in our experiment as such is the most likely
case in real world attacks to the peripheral. We evaluate
the sensitivity of VaktBLE with respect to distance “X”
in RQ3. The implementation of VaktBLE resides within
a peripheral (i.e., Nordic nRF52840-DK), which integrates
customized firmware derived from Sweyntooth [2]. This is
then paired with a central device (i.e., Nordic nRF52840-
Dongle). Specifically, the non-compliant BLE peripheral,
which includes the implementation of connection hijack-
ing (see Figure 8), is implemented in Nordic nRF52840-
DK. The non-compliant BLE central (see Figure 8), which
forwards validated packets to the protected peripherals, is
implemented in Nordic nRF52840-Dongle. In summary, the
two Nordic devices act as the bridge in the BLE communi-
cation between the potential attacker (BLE central) and the
target peripheral (i.e., ESP32 and Motorola G devices in
our setup). It is worthwhile to mention that the implemen-
tation of our non-compliant BLE peripheral (i.e., Nordic
nRF52840-DK) is dedicated to scanning and jamming a
single BLE channel. In practice, two more devices are
needed to scan all the BLE channels.

The validation software component of the anchored Vak-
tBLE setup (see Figure 10(a)) runs on a machine with Intel
i7-7700 CPU @ 3.60GHz with 64GB of RAM. The software
framework is developed using Python 3.8 (1150 LOC) and
C++ (1340 LOC). The Python code contains main script to
handle the two threads running non-compliant BLE periph-
eral and non-compliant BLE central. Additionally, we use
Python to implement the functionality for offline processing
of .pcap files (to generate the state machine) and for check-
ing validation rules. In contrast, the portable VaktBLE setup
(Figure 10(b)) is implemented in C++ (457 LOC) and runs
on Orange Pi 3 (ARM embedded hardware platform), thus
drastically reducing the area of VaktBLE setup to about 5x6
cm. This includes the lightweight validation software and
two nRF52 radios (non-compliant peripheral and central),
which are mounted on top of the embedded platform via



our in-house designed circuit board tailored to VaktBLE
(green board of Figure 10(b)). Finally, we implement the
non-compliant peripheral firmware in C++ across all setups.
Evaluation Setup: We evaluate VaktBLE against attacks
generated by Sweyntooth [2], BLEDiff [3], CyRC [4] and
InjetctaBLE [1]. These attacks target a wide range of BLE
protocol layers, such as Secure Manager Protocol (SMP),
Link Layer (LL), Logical Link Control Adaptation Protocol
(L2CAP) and Attribute protocol (ATT). For the ESP32
targets, we compiled a nimble sample code from Espres-
sif v5.0.3 [17], which allowed us to program the ESP32
devices as BLE peripherals. Concurrently, the Motorola G
device runs Android 8.1 (OPP28.65-37) version vulnerable
to BLEDiff attacks.

5. Results

We answer the following research questions (RQs) to
evaluate the effectiveness and efficiency of our VaktBLE:
RQ1: How effective is VaktBLE in blocking attacks?
Table 2 demonstrates the effectiveness of VaktBLE in de-
tecting and blocking various attacks generated from state-
of-the-art offensive techniques. Attacks on upper protocol
layers such as Secure Manager Protocol (SMP) can be
blocked, as the encryption process adheres to a well-defined
sequence of messages in the standard. Consequently,if a
vulnerability exploits the encryption process (e.g., ESP32
HCI Dsync), the encryption validation module in VaktBLE
detects such exploitation. This prevents a message integrity
check (MIC) failure that would cause a denial of service
(DoS) attack on the peripheral. Our state machine imple-
mentation (see “FSM Check” in Figure 8) detects an out-of-
order or an unexpected packet. We evaluated VaktBLE with
attacks that bypass some steps during the pairing process,
such as DHCheck Skip, and several BLEDiff attacks (by-
passing legacy pairing and bypassing passkey entry). This
demonstrates that VaktBLE mitigates attacks on different
pairing modes. Most attacks in Table 2 involve invalid
packets, detectable by VaktBLE through decoding errors or
filters (Equations 1-4). VaktBLE also identifies malicious re-
transmissions causing peripheral deadlocks, like Assertion
Failure on repeated LL packets (Table 2). These are detected
via the flooding detection module (Figure 8). InjectaBLE [1]
could have two attack instances in our setup: impersonating
the target peripheral, or impersonating the MitM central
bridge. Since VaktBLE aims to protect the target peripheral,
the former is irrelevant. In the latter case, InjectaBLE may
send a LL CONNECT UPDATE REQ to our MitM central.
However, our non-compliant MitM central causes VaktBLE
to reject this request by design, resulting in a failure of the
attack.

We note that VaktBLE excludes certain attacks, like those
requiring dual BLE and BR/EDR implementation [18], and
attacks solely targeting Bluetooth BR/EDR [19].
RQ2: How efficient is VaktBLE in real-time detection?
We assess VaktBLE’s real-time detection capabilities by
analyzing overhead (latency) when MitM bridge forwards

packets, including Link Layer control packets. We examine
delay when forwarding packets from MitM peripheral to
MitM central (Figure 10). Timer lstart is initiated upon iden-
tifying non-malicious packet at MitM peripheral whereas
lend indicates the time when the packet is forwarded to
MitM central. Thus, overhead ∆t = |lend − lstart|. To
compute ∆t, we launch a total of 250 attack attempts for
a total of 25 considered BLE attacks. For this experiment,
we used default connection parameters (e.g., connInterval,
WinSize, WinOffset) for all tests. This approach enabled us
to compute the average overhead introduced by VaktBLE as
an MitM bridge in the BLE communication process.

The distribution of MitM bridge overhead ∆t is illus-
trated in Figure 11, while the overhead for each attack
is detailed in Table 2. Table 2 also shows the time to
hijack the channel. This is done by setting a reference
time tstart at the initial anchor point (e.g., EMPTY PDU)
sent by the malicious central following the CONNEC-
TION INDICATION. We then determine tend as when the
MiTM peripheral in the VaktBLE bridge (see Figure 10)
sends its first non-empty Link Layer packet. Thus, after the
duration ∆th = tend − tstart, we can confirm the end of step
2 , as illustrated in Figure 4. The end of this step, in turn,
confirms the completion of the hijack process.
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Figure 11. Distribution of VaktBLE bridging latency.
Considering the overall performance of VaktBLE, in-

cluding Scapy’s latency, we observe a median latency of
10ms (Figure 11), which is reasonable given the Blue-
tooth core specifications [6] allow a minimum connection
interval of 7.5ms and a maximum of 4000ms. For attacks
exploiting the peripheral by sending invalid connection re-
quests (i.e., CONNECTION INDICATION ), VaktBLE’s
channel jamming blocks these invalid packets and drops
the connection, causing no measurable overhead (N.A in
Table 2).
Efficiency of the portable setup: We measured the over-
head for the Portable setup of VaktBLE (Figure 10(b)). Using
the BLE KNOB Variant (CVE-2019-9506), our evaluations
showed a reduction in overhead from 10ms to 373µs in
the Portable Setup, demonstrating VaktBLE’s feasibility for
protecting BLE devices in the wild.
RQ3: How robust is VaktBLE w.r.t attacker distance?
We conducted experiments at various distances (“X” in
Figure 10) to represent potential attack scenarios. For this,
we use the BLE KNOB Variant with default connection pa-
rameters, as in RQ2. Figure 12 shows that VaktBLE almost
always hijacks the connection within the 30cm-15m range.
Even at 2cm away (an unlikely situation), VaktBLE hijacks



Attack Name VaktBLE Validation Type Connectivity VaktBLE
Overhead (avg)

Time to hijack the
channel (avg)

Target
PeripheralMalformed/

Non-compliant Flooding State Machine
Model Encryption

Sw
ey

nt
oo

th

CVE-2019-16336 - Link Layer Length Overflow ✓ 10/10 18.3 ms 40.3 ms ESP32-Wrover-Kit-VE
CVE-2019-19195 - Invalid L2cap fragment ✓ 10/10 9.2 ms 60.2 ms ESP32-DevKitC
CVE-2019-17060 - LLID Deadlock ✓ 10/10 15.9 ms 55.5 ms ESP32-Wrover-Kit-VE
CVE-2019-17517 - Truncated L2CAP ✓ 10/10 7.2 ms 58.5 ms ESP32-Wrover-Kit-VE
CVE-2019-17518 - Silent Length Overflow ✓ 10/10 12.3 ms 60.2 ms ESP32-Wrover-Kit-VE
CVE-2019-17520 - Public Key Crash ✓˜/Legacy Pairing 10/10 7.1 ms 60.1 ms ESP32-Wrover-Kit-VE
CVE-2019-19193 - Invalid Connection Request ✓ 10/10 N.A N.A ESP32-Wrover-Kit-VE
CVE-2019-19192 - Sequential ATT Deadlock ✓ 10/10 12.5 ms 60.2 ms ESP32-Wrover-Kit-VE
CVE-2019-19196 - Key Size Overflow ✓ 10/10 6.8 ms 50.2 ms ESP32-Wrover-Kit-VE
CVE-2019-19194 - Zero LTK Installation ✓˜/Legacy Pairing 10/10 10.5 ms 60.1 ms MotoG 5S
CVE-2020-13593 - DHCheck Skip ✓˜/Secure Connection 10/10 11.3 ms 60.2 ms MotoG 5S
CVE-2020-13595 - ESP32 HCI Desync ✓ 10/10 7.5 ms 40.8 ms ESP32-Wrover-Kit-VE
CVE-2020-10061 - Zephyr Invalid Sequence ✓ 10/10 N.A N.A ESP32-Wrover-Kit-VE
CVE-2020-10069 - Invalid Channel Map ✓ 9/10 N.A N.A ESP32-Wrover-Kit-VE
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InjectaBLE - Hijacking the Peripheral via Central Impersonation (MitM) - - - - 10/10 N.A N.A ESP32-DevKitC
CVE-2019-9506 - BLE KNOB Variant ✓ 10/10 8.2 ms 60.5 ms ESP32-Wrover-Kit-VE
BLEDiff - (E1) Bypassing passkey entry in legacy pairing ✓˜/Legacy Pairing 9/10 5.4 ms 32.5 ms MotoG 5S
BLEDiff - (E3) Bypassing legacy pairing ✓˜/Legacy Pairing 10/10 7.2 ms 40.6 ms MotoG 5S
BLEDiff - (O1) Accepting key size greater than max ✓ 10/10 13.2 ms 58.5 ms ESP32-Wrover-Kit-VE
BLEDiff - (E4) Accepts DHKeyCheckSend with all fields zero ✓ 10/10 8.9 ms 60.2 ms MotoG 5S
BLEDiff - (E6) Uresponsiveness with ConReqTimeoutZero and ConReqIntervalZero ✓ 10/10 15.5 ms 62.5 ms MotoG 5S
CVE-2021-3431 - CyRC Assertion failure on certain repeated LL packets ✓ 10/10 10.9 ms 60.3 ms ESP32-Wrover-Kit-VE
CVE-2021-3430 - CyRC Assertion failure on repeated LL CONNECTION PARAM REQ ✓ 10/10 11.5 ms 60.2 ms ESP32-Wrover-Kit-VE
CVE-2021-3433 - CyRC Invalid channel map in CONNECT IND results to deadlock ✓ 8/10 N.A N.A ESP32-Wrover-Kit-VE
CVE-2021-3454 - CyRC L2CAP: Truncated L2CAP K-frame causes assertion failure ✓ 10/10 8.1 ms 46.3 ms ESP32-DevKitC

TABLE 2. EFFECTIVENESS OF VaktBLE IN STOPPING BLE ATTACKS. CEgap = 4 FOR FLOODING VALIDATION. VaktBLE EFFICIENCY IS NOT
APPLICABLE (NA) WHEN ATTACKS RELY ON CONNECTION INDICATION , LEADING TO CONNECTION DROP AND NO MEASURABLE

OVERHEAD.
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Figure 12. VaktBLE connection success rate w.r.t attacker distance from
peripheral.

70% of connection attempts. These results demonstrate Vakt-
BLE’s robustness to attacker distance. A range extender [20]
could further improve VaktBLE’s jamming capability in the
future.
RQ4: How VaktBLE compares with patching-based
tools? We tested state-of-the-art countermeasures involving
Bluetooth stack debloating [11]. Since these techniques typ-
ically do not protect against link-layer attacks, we chose six
representative attacks from Table 2 to validate this (Invalid
L2cap fragment, LLID Deadlock, Truncated L2CAP, Se-
quential ATT Deadlock, Key Size Overflow, and Zero LTK
Installation). Using the default connection parameters from
RQ2, our evaluations showed that debloating [11] fails to
safeguard against any of these attacks. Moreover, using such
debloater involves understanding of Bluetooth profiles, and
much effort is needed to reverse engineer binaries to extract
the memory entry point of the Bluetooth handler address for
proposed stacks (e.g., Zephyr Project [21]). Additionally,
debloaters rely on known function names, meaning state-
of-the-art Bluetooth firmware debloaters do not offer out-
of-the-box deployment such as VaktBLE.
RQ5: How effective is VaktBLE w.r.t adaptive attacks?
We evaluate VaktBLE against the following adaptive attacks:
1) Continuous attacks: In this experiment, we aim to
assess VaktBLE’s effectiveness against continuous attacks,
where successive attacks are launched without waiting for
the previous attempt to conclude. During the evaluation
of RQ2, exploits were launched one at a time. For con-
tinuous attacks, we modified Sweyntooth exploits [2] to

Attack VaktBLE
detection

Time to hijack
the channel Target

Link Layer Length Overflow (CVE-2019-16336) 10/10 40.1 ms ESP32-DevKitC
Invalid L2cap fragment (CVE-2019-19195) 10/10 59.5 ms ESP32-DevKitC

LLID Deadlock (CVE-2019-17061,CVE-2019-17060) 10/10 55.2 ms ESP32-DevKitC
Truncated L2CAP (CVE-2019-17517) 10/10 58.9 ms ESP32-DevKitC

Silent Length Overflow (CVE-2019-17518) 10/10 60.1 ms ESP32-DevKitC
Public Key Crash (CVE-2019-17520) 10/10 60.2 ms ESP32-DevKitC

Invalid Connection Request (CVE-2019-19193) 9/10 - ESP32-DevKitC
Sequential ATT Deadlock (CVE-2019-19192) 10/10 60.1 ms ESP32-DevKitC

Key Size Overflow (CVE-2019-19196) 10/10 55.2 ms ESP32-DevKitC
Zero LTK Installation (CVE-2019-19194) 10/10 60.2 ms ESP32-DevKitC

DHCheck Skip (CVE-2020-13593) 10/10 60.1 ms Moto G (5s)
ESP32 HCI Desync (CVE-2020-13595) 10/10 41.1 ms Moto G (5s)

Zephyr Invalid Sequence (CVE-2020-10061) 10/10 - ESP32-DevKitC
Invalid Channel Map (CVE-2020-10069,CVE-2020-13594) 10/10 - ESP32-DevKitC

TABLE 3. VaktBLE EFFECTIVENESS W.R.T CONTINUOUS ATTACKS.

facilitate their continuous execution ten times each (see Ta-
ble 3). For instance, if e1, e2, . . . , en are the set of exploits,
then the script launched a continuous attack in the order:
e101 → e102 → . . . → e10n . From Table 3, we observe that
VaktBLE remains effective even against continuous attacks:
it detected all but one attack attempt. Due to VaktBLE’s jam-
ming component, attackers cannot initiate new connections
while one is ongoing with the target peripheral. Thus, even
during continuous attacks, VaktBLE drops connections for
subsequent attempts in-flight.

2) Mixing benign connections: In this experiment, we
introduce a probabilistic behavior in terms of launching
malicious (attacks) and benign cases. Benign cases strictly
involve connections that follow the BLE specification pro-
cedures [6]. We assume that the selection of attacks or
benign cases is independent. Thus, we can model it us-
ing a binomial distribution. Let X represent the random
variable for the number of selected attacks out of 28 total
cases (i.e., 14 attacks and 14 benign cases) in n trials.
X follows a binomial distribution with parameters n and
the probability of selecting an attack (P (attack)). The bi-
nomial distribution’s probability mass function estimates
the likelihood of obtaining a certain number of attacks:
P (X = k) =

(
n
k

)
P (attack)k(1− P (attack))n−k, where

(
n
k

)
is the binomial coefficient, enumerating ways to select k
successes from n trials. Here, k is the number of selected
attacks in n trials. Table 4 showcases the results of this
experiment. Apart from stopping all attack attempts, we also
notice that VaktBLE does not report any false positives in
detection (0/139).



Attack VaktBLE
detection

Time to hijack
the channel Target

Link Layer Length Overflow (CVE-2019-16336) 12/12 42.3 ms ESP32-DevKitC
Invalid L2cap fragment (CVE-2019-19195) 9/9 60.5 ms ESP32-DevKitC

LLID Deadlock (CVE-2019-17061,CVE-2019-17060) 8/8 58.2 ms ESP32-DevKitC
Truncated L2CAP (CVE-2019-17517) 11/11 56.9 ms ESP32-DevKitC

Silent Length Overflow (CVE-2019-17518) 7/7 60.2 ms ESP32-DevKitC
Public Key Crash (CVE-2019-17520) 13/13 60.2 ms ESP32-DevKitC

Invalid Connection Request (CVE-2019-19193) 6/6 - ESP32-DevKitC
Sequential ATT Deadlock (CVE-2019-19192) 10/10 60.1 ms ESP32-DevKitC

Key Size Overflow (CVE-2019-19196) 5/5 58.2 ms ESP32-DevKitC
Zero LTK Installation (CVE-2019-19194) 14/14 60.1 ms ESP32-DevKitC

DHCheck Skip (CVE-2020-13593) 4/4 60.1 ms Moto G (5s)
ESP32 HCI Desync (CVE-2020-13595) 15/15 42.3 ms Moto G (5s)

Zephyr Invalid Sequence (CVE-2020-10061) 10/10 - ESP32-DevKitC
Invalid Channel Map (CVE-2020-10069,CVE-2020-13594) 16/16 - ESP32-DevKitC

Benign cases 0/139 60.2 ms ESP32-DevKitC

TABLE 4. VaktBLE EFFECTIVENESS W.R.T. MIXED BENIGN/ATTACKS.

3) VaktBLE vs automated testing: We validate VaktBLE
against unknown fuzzing-based BLE attacks using Sweyn-
tooth fuzzer [2] which mutates/duplicates packets sent to
peripheral. Fuzzer ran for 1 hour (≈ 1200 iterations). Results
are shown in Figure 13. We note that packet mutations may
yield invalid packets (malformed or non-compliant), while
duplication causes flooding. The blocking of such attacks are
embodied in the design of VaktBLE (see Figure 8). Figure 13
shows that in an one hour fuzzing session, VaktBLE missed
only 2.5% (30/1200) of the potential attacks launched by
the fuzzer.

0 200 400 600 800 1000 1200
# of attacks

15m

30m

45m

1h

Ti
m

e 
In

te
rv

al
s

False Negatives
Invalid
Flooding
Out of Order
15 min: 172/68/22/7
30 min: 374/193/22/24/9
55 min: 542/294/50/15
1 hr:  710/395/74/30

Figure 13. VaktBLE effectiveness w.r.t. fuzzing-based attacks. Different
categories of detected attacks and the false negatives are shown in the
legend. For example, after one hour fuzzing session, VaktBLE detected
710 invalid, 395 flooding and 74 out-of-order message attacks, while 30
remaining attacks managed to be successful.

4) Different connection parameters: Finally, the attacker
can vary the connection parameters. We validate VaktBLE’s
stability by varying CONNECTION_INDICATION packet
parameters (connInterval, WinSize, Hop, cHM). We use
the CVE-2019-9506: BLE KNOB variant like RQ3, with
connection parameters modified per Table 5 (10 iterations
per parameter). We note that for elevated values of the Win-
dowSize (i.e., last row in Table 5), the non-compliant central
in VaktBLE MitM bridge fails to establish a connection with
the target peripheral. Thus, even though VaktBLE framework
becomes unstable in such cases, it still prevents the intended
attack.

Connection parameter Range Connectivity
Low hop interval 5-10 10/10
High hop interval 11-16 10/10
Low Connection Interval 8.75 - 20 ms 10/10
High Connection Interval 125 - 137.5 ms 10/10
Random Channel Mask 0x0000000000 - 0x07FFFFFFFF 10/10
Low Window Size 0 - 10 ms 10/10
High Window Size 11.25 - 17.25 ms *

TABLE 5. VaktBLE EFFECTIVENESS W.R.T CONNECTION PARAMETERS.

6. Discussion and Future Outlook

In the following discussion, we explore the limitations
of our current evaluation.

Choice of Attacks: Since VaktBLE primarily validates
link-layer packets, we evaluated attacks from tools such as
SweynTooth, BLEDiff, CyRC, and InjectaBLE that target
link layers and have reproducible proofs-of-concept (PoCs).
Additionally, we intended to show VaktBLE’s robustness
against arbitrarily mutated, flooded, and out-of-order packets
beyond the 25 evaluated attacks (summarized in Table 2).
This involved evaluating VaktBLE against automated testing
tools, such as a BLE Fuzzer (better detailed in Section 5).
We note that not all fuzzer-generated communications are
actual attacks. However, most of the evaluated attacks are
originated from such packets.
Unable to enhance the security of existing target: Although
VaktBLE ensures the integrity of the exchanged packets, this
does not necessarily translate to an increased or enhanced
level of connection security. In future, we aim to enhance the
security of a BLE connection by leveraging the foundation
of VaktBLE.
Scalability of jamming: While our current jamming imple-
mentation is designed for an individual BLE channel and
may not scale efficiently to defend thousands of devices si-
multaneously, our jamming strategy is highly adaptable and
extensible. This approach can be employed and integrated
into software-defined radios (SDRs), potentially enabling
protection for a broader range of devices and scenarios.
Sustained drops of connection: VaktBLE packet validation
process is configured to jam and terminate the connection as
soon as a packet is invalidated. However, this disconnection
process could be explored by a malicious device, which may
attempt to send a malformed packet many times. Thus, even
though such attempt will fail to exploit any vulnerability in
the target peripheral, it may cause a battery drain attack on
the target or defense bridge. However, we note that VaktBLE
does not contribute to attackers in degrading user experience
via sustained connection drops. This attack surface already
exists within BLE. Nonetheless, we believe that by blocking
direct connection to the peripheral even under repeated
attempts from the attacker, VaktBLE prevents more critical
vulnerabilities such as remote code execution.
Support to Multiple Peripherals: Implementing BLE con-
nection time slicing could enable support for multiple target
peripherals per VaktBLE instance. However, this might allow
an attacker to directly connect to the target peripheral when
the non-compliant peripheral is not listening to advertise-
ment channels. This is because the radio of nRF52840 only
communicates in one channel at a time.
Setup Footprint: Currently, the setup of VaktBLE involves
four devices per target (three non-compliant peripherals, one
for each channel and one non-compliant central). However,
implementing techniques to follow advertisements of the tar-
get, could reduce VaktBLE to one non-compliant peripheral
per target. This results in only two devices for VaktBLE.



7. Related Work

BLE Attacks and Testing: In recent years, Bluetooth Low
Energy (BLE) has witnessed a rise in new attack vec-
tors [22], [1], [4], [2], [3], [5]. VaktBLE responds by offering
real-time countermeasures against known and potentially
unknown BLE vulnerabilities to defend against malicious
actors within the radio range. In the past decade, there
has also been numerous frameworks to uncover BLE vul-
nerabilities [3], [2], [23], [24], [25]. While L2Fuzz [23]
targets the L2CAP layer, several works have exposed BLE
link-layer vulnerabilities [2], [3]. However, in contrast to
VaktBLE, these techniques primarily concentrate on testing
and analysis, they do not propose real-time defense against
BLE attacks.

Work BLE Support Reverse
Engineering

Stateful
Validation

Flooding
Validation

Structure
Validation

Link Layer
Support

COTS
Support

Attack Model
Applicability

LIGHTBLUE [11] ● ◗ ● ❍ ● ❍ ◗ Any Role

BlueShield [10] ● ❍ ❍ ❍ ● ❍ ● Only Central

Battery Exhaustion
Prevention [26] ◗ ❍ ❍ ❍ ❍ ❍ ● Any Role

BLE-guardian [27] ● ❍ ❍ ❍ ● ❍ ● Only Peripheral

Inside Job [28] ● ● ❍ ❍ ● ❍ ● Only Peripheral

MagicPairing [29] ◗ ● ❍ ❍ ❍ ❍ ❍ Only Peripheral

FirmXRay [30] ◗ ● ❍ ❍ ● ● ● Any Role

OASIS [31] ● ● ❍ ❍ ● ● ◗ Any Role

VaktBLE ● ❍ ● ● ● ● ● Only Peripheral

TABLE 6. VaktBLE VS OTHER DEFENSE. ●: FULL CONSIDERATION, ❍:
EXCLUSION, ◗: PARTIAL CONSIDERATION. FOR THE COTS Support

COLUMN ◗ CAPTURES COMPATIBILITY WITH ARBITRARY COTS
DEVICES.

BLE Defense: Table 6 positions VaktBLE with respect to
existing defense strategies. Notably, while BlueShield [10]
presents defense mechanisms against spoofing attacks, it
is not applicable to attacks that exploit Link Layer (LL)
vulnerabilities within the peripheral [2], [3]. This is because
BlueShield considers an attack model (see last column of
Table 6) where the attacker, acting as the peripheral, broad-
casts advertisement packets to spoof the victim (central).
While BlueShield is capable of detecting such attacks, it
cannot prevent them in real-time. VaktBLE takes a different
approach by protecting peripheral devices against attacks
from a malicious BLE central. In this scenario, the attacker
(malicious central) does not broadcast advertisement pack-
ets before launching an attack. As a result, BlueShield’s
approach is unable to detect these kinds of attacks because
the malicious central does not exhibit detectable behavior
through advertisement broadcasting.

Previous works such as LightBlue [11] has targeted
patching the Bluetooth stack by creating a hook in the
device’s firmware. However, this approach patches vulnera-
bilities above link layer and requires access to the device’s
firmware binary. In contrast, VaktBLE includes protection
against link layer attacks, and it is applicable for arbitrary
COTS targets, thus not requiring expertise from the user. It
is worthwhile to mention that the work preventing battery-
exhaustion attacks [26] relies only on BLE-Mesh networks,
thus, it is categorized with partial BLE support (◗).

Furthermore, approaches using embedded defensive
mechanisms [31], require modifying both the device
firmware and controller instrumentation. The latter, involv-
ing changes to the controller’s software, is particularly chal-
lenging and demands significant reverse engineering effort.

Consequently, approaches leveraging reverse engineering
techniques [28], [29], [30] become less practical for pro-
tecting already deployed and non-patched devices.
Jamming: In contrast to VaktBLE, state-of-the-art jamming
fails to perform selective jamming in a way to maintain
the contents of the jammed payload [13], [14], [7]. This is
essential to start the MitM bridge. Other approaches [32] can
only hijack established communications, which is too late
to defend Link-layer attacks. Additionally, VaktBLE targets
a single message with an efficient approach that does not
spoof the advertisement channels. Therefore, BLE Moni-
toring approaches based on analyzing advertisements [8],
[27] are not capable to detect our MitM bridge at all. We
note that, due to the timing overhead, existing jamming
techniques [13], [14], [7] have to start the jamming pro-
cess early, resulting in a situation where several bytes of
the payload cannot be preserved. VaktBLE addresses such
challenges by proposing an efficient jamming technique that
finishes in about the transmission time required for three
bytes (i.e., length of CRC). Additionally, work attempting to
jam existing connections, involving parameter guessing [7],
may often fail to hijack connections due to specific race con-
ditions. In contrast, VaktBLE reliably and deterministically
hijacks a new connection by abusing the start of it, due to
an oversight in the BLE standard.

In summary, previous techniques were able to perform
jamming either before BLE connections (e.g., advertisement
jamming [8]), or after connections (e.g., InjetaBLE [1]). In
contrast, VaktBLE is the first to selectively jam the start of
a connection, providing a predictable result for hijacking.

8. Conclusion

This paper presents VaktBLE, a novel and practical
selective jamming technique and software framework to
comprehensively defend arbitrary BLE peripherals in real-
time and in a over-the-air fashion. This, finally allows users
the option to protect the link layer of devices that can
take arbitrarily long to receive updates or might never get
fixed at all. VaktBLE is the first defense of black-box BLE
peripherals that can protect the link layer in combination
with any BLE protocols. We hope that our proposed real-
time “benevolent“ MitM bridge can also be employed as
a fundamental platform in other works for real-time BLE
intrusion detection and mitigation, security enhancements to
link layer and blacklisting of untrustworthy BLE centrals,
among others. For reproduction and advancing the research
in this area, VaktBLE is publicly available in the following
URL: https://github.com/asset-group/vakt-ble-defender
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Appendix

Figure 14. The normal RX to TX switching procedure is highlighted with blue arrows, according to nRF52840 Product Specification v1.7 Section 6.20.5.
In contrast, the undocumented feature implemented by VaktBLE is denoted with red arrows. In summary, the undocumented feature transitions the state
of the radio from RXIDLE to TXRU, thus reaching state TX in a shorter path.
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